Mon.Not.R.Astron.Soc.000,1–21(2002) Printed11January2011 (MNLATEXstylefilev2.2) Ordered magnetic fields around radio galaxies: evidence for interaction with the environment 1 D. Guidetti⋆1,2,3, R.A. Laing 1, A.H. Bridle 4, P. Parma 2, L. Gregorini 3,2 1 0 1EuropeanSouthernObservatory,Karl-Schwarzschild-Straße2,D-85748Garching-bei-Mu¨nchen,Germany 2 2INAF–IstitutodiRadioastronomia,viaGobetti101,I-40129Bologna,Italy 3DipartimentodiAstronomia,Univ.Bologna,viaRanzani1,I–40127Bologna,Italy n 4NationalRadioAstronomyObservatory,EdgemontRoad,Charlottesville,VA22903-2475,U.S.A. a J 0 1 Accepted.Received;inoriginalform ] O ABSTRACT C WepresentdetailedimagingofFaradayrotationanddepolarizationfortheradiogalaxies . h 0206+35,3C270,3C353andM84,basedonVeryLargeArrayobservationsatmultiplefre- p quenciesintherange1365to8440MHz.Allofthesourcesshowhighlyanisotropicbanded - o rotation measure (RM) structureswith contoursof constant RM perpendicularto the major r axesoftheirradiolobes.AllexceptM84alsohaveregionsinwhichtheRMfluctuationshave t s lower amplitude and appear isotropic. We give a comprehensive description of the banded a RMphenomenonandpresentaninitialattempttointerpretitasaconsequenceofinteractions [ between the sources and their surroundings. We show that the material responsible for the 1 Faradayrotation is in frontof the radio emission and thatthe bandsare likely to be caused v bymagnetizedplasmawhichhasbeencompressedbytheexpandingradiolobes.Wepresent 7 a simple model for the compression of a uniformly-magnetizedexternalmedium and show 0 thatRMbandsofapproximatelytherightamplitudecanbeproduced,butforonlyforspecial 8 initialconditions.Atwo-dimensionalmagneticstructureinwhichthefieldlinesareafamily 1 ofellipsesdrapedaroundthe leadingedgeofthelobecanproduceRM bandsin thecorrect . 1 orientationforanysourceorientation.We also reportthefirstdetectionsofrimsofhighde- 0 polarization at the edges of the inner radio lobes of M84 and 3C270. These are spatially 1 coincidentwithshellsofenhancedX-raysurfacebrightness,inwhichboththefieldstrength 1 and the thermal gas density are likely to be increased by compression. The fields must be : tangledonsmallscales. v i X Keywords: –galaxies:magneticfields–radiocontinuum:galaxies–(galaxies:)intergalactic medium–X-rays:galaxies:clusters r a 1 INTRODUCTION by linearly polarized radiation travelling through a magnetized medium,andcanbedescribedbythetwofollowingrelations: Thedetectionofdiffusesynchrotronemission(radiohalos)onMpc scales in an increasing number of galaxy clusters provides good ∆Ψ[rad] =Ψ(λ)[rad] − Ψ0[rad] =λ2[m2]RM[radm−2], (1) evidence for a distributed magnetic field of µGauss strength in with the hot intracluster medium (ICM; see e.g. Ferrarietal. 2008 for areview).ImagingofFaradayrotationoflinearly-polarizedradio L[kpc] emission from embedded and background sources confirms that RM[radm−2] =812Z ne[cm−3]Bz[µG]dz[kpc], (2) therearefieldsassociatedwiththermalplasmaalonglinesofsight 0 through the clusters (e.g. Carilli&Taylor 2002). Observations of whereΨ(λ)andΨ aretheE-vectorpositionangleoflinearlypo- 0 Faradayrotationcanalsobemadeforradiogalaxiesinsparseren- larizedradiationobservedatwavelengthλandtheintrinsicangle, vironments,allowingthestudyofmagneticfieldsinenvironments respectively,n istheelectrongasdensity,B isthemagneticfield e z too sparse for radio halos to be detected (e.g. Laingetal. 2008; alongtheline-of-sight (B ),andListheintegrationpath. RMis k Guidettietal.2010). therotationmeasure. The Faraday effect (Faraday 1846) is the rotation suffered Observations of Faraday rotation variations across extended radiogalaxiesallowustoderiveinformationabouttheintegralof thedensity-weightedline-of-sightfieldcomponent.Thehot(T ≃ ⋆ E-mail:[email protected] 107 −108K)plasmaemitsintheX-rayenergybandviathermal 2 D. Guidettiet al. bremsstrahlung. Whenhigh quality X-ray datafor aradio-source andinSection3webrieflysummarizethetechniquesusedtoanal- environmentisavailable,itispossibletoinferthegasdensitydis- yse depolarization and two-dimensional variations of RM. Sec- tributionandthereforetoseparateitfromthatofthemagneticfield, tions4and5presenttheRManddepolarizationimagesonwhich subjecttosomeassumptionsabouttherelationoffieldstrengthand ouranalysisisbasedandcorrelationsbetweenthetwoquantities.In density. Section6,weevaluatetheRMstructurefunctionsinregionswhere Most of the RM images of radio galaxies published so far thefluctuationsappear tobeisotropicandderivethepower spec- show patchy structures with no clear preferred direction, consis- tra. A simple model of the source-environment interaction which tent with isotropic foreground fluctuations over a range of linear characterises the effects of compression of a magnetised IGM is scales ranging from tens of kpc to <100pc (e.g. Govonietal. describedinSection7.ThiscanproduceRMbands,butonlyun- ∼ 2006;Guidettietal.2008;Laingetal.2008;Guidettietal.2010). derimplausiblespecialinitialconditions.Empirical“draped”field Numerical modelling has demonstrated that thistype of complex configurationswhichareabletoreproducethebandedRMdistri- RM structure can be accurately reproduced if the magnetic field butionsareinvestigatedinSection8.InSection9,wespeculateon is randomly variable with fluctuations on a wide range of spatial correlationsbetweenradiosourcemorphology,andRManisotropy, scales, and isspread throughout the whole group or cluster envi- discussotherexamplesfromtheliterature,consider theeffectsof ronment(e.g.Murgiaetal.2004;Govonietal.2006;Guidettietal. anisotropicforegroundFaradayscreenonthedetectabilityofRM 2008; Laingetal. 2008; Guidettietal. 2010; Vaccaetal. 2010). bandsandbrieflydiscusspossibleasymmetriesintheamplitudeof Theseauthorsusedforwardmodelling,togetherwithestimatorsof theRMbandsbetweentheapproachingandrecedinglobes.Finally, the spatial statistics of the RM distributions (structure and auto- Section10summarizesourconclusions. correlationfunctionsoramulti-scalestatistic)toestimatethefield Throughout thispaper weassumeaΛCDMcosmology with strength,itsrelationtothegasdensityanditspowerspectrum.The H =71kms−1Mpc−1,Ω =0.3,andΩ =0.7. 0 m Λ techniqueofBayesianmaximumlikelihoodhasalsobeenusedfor thispurpose(Enßlin&Vogt2005;Kuchar&Enßlin 2009). Inordertoderivethethree-dimensionalmagneticfieldpower 2 THESAMPLE spectrum,alloftheseauthorshadtoassumestatisticalisotropyfor thefield,sinceonlythecomponentofthemagneticfieldalongthe High quality radio and X-ray data are available for all of the line-of-sight contributes to the observed RM. This assumption is sources.InthisSectionwesummarizethoseoftheirobservational consistentwiththeabsenceofapreferreddirectioninmostofthe propertieswhicharerelevanttoourRMstudy.Alistofthesources RMimages. and their general parameters is given in Table1, while Table2 Incontrast,thepresentpaperreportsonanisotropicRMstruc- showstheX-rayparameterstakenfromtheliteratureandequipar- tures,observedinlobedradiogalaxieslocatedindifferentenviron- titionparametersderivedfromourradioobservations. ments,rangingfromasmallgrouptooneoftherichestclustersof ThesourceswereobservedwiththeVLAatseveralfrequen- galaxies.TheRMimagesofradiogalaxiespresentedinthispaper cies,infullpolarizationmodeandwithmultipleconfigurationsso showclearlyanisotropic“banded”patternsoverpartoralloftheir that the radio structure is well sampled. The VLA observations, areas.Insomesources,thesebandedpatternscoexistwithregions datareductionanddetaileddescriptionsoftheradiostructuresare ofisotropicrandomvariations.Themagneticfieldresponsiblefor givenfor0206+35andM84byLaingetal.(2011),for3C270by theseRMpatternsmust,therefore,haveapreferreddirection. Laing,Guidetti&Bridle(2011),andfor3C353bySwain(1996). OnesourcewhoseRMstructureisdominatedbybandsisal- All of the radio maps show a core, two sided jets and a double- ready known: M84 (Laing&Bridle 1987). In addition, there is lobedstructurewithsharpbrightnessgradientsattheleadingedges some evidence for RM bands in sources which also show strong ofbothlobes. Thesynchrotron minimumpressures areallsignif- irregularfluctuations,suchasCygnusA(Carilli&Taylor2002).It icantly lower than the thermal pressures of the external medium ispossible,however,thatsomeoftheclaimedbandscouldbedue (Table2). toimperfectsamplingofanisotropicRMdistributionwithlarge- AllofthesourceshavebeenobservedinthesoftX-rayband scalepower,andwereturntothisquestioninSection9.1. bymorethanonesatellite,allowingthedetectionofmultiplecom- Thepresent paper presentsnew RMimagesofthreesources ponentsoncluster/groupandsub-galacticscales.TheX-raymor- whichshowspectacularbandedstructures,togetherwithimproved phologiesarecharacterizedbyacompactsourcesurroundedbyex- dataforM84.Theenvironmentsofallfoursourcesarewellchar- tendedemissionwithlowsurfacebrightness.Theformerincludesa acterizedbymodernX-rayobservations,andwegivethefirstcom- non-thermalcontribution,fromthecoreandtheinnerregionsofthe prehensivedescriptionofthebandedRMphenomenon.Wepresent radiojetsand,inthecaseof0206+35and3C270,athermalcom- aninitialattempttointerpretthephenomenonasaconsequenceof ponent which is well fitted by a small core radius β model. The source-environment interactions and to understand the difference lattercomponentisassociatedwiththediffuseintra-grouporintra- betweenitandthemoreusualirregularRMstructure. clustermedium.Parametersforallofthethermalcomponents,de- TheRMimagesreportedinthispaper arederivedfromnew rivedfromX-rayobservations,arelistedinTable2.Becauseofthe orpreviouslyunpublishedarchiveVeryLargeArray(VLA)1 data irregularmorphologyofthehotgassurrounding3C353andM84, for the nearby radio galaxies 0206+35, M84 (Laingetal. 2011), ithasnotbeenpossibletofitβmodelstotheirX-rayradialsurface 3C270(Laing,Guidetti&Bridle2011)and3C353(Swain,private brightnessprofiles. communication;seeSwain1996). Thepaperisorganizedasfollows.InSection2theradioand 2.1 0206+35(4C35.03) X-ray properties of the sources under investigation are presented 0206+35 is an extended Fanaroff-Riley Class I (FRI; Fanaroff&Riley 1974) radio source whose optical counter- 1 TheVeryLargeArrayisafacilityoftheNationalScienceFoundation, part,UGC11651,isaD-galaxy,amemberofadumb-bellsystem operatedundercooperativeagreementbyAssociatedUniversities,Inc. atthecentreofagroupofgalaxies.Ataresolutionof1.2arcsecthe Faradayrotationmeasurebandsacrossradiogalaxies 3 Figure1. X-rayimagesoverlaidwithradiocontoursforallsources:(a)0206+35:1385.1MHzVLAradiomapwith1.2arcsecFWHM;thecontoursarespaced byfactorof2between0.06and15mJybeam−1.TheROSATPSPCimage(Worrall&Birkinshaw2000),issmoothedwithaGaussianofσ = 30arcsec. (b) M84: 1413.0MHz VLA radio map with 4.5arcsec FWHM; the contours are spaced by factor of 2 between 1 and 128mJy beam−1. TheChandra (Finoguenov&Jones 2001) image is a wavelet reconstruction on angular scales from 4 up to 32arcsec. (c) 3C270: 1365.0MHz VLA radio map with 5.0arcsecFWHM;thecontoursarespacedbyfactorof2between0.45and58mJybeam−1.TheXMM-Newtonimage(Croston,Hardcastle&Birkinshaw 2005)issmoothedwithaGaussianofσ=26arcsec.(d)3C353:1385.0MHzVLAradiomapwith1.3arcsecFWHM;thecontoursarespacedbyfactorof 2between0.35and22mJybeam−1.TheXMM-Newtonimage(Goodgeretal.2008)issmoothedwithaGaussianofσ=30arcsec.TheChandraimageof 3C270isdisplayedinlogarithmicscale. Table1.Generalopticalandradioproperties:Col.1:sourcename;Cols.2&3:position;Col.4:redshift;Col.5:conversionfromangulartospatialscalewith theadoptedcosmology;Col.6:Fanaroff-Rileyclass;Col.7:thelargestangularsizeoftheradiosource;Col.8:radiopowerat1.4GHz;Col.9:angletothe lineofsightofthejetaxis;Col.10:radiospectralindex;Col.11:environmentofthegalaxy;Col.12:reference. source RA DEC z kpc/arcsec FRclass LAS logP1.4 θ env. ref. [J2000] [J2000] [arcsec] [WHz−1] [degree] 0206+35(4C35.03) 020938.6 +354750 0.0377 0.739 I 90 24.8 40 group 1 3C353 172029.1 -005847 0.0304 0.601 II 186 26.3 90 poorcluster 2 3C270 121923.2 +054931 0.0075 0.151 I 580 24.4 90 group 3 M84 122503.7 +125313 0.0036 0.072 I 150 23.2 60 richcluster 3 Referencesfortheenvironmentalclassification:(1)Milleretal.(2002);(2)deVaucoleurs(1991);(3)Trageretal.(2000). 4 D. Guidettiet al. Table2.X-rayandradioequipartitionparametersforallthesources.Col.1:sourcename;Col.2:X-rayenergyband;Col.3:averagethermaltemperature; Cols.4,5,6and7,8,9best-fittingcoreradii,centraldensitiesandβparametersfortheouterandinnerβmodels,respectively;Col.10:averagethermalpressure atthemidpointoftheradiolobes;Cols.11&12:minimumsynchrotronpressureandcorrespondingmagneticfield;Col.13:referencesfortheX-raymodels. source band kT rcxout n0out βout rcxin n0in βin P0 Pmin BPmin ref. [keV] [keV] [kpc] [cm−3] [kpc] [cm−3] [dynecm−2] [dynecm−2] µG 0206+35 0.2-2.5 1.3+1.3 22.2 2.4×10−3 0.35 0.85 0.42 0.70 9.6×10−12 4.31×10−13 5.70 1,2 −0.3 3C353 ” 4.33+0.25 1.66×10−12 11.2 3 −0.24 3C270 0.3-7.0 1.45+0.23 36.8 7.7×10−3 0.30 1.1 0.34 0.64 5.75×10−12 1.64×10−13 3.71 4 −0.01 M84 0.6-7.0 0.6+0.05 5.28±0.08 0.42 1.40±0.03 1.70×10−11 1.07×10−12 9.00 5 −0.05 References:(1)Worrall&Birkinshaw(2000);(2)Worrall,Birkinshaw&Hardcastle(2001);(3)Iwasawaetal.(2000);(4)Crostonetal.(2008);(5)(Finoguenov&Jones 2001). radioemissionshowsacore,withsmoothtwo-sidedjetsalignedin matefortheinclinationofthejetsis≈90◦(Swain,Bridle&Baum theNW-SEdirection and surrounded by adiffuseand symmetric 1998).Theeasternjetisslightlybrighterandendsinawell-defined halo. Laing&Bridle (2011b) have estimated that the jets are hot spot. The radio lobes have markedly different morphologies: inclined by ≈40◦ withrespect tothelineof sight, withthemain theeasternlobeisroundwithsharpedges,whilethewesternlobeis (approaching)jetintheNWdirection. elongatedwithanirregularshape.Thelocationofthesourcewithin 0206+35 has been observed with both the ROSAT theclusterisofparticularinterestforthisworkandmightaccount PSPC and HRI instruments (Worrall&Birkinshaw for the different shapes of the lobes. Fig.1(d) shows the XMM- 1994, 2000; Trussonietal. 1997) and with Chandra Newton image overlaid on the radio contours. The image shows (Worrall,Birkinshaw&Hardcastle 2001). The X-ray emission onlytheNWpartofthecluster,butitisclearthattheradiosource consistsofacompactsourcesurroundedbyagalacticatmosphere liesontheedgeoftheX-rayemittinggasdistribution.sothatthe which merges into the much more extended intra-group gas. The roundeasternlobeisencounteringahigherexternaldensityandis radius of the extended halo observed by the ROSAT PSPC is probablyalsobehindalargercolumnofFaraday-rotatingmaterial ≈2.5arcmin (Fig. 1a). The ROSAT and ChandraX-ray surface (Iwasawaetal.2000,Goodgeretal.2008).Inparticular,theimage brightnessprofilesarewellfitbythecombinationofβmodelswith publishedbyGoodgeretal.(2008)showsthatthegasdensitygra- two different core radii and a power-law component (Hardcastle, dientpersistsonlargerscales. privatecommunication;Table2). 2.2 3C270 2.4 M84 3C270isaradiosourceclassifiedasFRIinmostoftheliterature, M84 is a giant elliptical galaxy located in the Virgo Cluster at althoughinfact,thetwolobeshavedifferentFRclassificationsat about400kpcfromthecore.Opticalemission-lineimagingshows lowresolution(Laing,Guidetti&Bridle2011).Theopticalcoun- adiskofionizedgasaroundthenucleus,withamaximumdetected terpartisthegiantellipticalgalaxyNGC4261,locatedatthecentre extent of 20×7arcsec2 (Hansen,Norgaard-Nielsen&Jorgensen of a nearby group. The radio source has a symmetrical structure 1985;Baumetal.1988;Boweretal.1997,2000).Theradioemis- with a bright core and twin jets, extending E-W and completely sionofM84(3C272.1)hasanangularextensionofabout3arcmin surroundedbylobes.Thelowjet/counter-jetratioindicatesthatthe (≃ 11kpc) and shows an unresolved core in the nucleus of the jets are close to the plane of the sky, with the Western side ap- galaxy,tworesolvedjetsandapairofwidelobes(Laing&Bridle proaching(Laing,Guidetti&Bridle2011). 1987;Laingetal.2011).Theinclinationtotheline-of-sightofthe The XMM-Newton image (Fig.1c) shows a disturbed dis- innerjetaxisis∼60◦,withthenorthernjetapproaching,butthere tribution with regions of low surface-brightness (cavities) at is a noticeable bend in the counter-jet very close to the nucleus, the positions of both radio lobes. A recent Chandra ob- which complicates modelling (Laing&Bridle 2011b). After this servation (Worralletal. 2010) shows “wedges” of low X- bend, the jets remain straight for ≈40arcsec, then both of them ray surface brightness surrounding the inner jets (see also bend eastwards by ∼90◦ and fade into the radio emission of the Croston,Hardcastle&Birkinshaw 2005, Finoguenovetal. 2006, lobes. Jethaetal.2007,Crostonetal.2008).Theoverall surface bright- ThemorphologyoftheX-rayemissionhasaH-shapemadeup ness profile is accurately reproduced by a point source con- of shells of compressed gas surrounding cavities coincident with volved with the Chandra point spread function plus a double both the radio lobes (Finoguenovetal. 2008; Finoguenovetal. β model (Crostonetal. 2008, projb model). Crostonetal. 2008 2006; Finoguenov&Jones 2001). This shape, together with the found no evidence for a temperature gradient in thehot gas. The fact that the initial bending of the radio jets has the same direc- group is characterized by high temperature and low luminosity tionandisquitesymmetrical,suggestsacombinationofinteraction (Finoguenovetal.2006),whichtakentogetherprovideaveryhigh withtheradioplasmaandmotionofthegalaxywithinthecluster levelofentropy. Thismightbeafurthersignofalargedegreeof (Finoguenov&Jones 2001).TheratiobetweentheX-raysurface impactoftheAGNontheenvironment. brightnessoftheshellsofthecompressedgasandtheirsurround- ingsis≈3andisalmostconstantaroundthesource.Theshellsare regionsofenhancedpressureanddensityandlowentropy:theam- 2.3 3C353 plitudeofthedensityenhancements(afactorof≈3)suggeststhat 3C353isanextendedFRIIradiosourceidentifiedwithaD-galaxy theyareproducedbyweakshockwaves(MachnumberM∼1.3) embedded at theperipheryof aclusterof galaxies.Thebest esti- drivenbytheexpandinglobes(Finoguenovetal.2006). Faradayrotationmeasurebandsacrossradiogalaxies 5 Figure2.RMimagesforallsources:(a)0206+35;(b)M84;(c)3C270;(d)3C353.Theangularresolutionandthelinearscaleofeachmapareshowninthe individualpanels. 3 ANALYSISOFRMANDDEPOLARIZATIONIMAGES Sincek ∝ |∇RM|2,Eq.3clearlyillustratesthathigherRMgra- dientsacrossthebeamgeneratehigherkvaluesandinturnhigher Forafully-resolvedforegroundFaradayscreen,theλ2 relationof depolarization. Eq.2holdsexactlyandthereisnochangeofdegreeofpolarization, p, with wavelength. Even in the presence of a small gradient of Our observational analysis is based on the following proce- RMacrossthebeam,λ2rotationisobservedoverawiderangeof dure.WefirstproducedRMandBurnlawkimagesattwodiffer- polarization angle. In this case, the emission tends to depolarize ent angular resolutions for each source and searched for regions withincreasingwavelength,followingtheBurnlaw(Burn1966): withhighk orcorrelatedRMandk values, whichcouldindicate p(λ)=p(0)exp(−kλ4), (3) thepresenceofinternalFaradayrotationand/orstrongRMgradi- entsacrossthebeam.Inregionswithlowkwherethevariationsof where p(0) is the intrinsic value of the degree of polarization RMareplausiblyisotropicandrandom,wethenusedthestructure andk=2|∇RM|2σ2,withFWHM = 2σ(2ln2)1/2 (Burn1966; function(definedinEq.4)toderivethepowerspectrumoftheRM Tribble1991;Laingetal.2008). fluctuations.Finally,toinvestigatethedepolarizationintheareasof 6 D. Guidettiet al. Figure3.BurnlawkimagesforallsourcesatthesameangularresolutionsasfortheRMimages:(a)0206+35at1.2arcsecFWHM;(b)M84at4.5arcsec FWHM;(c)3C270at5arcsecFWHM;(d)3C353at1.3arcsecFWHM.Thecorrespondingintegrateddepolarization(DP;Section5)isindicatedonthetop rightangleofeachpanel.Thecolourscaleisthesameforalldisplays. isotropicRM,andhencethemagneticfieldpoweronsmallscales, WeassumeRMpowerspectraoftheform: wemadenumericalsimulationsoftheBurnlawkusingthemodel Cˆ(f ) = C f−q f ≤f powerspectrumwithdifferentminimumscalesandcomparedthe ⊥ 0 ⊥ ⊥ max resultswiththedata. = 0 f⊥ >fmax Thestructurefunctionisdefinedby wheref isascalar spatialfrequency andfittheobserved struc- ⊥ turefunction(includingtheeffectoftheobservingbeam)usingthe S(r⊥)=<[RM(r⊥+r′⊥)−RM(r′⊥)]2 > (4) Hankel-transform method described by Laingetal. (2008) to de- rivetheamplitude,C andtheslope,q.ToconstraintheRMstruc- 0 (Simonetti,Cordes&Spangler 1984; Minter&Spangler 1996) tureonscalessmallerthanthebeamwidth,weestimatedthemini- wherer andr′ arevectorsintheplaneoftheskyandhiisan mumscaleofthebestfittedfieldpowerspectrum,Λ =1/f , ⊥ ⊥ min max averageoverr′ . whichpredictsameanvalueofkconsistentwiththeobservedone. ⊥ Faradayrotationmeasurebandsacrossradiogalaxies 7 quencytoderivetheresidualsathighresolution.Then,wefitthe Table3.Frequencies,bandwidthsandangularresolutionsusedintheRM andBurnlawkimagesdiscussedinSects.4and5,respectively. residualswithoutallowinganynπambiguitiesandaddedtheresult- ingRM’stothevaluesdeterminedatlowresolution.Thisprocedure source ν ∆ν beam allowedustoobtainanRMmapof0206+35freeofsignificantde- [MHz] [MHz] [arcsec] viationsfromλ2 rotationand fullyconsistent withthe1.2-arcsec measurements. 0206+35 1385.1 25 1.2 Wehaveverifiedthatthepolarizationanglesaccuratelyfollow 1464.9 25 therelation∆Ψ ∝ λ2overthefullrangeofpositionangleessen- 4885.1 50 tiallyeverywhereexceptforsmallareasaroundtheoptically-thick 3C353 1385.0 12.5 1.3 1665.0 12.5 cores:representativeplotsofΨagainstλ2for0206+35areshown 4866.3 12.5 inFig.4.Thelackofdeviationsfromλ2rotationinalloftheradio 8439.9 12.5 galaxies is fully consistent with our assumption that the Faraday 3C270 1365.0 25 1.65 rotatingmediumismostlyexternaltothesources. 1412.0 12.5 TheRMmapsareshown inFig.2. Thetypical rmserror on 4860.1 100 thefit is≈2radm−2. Nocorrection for theGalacticcontribution 1365.0 25 5.0 hasbeenapplied. 1412.0 12.5 All of the RM maps show two-dimensional patterns, RM 1646.0 25 bands, acrossthelobeswithcharacteristicwidthsrangingfrom3 4860.1 100 to12kpc.Multiplebandsparalleltoeachotherareobservedinthe M84 1413.0 25 1.65 4885.1 50 westernlobeof0206+35,theeasternlobeof3C353andthesouth- 1385.1 50 4.5 ernlobeofM84. 1413.0 25 Inallcases,theiso-RMcontoursarestraightandperpendicu- 1464.9 50 lartothemajoraxesofthelobestoaverygoodapproximation:the 4885.1 50 very straight and well-defined bands in the eastern lobes of both 0206+35 (Fig.2a) and 3C353 (Fig.2d) are particularly striking. TheentireareaofM84appearstobecoveredbyabandedstructure, Inthispaper,weareprimarilyinterestedinestimatingtheRM whileinthecentralpartsof0206+35and3C270andthewestern powerspectrumoverlimitedareas,andwemadenoattempttode- lobe of 3C353, regions of isotropic and random RM fluctuations terminetheouterscaleoffluctuations. arealsopresent. Theuseofthestructurefunctiontogether withtheBurnlaw WealsoderivedprofilesofhRMialongtheradioaxisofeach k represents a powerful technique to investigate the RM power source, averaging over boxes a few beamwidths long (parallel to spectrum over a wide range of spatial scales (Laingetal. 2008; the axes), but extended perpendicular to them to cover the entire Guidettietal.2010).Thetwoquantitiesarecomplementary,inthat width of the source. The boxes are all large enough to contain thestructurefunctionallowsustodeterminethepowerspectrumof many independent points. The profiles are shown in Fig.5. For thefluctuationsonscaleslargerthanthebeamwidth,whiletheBurn each radio galaxy, we also plot an estimate of the Galactic con- lawkconstrainsfluctuationsofRMbelowtheresolutionlimit. tributiontotheRMderivedfromaweightedmeanoftheintegrated RM’s for non-cluster radio sources within a surrounding area of 10deg2 (Simard-Normandinetal. 1981). In all cases, both posi- tiveandnegativefluctuationswithrespecttotheGalacticvalueare 4 ROTATIONMEASUREIMAGES present. The RM images and associated rms errors were produced by In 0206+35 (Fig.2a), the largest-amplitude bands are in the weighted least-squares fitting to the observed polarization angles outerpartsofthelobes,withapossiblelow-levelbandjusttothe Ψ(λ)asafunctionofλ2 (Eq.1)atthreeorfourfrequencies(Ta- NWofthecore.Themostprominentband(withthemostnegative ble3,seealsoLaingetal.2011andLaing,Guidetti&Bridle2011) RMvalues)isintheeastern(receding)lobe,about15kpcfromthe usingtheRMtaskintheAIPSpackage. core (Fig.5a). Its amplitude with respect to the Galactic value is Each RM map was calculated only at pixels with rms about40radm−2.Thisbandmustbeassociatedwithastrongor- polarization-angle uncertainties <10◦ at all frequencies. We re- deredmagneticfieldcomponentalongthelineofsight.Ifcorrected feronlytothelower-resolutionRMandk imagesfor3C270and fortheGalacticcontribution,thetwoadjacentbandsintheeastern M84(Table3),asthey show moreof thefaint, extended regions lobewouldhaveRMwithoppositesignsandthefieldcomponent ofthesesourcesandarefullyconsistentwiththehigher-resolution alongthelineofsightmustthereforereverse. versions.TheRMimageofM84isconsistentwiththatshownby M84 (Fig.2b) displays an ordered RM pattern across the Laing&Bridle(1987),butisderivedfromfour-frequencydataand whole source, with two wide bands of opposite sign having the hasahighersignal-to-noiseratio. highestabsoluteRMvalues.Thereisalsoanabruptchangeofsign In the fainter regions of 0206+35 (for which only three fre- acrosstheradiocore(seealsoLaing&Bridle1987).Thenegative quencies are available and the signal-to-noise ratio is relatively bandinthenorthernlobe(associatedwiththeapproachingjet)has low), the RM task occasionally failedto determine the nπ ambi- alargeramplitudewithrespecttotheGalacticvaluethanthecor- guitiesinpositionanglecorrectly.Inordertoremovetheseanoma- responding(positive)featureinthesouthernlobe(Fig.5c). lies,wefirstproducedalower-resolution,buthighsignal-to-noise 3C270(Fig.2c)showstwolargebands:oneonthefrontend RMimagebyconvolvingthe1.2arcsecRMmaptoabeamwidthof of the eastern lobe, the other in the middle of the western lobe. 5arcsecFWHM.Fromthismapwederivedthepolarization-angle The bands have opposite signs and contain the extreme positive rotationsateachofthethreefrequenciesandsubtractedthemfrom andnegativevaluesoftheobservedRM.Thepeakpositivevalueis the observed 1.2arcsec polarization angle maps at the same fre- withintheeasternbandattheextremeendofthelobe(Fig.5e). 8 D. Guidettiet al. The RM structure of 3C353 (Fig.2d) is highly asymmetric. thesouthernjet(Fig.3b).Thereisnocorrespondingfeatureinthe The eastern lobe shows a strong pattern, made up of four bands, RMimage(Fig.2b).Thedepolarizationislikelytobeassociated withverystraightiso-RMcontourswhicharealmostexactlyper- with one of the shells of compressed gas visible in the Chandra pendiculartothesourceaxis.Asin0206+35,adjacentbandshave image(Fig.1b),implyingsignificantmagnetizationwithinhomo- RMwithopposite signsoncecorrectedfortheGalacticcontribu- geneousfieldand/ordensitystructureonscalesmuchsmallerthan tion(Fig.5g).Incontrast,theRMdistributioninthewesternlobe thebeamwidth,apparentlyindependentofthelarger-scalefieldre- showsnosignofanybandedstructure,andisconsistentwithran- sponsiblefortheRMbands.Thispictureissupportedbythegood domfluctuationssuperimposedonanalmostlinearprofile.Itseems spatialcoincidenceofthehighkregionwithashellofcompressed verylikelythatthedifferencesinRMmorphologyandaxialratio gas,asillustratedintheoverlayofthe4.5arcsecBurnlawkimage arebothrelatedtotheexternaldensitygradient(Fig.1d). onthecontoursoftheChandradata(Fig.6(a)).Coolergasassoci- In Table 4 the relevant geometrical features (size, distance atedwiththeemission-linediskmightalsoberesponsible,butthere fromtheradiocore,hRMi)fortheRMbandsarelisted. isnoevidenceforspatialcoincidencebetweenenhanced depolar- izationand Hαemission(Hansen,Norgaard-Nielsen&Jorgensen 1985). Despite the complex morphology of the X-ray emission around M84, its k profile is very symmetrical, with the highest 5 DEPOLARIZATION valuesatthecentre(Fig.5(d)). In this section, we use “depolarization” in its conventional sense 3C270 also shows areas of very strong depolarization tomean“decreaseofdegreeofpolarizationwithincreasingwave- (k ∼550rad2m−4,correspondingtoDP=0.35)closetothecore length” and define DP = p /p . Using the Faraday and surrounding the inner and northern parts of both the radio 1.4GHz 4.9GHz code (Murgiaetal. 2004), we produced images of Burn law k lobes.AsforM84,theareasofhighk arecoincidentwithridges by weighted least-squares fitting to lnp(λ) as a function of λ4 intheX-rayemissionwhichformtheboundariesofthecavitysur- (Eq.3). Onlydatawithsignal-to-noise ratio>4inP ateach fre- roundingthelobes(Fig.6(b)).TheinnerpartsofthisX-raystruc- quencywereincludedinthefits.TheBurnlawkimageswerepro- ture are described in more detail by Worralletal. (2010), whose duced with the same angular resolutions as the RM images. The recenthigh-resolutionChandraimageclearlyreveals“wedges”of 1.65arcsec resolution Burn law k maps for M84 and 3C270 are low brightness surrounding the radio jets. As in M84, the most consistentwiththelow-resolutionones,butaddnoadditionaldetail likely explanation is that a shell of denser gas immediately sur- andarequitenoisy.Thiscouldleadtosignificantlybiasedestimates roundingtheradiolobesismagnetized,withsignificantfluctuations forthemeanvaluesofkoverlargeareas(Laingetal.2008).There- of field strength and density on scales smaller than our 5-arcsec fore,asfortheRMmaps,weusedonlytheBurnlawkimagesat beam, uncorrelated with the RM bands. The k profile of 3C270 lowresolutionforthesetwosources. (Fig.5(f))isvery symmetrical, suggesting that the magnetic-field TheBurnlawkmapsareshowninFig.3.Allofthesources anddensitydistributionsarealsosymmetricalandconsistentwith showlowaveragevaluesofk(i.e.slightdepolarization),suggest- anorientationclosetotheplaneofthesky.Thelargestvaluesofk ing littleRM power on small scales. Withthe possible exception areobservedinthecentre,coincidentwiththefeaturesnotedear- of the narrow filaments of high k in the eastern lobe of 3C353 lierandwiththebulkoftheX-rayemission(thehighk valuesin (which might result from partially resolved RM gradients at the thetwooutermostbinshavelowsignal-to-noiseandarenotsignif- band edges), none of the images show any obvious structure re- icant). latedtotheRMbands.Foreachsource,wehavealsocomparedthe In the Burn law k image of 3C353, there is evidence for a RMandBurnlawkvaluesderivedbyaveragingovermanysmall straightandknottyregionofhighdepolarization≈20kpclongand boxes covering theemission, and we findno correlationbetween extending westwards from the core. This region does not appear them. toberelatedeithertothejetsortoanyother radiofeature.Asin Wealsoderivedprofilesofk(Fig.5b,d,fandh)withthesame M84and3C270,theRMappearsquitesmoothovertheareashow- setsofboxesasfortheRMprofilesinthesameFigure.Thesecon- inghighdepolarization,againsuggestingthattherearetwoscales firmthatthevaluesofkmeasuredinthecentresoftheRMbands ofstructure,onemuchsmallerthanthebeam,butproducingzero arealwayslow,butthatthereislittleevidenceforanydetailedcor- meanRMandtheotherverywellresolved.In3C353,thereisas relation. yetnoevidenceforhotorcoolionizedgasassociatedwiththeen- The signal-to-noise ratiofor 0206+35 isrelativelylow com- hanceddepolarization(contaminationfromtheverybrightnuclear paredwiththatoftheotherthreesources, particularlyat4.9GHz X-rayemissionaffectsanareaof1arcminradiusaroundthecore; (we need to use a small beam to resolve the bands), and this is Iwasawaetal.2000,Goodgeretal.2008). reflectedinthehighproportionofblankedpixelsonthek image. Thekprofileof3C353(Fig.5(h))showsamarkedasymme- Themostobviousfeatureofthisimage(Fig.3a),anapparentdiffer- try,withmuchhighervaluesintheEast.Thisisinthesamesenseas enceinmeankbetweenthehigh-brightnessjets(lessdepolarized) thedifferenceofRMfluctuationamplitudes(Fig.5(g))andisalso andthesurroundingemission,islikelytobeanartefactcausedby consistentwiththeeasternlobebeingembeddedinhigher-density our blanking strategy: pointswhere thepolarized signal islow at gas.Therelativelyhighvaluesofkwithin20kpcofthenucleusin 4.9GHz are blanked preferentially, so the remainder show artifi- theWesternlobearedueprimarilytothediscreteregionidentified ciallyhighpolarizationatthisfrequency.Forthesamereason,the earlier. apparentminimuminkatthecentreofthedeep,negativeRMband (Fig.5aandb)isprobablynotsignificant.Theaveragedvaluesof kfor0206+35arealreadyverylow,however,andarelikelytobe 6 ROTATIONMEASURESTRUCTUREFUNCTIONS slightlyoverestimated,soresidualRMfluctuationsonscalesbelow the1.2-arcsecbeamwidthmustbeverysmall. We calculated RM structure function for discrete regions of the M84 shows onelocalised areaof verystrong depolarization sourceswheretheRMfluctuationsappeartobeisotropicandran- (k ∼500rad2m−4, corresponding to DP = 0.38) at the base of domandforwhichweexpectthespatialvariationsofforeground Faradayrotationmeasurebandsacrossradiogalaxies 9 Table4.PropertiesoftheRMbands:Col.1sourcename;Cols.2&3:overallhRMiandσRM;Col.4:GalactichRMi;Col.5:hRMiforeachband;Col. 6:distanceofthebandmidpointfromtheradiocore(positivedistancesareinthewesterndirectionforallsources,exceptforM84,wheretheyareinthe northerndirection);Col.7:widthoftheband;Col.8:maximumbandamplitude. source hRMi σRM RMG bandhRMi dc width A [radm−2] [radm−2] [kpc] [kpc] [radm−2] 0206+35(4C35.03) −77 23 −72 −140 -15 10 40 −60 -27 4 34 22 6 51 8 4 3C353 −56 24 −69 122 -12 5 50 102 -19 4 -40 -23 4 100 -26 4 3C270 14 10 12 −8 20 12 10 32 37 11 M84 −2 15 2 −27 1 3 10 22 -6 6 thermalgasdensity,rmsmagneticfieldstrengthandpathlengthto effectsoflarge-scalevariationsinpathlengthorfieldstrength(cf. bereasonablysmall.Theseare:theinner26arcsecofthereceding Guidettietal.2010). (Eastern)lobeof0206+35,theinner100arcsecof3C270andthe InordertoconstrainRMstructureonspatialscalesbelowthe inner 40arcsec of thewesternlobeof 3C353. Theselectedareas beamwidth, we estimated the depolarization as described in Sec- of0206+35and3C270arebothwithinthecoreradiiofthelarger- tion3.ThefittedkvaluesarelistedinTable5.Westressthatthese scalebetamodelsthatdescribethegroup-scaleX-rayemissionand values refer only to areas with isotropic fluctuations, and cannot thegalaxy-scalecomponentsaretoosmalltoaffecttheRMstatis- usefullybecomparedwiththeintegrateddepolarizationsquotedin ticssignificantly(Table2).In3C353,theselectedareawaschosen inFig.2. to be small compared with the scale of X-ray variations seen in For M84, using the Burn law k analysis and assuming that Fig.1(d).Inallthreecases,theforegroundfluctuationsshouldbe variation of Faraday rotation across the 1.65-arcsec beam causes fairlyhomogeneous. TherearenosuitableregionsinM84,which theresidualdepolarization,wefindthatΛ <0.1kpcforanyrea- min∼ isentirelycoveredbythebandedRMpattern. sonableRMpowerspectrum. The structure functions, corrected for uncorrelated random noisebysubtracting2σ2 (Simonettietal.1984),areshownin noise Fig.7.Alloftheobservedstructurefunctionscorrespondtopower 7 ROTATION-MEASUREBANDSFROMCOMPRESSION spectra of approximately power-law form over all or most of the It is clear from the fact that the observed RM bands are perpen- rangeofspatialfrequencieswesample.Weinitiallyassumedthat dicular to the lobe axes that they must be associated with an in- thepowerspectrumwasdescribedbyEq.5withnohigh-frequency teraction between an expanding radio source and the gas imme- cut-off (f → ∞) and made least-squares fitsto the structure max diatelysurrounding it.Oneinevitablemechanismisenhancement functions,weightedbyerrorsderivedfrommultiplerealizationsof offieldanddensitybytheshockorcompressionwavesurrounding thepowerspectrumontheobservinggrid,asdescribedindetailby thesource.2TheimplicationofthepresenceofcavitiesintheX-ray Laingetal.(2008)andGuidettietal.(2010). gasdistributioncoincidentwiththeradiolobesisthatthesources Thebest-fittingslopesq andamplitudesC aregiveninTa- areinteractingstronglywiththethermalgas,displacingratherthan 0 ble5. All of the fitted power spectra are quite flat and have low mixing withit (seeMcNamara&Nulsen 2007 for areview). For amplitudes,implyingthatthereislittlepowerintheisotropicand the sources in the present paper, the X-ray observations of M84 randomcomponentofrotationmeasure.Indeed,theamplitudesof (Finoguenovetal. 2008,Fig.1b)and3C270(Crostonetal.2008, thelargest-scaleRMfluctuationssampledinthisanalysisisafew Fig.1c)showcavitiesandarcsofenhancedbrightness,correspond- timeslessthanthatofthebands(seeTables4and5).Thissuggests ing to shells of compressed gas bounded by weak shocks. The thatthefieldresponsibleforthebandsisstrongeraswellasmore strengthofanypre-existingfieldintheIGM,whichwillbefrozen orderedthanthatresponsiblefortheisotropicfluctuations. intothegas,willalsobeenhanced intheshells.Wethereforeex- pectasignificantenhancementinRM.Amoreextremeexampleof The structure functions for 0206+35 and 3C353 rise mono- thiseffectwilloccuriftheexpansionoftheradiosourceishighly tonically, indicating that the outer scale for the random fluctua- supersonic,inwhichcasetherewillbeastrongbow-shockaheadof tions must be larger than the maximum separations we sample. For 3C270, the structure function levels out at r ≈ 100arcsec ⊥ (15kpc; Fig. 7d). This could be the outer scale of the field fluc- 2 Analternativemechanismisthegenerationofnon-linearsurfacewaves tuations, but a better understanding of the geometry and external (Bicknell,Cameron&Gingold 1990).Itisunlikely thatthis canproduce densitydistributionwouldbeneededbeforewecouldruleoutthe large-scalebands,forthereasonsgiveninSection9.5. 10 D. Guidettiet al. Table5.Powerspectrumparametersfortheindividualsub-regions.Col.1:sourcename;Col.2:angularresolution;Col.3:slopeq:Col.4:amplitudeC0; Col.5:minimumscale;Col.6:amplitudeofthelargescaleisotropiccomponent;Col.7:observedmeank;Col.8:predictedmeank.Thepowerspectrumhas notbeencomputedforM84(seeSection6). Source FWHM q logC0 Λmin Aiso kobs ksyn [arcsec] [kpc] [radm−2] [rad2m−4] [rad2m−4] 0206+35 1.2 2.1 0.77 2 10 37 40 3C270 1.65 2.7 0.90 0.3 5 30 26 5.0 2.7 0.90 0.3 5 71 64 3C353 1.3 3.1 0.99 0.1 10 38 33 M84 1.65 <0.1 25 4.5 <0.1 43 0206+35 Figure4.PlotsofE-vectorpositionangleΨagainstλ2atrepresentativepointsofthe1.2arcsecRMmapof0206+35.FitstotherelationΨ(λ)=Ψ0+RMλ2 areshown.ThevaluesofRMaregivenintheindividualpanels. thelobe,behindwhichboththedensityandthefieldbecomemuch lackof detection of strong shocks in theX-raydatafor the other higher.Regardlessofthestrengthoftheshock,thefieldismodified sources. sothatonlythecomponent intheplaneoftheshockisamplified Inthissection,weinvestigatehowtheRMcouldbeaffected andthepost-shockfieldtendsbecomeorderedparalleltotheshock bycompression.Weconsideradeliberatelyoversimplifiedpicture surface. in which the radio source expands into an IGM with an initially uniform magnetic field, B. This is the most favourable situation Theevidencesofarsuggeststhatshocksaroundradiosources forthegenerationoflarge-scale,anisotropicRMstructures:inre- of both FR classes are generally weak (e.g. Formanetal. 2005, ality,thepre-existingfieldislikelytobehighlydisordered,oreven Wilsonetal.2006,Nulsenetal.2005).Thereareonlytwoexam- isotropic,becauseofturbulenceinthethermalgas.Westressthat ples inwhich highly supersonic expansion has been inferred: the wehavenottriedtogenerateaself-consistentmodelforthemag- southern lobe of CentaurusA (M ≈ 8; Kraftetal. 2003) and neticfieldandthermaldensity,butrathertoillustratethegeneric NGC3801(M≈4;Crostonetal.2007).Thereisnoevidencethat effectsofcompressionontheRMstructure. the sources described in the present paper are significantly over- pressured compared with the surrounding IGM (indeed, the syn- Inthismodeltheradiolobeisanellipsoidwithitsmajoraxis chrotronminimumpressure issystematicallylowerthanthether- alongthejetandissurroundedbyasphericalshellofcompressed malpressureoftheIGM;Table 2).Thesidewaysexpansionofthe material.Thisshelliscentredatthemid-pointofthelobe(Fig.8) lobesisthereforeunlikelytobehighlysupersonic.TheshockMach and has a stand-off distance equal to 1/3 of the lobe semi-major numberestimatedforallthesourcesfromrampressurebalancein axis at the leading edge (the radius of the spherical compression theforwarddirectionisalso≈1.3.Thisestimateisconsistentwith isthereforeequalto4/3ofthelobesemi-majoraxis).Inthecom- thatforM84madebyFinoguenovetal.(2006)andalsowiththe pressedregion,thethermaldensityandthemagneticfieldcompo-