ebook img

Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower PDF

21 Pages·2017·8.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower

water Article Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application ModestoPérez-Sánchez1 ID,FranciscoJavierSánchez-Romero2 ID,HelenaM.Ramos3 ID andP.AmparoLópez-Jiménez1,* ID 1 HydraulicandEnvironmentalEngineeringDepartment,UniversitatPolitècnicadeValència, 46022Valencia,Spain;[email protected] 2 RuralandAgrifoodEngineeringDepartment,UniversitatPolitècnicadeValència,46022Valencia,Spain; [email protected] 3 CivilEngineering,ArchitectureandGeoresourcesDepartament,CERIS,InstitutoSuperiorTécnico, UniversidadedeLisboa,1049-001Lisboa,Portugal;[email protected] * Correspondence:[email protected];Tel.:+34-96-387700(ext.86106) Received:4August2017;Accepted:16October2017;Published:17October2017 Abstract: Analyses of possible synergies between energy recovery and water management are essentialforachievingsustainableadvancesintheperformanceofpressurizedirrigationnetworks. Nowadays,theuseofmicrohydropowerinwatersystemsisbeinganalysedtoimprovetheoverall energyefficiency. Inthisline,thepresentresearchisfocusedontheproposalanddevelopmentof anoveloptimizationstrategyforincreasingtheenergyefficiencyinpressurizedirrigationnetworks byenergyrecovering. Therecoveredenergyismaximizedconsideringdifferentobjectivefunctions, includingfeasibilityindex: thebestenergyconvertermustbeselected,operatinginitsbestefficiency conditionsbyvariationofitsrotationalspeed,providingtherequiredflowineachmoment. These flows(previouslyestimatedthroughfarmers’habits)arecomparedwithregisteredvaluesofflow inthemainlinewithverysuitablecalibrationresults,gettingaNash–Sutcliffevalueabove0.6for differenttimeintervals,andaPBIASindexbelow10%inalltimeintervalrange. Themethodology was applied to a Vallada network obtaining a maximum recovered energy of 58.18 MWh/year (41.66%oftheavailableenergy),improvingtherecoveredenergyvaluesbetween141and184%when comparingtoenergyrecoveryconsideringaconstantrotationalspeed. Theproposalofthisstrategy showstherealpossibilityofinstallingmicrohydropowermachinestoimprovethewater–energy nexusmanagementinpressurizedsystems. Keywords: irrigationsystems;optimizationstrategy;water–energynexus;pumpworkingasturbine 1. Introduction Modernsocietyisincreasinglyawareoftheneedtoimproveenergyefficiencyacrossallindustrial sectorsandprocesses. Increasedsustainabilitycanbeachievedthroughthedevelopmentofrenewable energysourcessuchasphotovoltaic,wind,tidalorhydropower. Toreachthissustainablegrowth, deepmanagementisnecessary[1]. Waterdistributionsystems,particularlyirrigationsystems,have not been included in this trend, considering that these infrastructures are high energy consumers regarding the captation, distribution and reuse of water resources. The importance of hydraulic systems as energy consumers is shown through the worldwide consumption of energy, in which theenergyconsumptionforwatersupplynetworksrepresents7%ofthetotalconsumedenergy[2]. Ifthisvalueisdiscretized,thedistributionisapproximatelyone-third(2–3%)ofthisconsumption[3]. Therefore, consideringtheneedtodevelopsustainablegrowthinwatersystems[4]sincethe distributionofwaterisanintensiveenergyprocess[5],newstrategiesshouldbeintroducedforwater Water2017,9,799;doi:10.3390/w9100799 www.mdpi.com/journal/water Water2017,9,799 2of21 managementsystems. Theaimofthesestrategieshastobetheimprovementoftheenergyefficiency andthedecreaseofthecarbonfootprint[6], consideringthebasicprinciplesfortheintegrationof the water and carbon footprints cost into the resource and environmental costs respectively [7–9], aswellasnewlyavailabletechnologiesthatimprovethewatermanagementoftheresourcesandtheir feasibility[10,11].Thesestrategiesmustconsidertheflowvariationovertimeinextendedperiodssince theanalysisofthelong-extendedperiodenablesustoanalysethebehaviourofthemicrohydropower systemswhentheflowchanges[12]. Hence,theinstallationofrecoverysystemsisoneofthemost effectivestrategiestobeusedinplaceswheretheenergyhastobedissipated(e.g.,pressurereduction valves(PRVs)orhydraulicjumps[13–15]),withhighfeasibilityindexes[16]. Deepknowledgeofthewater–energynexusinhydraulicsystemsisessentialtodefineandto introducenewactionlinesfortheirmanagementinordertodefineperformanceindicators[17,18]. Theanalysisofthewater–energynexus,whichdependsontheintrinsicfactorsofthehydraulicsystems, definesthepotentialenergyrecoveryinanyhydraulicsystem.Oncethewater–energynexusisdefined, theperformanceindicatorscanbeestablished,quantifyingtheenergysavingsandcontributingto theimprovementofthesustainable,environmental,economic,andmanagementcomponents[19–22]. Theimprovementoftheseindicatorswastackledforwatersystemsusingoptimizationanalysesfor thelocationsofthehydropowersystems[23,24],aswellasdevelopingcomparisonsbetweendifferent algorithms[25]. Thepresentresearchisfocusedoncontributingtotheknowledgepertainingtotheoperating modeofenergyrecoverysystems,whentheyareinstalledinpressurizedwaternetworks(particularly in irrigation networks). The aim of this research is centred on the proposal and development of amethodologytoimproveenergyefficiencyinpressurizedirrigationnetworks. Theimprovementis achievedthroughtheinstallationofmicrohydropowerturbines,whichtakeadvantageofthehigh pressureinsomezonesofthenetworkbyrecoveringtheexcessofthepressure-generatinggreenenergy. Thisisachievedbyreplacingpressurereductionvalves,currentlyinstalledinthewatersystemsto reducethepressurebymicrohydropower,reducing,asaconsequence,leakages[26,27]. 2. MethodsandMaterialsintheOptimizationStrategy Thedevelopmentofamethodologytooptimizetheenergyrecoveryinpressurizedwatersystems iscarriedout,andthestrategyisparticularlyappliedtoirrigationnetworks. Therefore,theresearchis definedbyanensembleofmethodologiesandmaterials,inwhichtheresultsandtheircorrelations constitutethemethodologytooptimizeenergyrecoveryinpressurizedwatersystems. 2.1. Methods Theusedmethodswerefocusedon(i)thedefinitionoftheanalyticalmodeltodeterminetheflow overtime;(ii)thestrategytovalidatethemethodologytoestimatetheflowineachlineofthenetwork; (iii)theoptimizationoftherecoveredenergybyananalyticalstrategy; (iv)thestudyofanalytical models to know the efficiency in quasi-steady flow conditions when the demand changes using affinitylawsformachineoperatingconditions;and(v)simulationoftheanalyticalmethodbyusing ahydraulicnumericalmodeltoknowthepressureandflowovertimeineachline. The definition of the analytical model to determine the flow over time was focused on the determination of the opening or closing irrigation points, depending on the balance between theirrigationneedsandtheirrigationcumulatedvolume. Theopeningofanirrigationpointwas establishedondifferentpatternsthatshowtheirrigationtrendsoffarmers,suchastheweeklytrend, themaximumdaysbetweenirrigation,andtheirrigationduration. Thedefinitionofthesepatterns enablesustodeterminethetimeforthestartofirrigation. Thecalibrationstrategywasbasedonkeyperformanceindicators(KPIFs),comingfromtraditional hydrological models [28,29]. The KPIFs were Nash–Sutcliffe (E), root relative square error (RRSE) andpercentofbias(PBIAS).Thesecalibrationindicatorsenableustodeterminethegoodness-of-fit betweenestimatedandregisteredflows. Water2017,9,799 3of21 Thedevelopedoptimizationwascarriedoutintwophasesbyananalyticalstrategy. Thefirstwas focused on the integral balance of the energy in a control volume [30]. The energy terms were defined, distinguishing between recoverable and non-recoverable energy. The estimation of these termsdependedontherequiredenergyforirrigation. Thesecondphasewasproposedtodevelop anoptimizationstrategythroughaheuristicalgorithmthatwasbasedontheanalogywiththephysics processoftheannealingofmetalsandwhichinspiredtheMonte-Carlomethod[31]. Basedonthis algorithm,preliminarystudieswereusedtoallocatethreemachines[32]. However,therecovered energy in a recovery system depended on the efficiency of the implemented hydraulic machine. ThestrategiesofregulationthatweredefinedbyCarravettaetal.[33],wereconsideredtodetermine the recovered energy since the flow varies over time in any water system. This management was based on the affinity laws and characteristic parameters of the hydraulic machines. The objective wastoanalysethevariationofheadandefficiencycurvesasafunctionoftherotationalspeedwhen themachineoperatesundersteadystateconditions. Oncetheanalyticalmethodhadproposedtheconsumptionpatternscurves,simulationswere developedtobeappliedtodifferentcasestudies. ThesoftwareusedwasEPANET[34]software,which isapublicdomainsoftwarethatmodelswaterdistributioninpipesystems. Differentelementscan be represented: pipe networks, nodes (junctions), pumps, valves, and storage tanks or reservoirs. Themodelcananalyseextended-period,computingfrictionandminorlosses;representvarioustypes ofvalves,junctions,tanksandpumps;considermultiplepatternsofnodeconsumptionovertime;and operatethesystemofasimpletanklevel,timercontrolsorcomplexrule-basedcontrols. 2.2. Materials Inthisparticularcase,thematerialsaretheexperimentaldata,whichwereobtainedalongthe development of this research. These materials were collected through different strategies: (i) the developmentofinterviewstogettoknowthefarmers’habits. Thedatawereusedasinputdatain theanalyticalmodelthatwasdevelopedtoestimatetheflowovertime;(ii)thedataforregistered flowoverthetimeoftheirrigationnetwork;(iii)theexperimentalcurvesbasedonthecharacteristic parameters(dischargeandheadnumber)asafunctionofthespecificspeed. Theinterviewswithfarmersweredevelopedintheirrigationcommunitythatisrelatedtothecase study. Theresultswereafterwardsusedtodeterminethepatternstoestimatetheflowbytheproposed methodology in the case study. The registered flow data were used to carry out the calibration strategy. Thedatawereobtainedbyaflowmeter,whichwasinstalledinthemainlineoftheanalysed irrigationnetwork. The final materials used were the head-flow characteristic curve (Q-H) and the efficiency as a function of the flow (Q-η). However, other methodologies to model this performance have been implemented, since there were no available experimental values for the recovered head and theefficiencyasafunctionoftheflowfordifferentrotationalspeedstobeusedformodelling. Hence, thePATwillbecharacterizedthroughthespecificspeed,theimpellerdiameterandtherotationalspeed. Asanovelty,thenextsectiondescribesthecharacterizationofthishydraulicmachine. Theproposed methodconsidersthebestefficiencyline(BEL)andthebestefficiencyhead(BEH)asthestrategyused tooptimizetheenergy-recoveringactions. BEL(Figure1)isthelinethatestablishesthemaximum efficiencyofonemachineforadeterminedrotationalspeedandflow. BEHisthelinethatisassociated with BEL and represents the recovered head when the efficiency is maximum for each rotational speed[35]. Water2017,9,799 4of21 Water 2017, 9, 799 4 of 21 FiFgiugruere1 .1.B BEELLa anndd BBEEHH ooppeerraattiioonn sscchheemme.e . Characterization of the Hydraulic Machine CharacterizationoftheHydraulicMachine The characterization of the hydraulic machine is necessary in the optimization strategy. In this Thecharacterizationofthehydraulicmachineisnecessaryintheoptimizationstrategy. Inthis research, a synthetic PAT module is proposed based on characteristic parameters (head number (ψ) research,asyntheticPATmoduleisproposedbasedoncharacteristicparameters(headnumber(ψ) and discharge number () [36]) that are shown in Figure 2. These characteristic numbers are defined anddischargenumber(ϕ)[36])thatareshowninFigure2. Thesecharacteristicnumbersaredefined by Equations (1) and (2): byEquations(1)and(2): Q(cid:1843) ϕφ== (1) (1) N(cid:1840)D(cid:1830)(cid:2871)3 Hg ψ= (2) N(cid:1834)2D(cid:1859)2 ѱ= (2) whereQistheflowinm3/s;Nistherotationalsp(cid:1840)e(cid:2870)e(cid:1830)d(cid:2870)ofthemachineinrpm;andDistheimpeller diameterinm. where Q is the flow in m3/s; N is the rotational speed of the machine in rpm; and D is the impeller Theturbinecharacterization(Figure3)isdevelopedbythefollowingthenextsteps: diameter in m. The turbine characterization (Figure 3) is developed by the following the next steps: 1. Selectionoftheoperationparameters: differentparametersmustbedefined. Toestablishadatabase 1.o fsSyenletchtieotni cofP tAheT osp(eirnatitohni spapraamrteicteurlsa: rdicfafesreen8t8 p93ardamiffeetreersn mtPuAstT bsew deerfiendede.fi Tnoe eds)t.aTblhisehd aa dtaatbaabsaesew as devoefl osypnetdhetthicro PuAgThsc (hina rtahciste priasrttiiccucluarrv ceasseth 8a8t9a3r deisffheorewnnt PinAFTisg wureere2 d(Ienfipnuedt)1. )Tahsew dealtlaabsasceh wanags ing thedfeovlleolowpiendg tphraoruamghe ctehrasr:acteristic curves that are shown in Figure 2 (Input 1) as well as changing the following parameters: a. Specificspeed(n ): definedaccordingtoEquation(3): s a. Specific speed (ns): defined according to Equation√ (3): P (cid:1866) =n(cid:1840)s =(cid:3493)(cid:1842)N(cid:3019) H1.2R5 (3) (3) (cid:3046) (cid:1834)(cid:2869).(cid:2870)(cid:2873) R (cid:3019) whereNistheratedrotationalspeed(rpm);P istheratedpower(kW);H istherated where N is the rated rotational speed (rpm); PR is tRhe rated power (kW); HR is the rRated head h(ema dw(.cm.);w b.eci.n);gb ‘Rei’n tghe‘ Rp’utmhep pduesmigpn dpeosinigt norp tohien bteosrt tehffeicbieenstcye fcfiocnidenitcioync. ondition. TThheer raannggee ooff ssppeecciiffiicc ssppeeeedd ooscsiclillaltaetse bsebtewteweene 1n4 1a4ndan 7d9 r7p9mrp (mm, (kmW,)k. W). b. b. RRotoattaitoionnaall ssppeeeedd ((NN)):: tthhee rraannggee ooff tthhee rroottaatitoionnaal lspspeeede dosocsilclialtleadte bdebtwetewene e5n105, 1100,2100, 2200,402,0 40, 24204000,,a anndd2 2990000 rrppmm.. c. Impeller Diameter (D): the range of the defined impeller was between 0.04 and 0.6 m. c. ImpellerDiameter(D):therangeofthedefinedimpellerwasbetween0.04and0.6m. d. Variation of the rotational speed: when the machine operates with a different rotation speed d. Variationoftherotationalspeed:whenthemachineoperateswithadifferentrotationspeedas as a function of the flow, the coefficient (α) that is defined by Equation (4) can vary between afunctionoftheflow,thecoefficient(α)thatisdefinedbyEquation(4)canvarybetween 0.5 and 1.5. 0.5and1.5. N α= t (4) N 0 where Nt istherotationalspeedforeachtimeinrpm; and N0 isthenominalrotational speedinrpm. Water 2017, 9, x FOR PEER REVIEW 5 of 21 (cid:1840) (cid:3047) α = (4) (cid:1840) (cid:2868) where (cid:1840) is the rotational speed for each time in rpm; and (cid:1840) is the nominal rotational (cid:3047) (cid:2868) Water2017,9,799 5of21 speed in rpm. Figure2.Characteristiccurvesbasedonexperimentaltestsandaffinitylaws[35,37,38]. Figure 2. Characteristic curves based on experimental tests and affinity laws [35,37,38]. 2. Tointerpolatecharacteristiccurves:whenthespecificspeedisdefinedandthen curveisnotknown, s 2. Tthoe ivnatelurpeoslaotfe hcehaadranctuemrisbteicr (cψurinvte)s:a nwdheefnfi ctiheen csyp(eηciinfti)c fsopreeeadc hisd idsecfhianregde annudm tbheer vnas lcuuer(vφei nits) anroet kesntoimwant,e tdhbe yvlailnueeasr oinf theerpadol antuiomnber (ψint) and efficiency (ηint) for each discharge number value 3. (Tϕoingt)e nareera etsethimeaadteadn dbyef filicnieenarc yinctuerrvpeoslaatsioanf unction of flow: when the characteristic numbers are 3. Tdoe figneenderafoter heaeacdh adniad mefefitceirenacnyd cruortvaetsi oansa al sfupneectdio(nN o0f) ftlhoawt: awrehseenl etchtee dchinarsatectperoinstei,c tnhuemhebaedrsa narde defefifcinieendc yfocru eravceha dreiadmeetetermr ainnedd rboytaEtiqounaatli ospnese(d5 )(tNo0()7 t)h:at are selected in step one, the head and efficiency curve are determined by Equations (5) to (7): Q =ϕ ND3 (5) int ψ N2D2 H = int (6) g η=η (ϕ ) (7) int int Water 2017, 9, 799 6 of 21 (cid:1843) = (cid:1840)(cid:1830)(cid:2871) (5) (cid:3036)(cid:3041)(cid:3047)  (cid:1840)(cid:2870)(cid:1830)(cid:2870) (cid:3036)(cid:3041)(cid:3047) (cid:1834) = (6) Water2017,9,799 (cid:1859) 6of21 η= ( ) (7) Thepolynomicequationsarefittedtotheob(cid:3036)t(cid:3041)a(cid:3047)ine(cid:3036)(cid:3041)d(cid:3047)values(themaximumconsidereddegreeis four)throughlinearregressionbyEquations(8)and(9): The polynomic equations are fitted to the obtained values (the maximum considered degree is four) through linear regression by Equations (8) and (9): Hα=1 = AQ4+BQ3+CQ2+DQ+E (8) (cid:1834) =(cid:1827)(cid:1843)(cid:2872)+(cid:1828)(cid:1843)(cid:2871)+(cid:1829)(cid:1843)(cid:2870)+(cid:1830)(cid:1843)+(cid:1831) (8) (cid:2880)(cid:2869) η = FQ4+GQ3+HQ2+IQ+J (9) α=1  =(cid:1832)(cid:1843)(cid:2872)+(cid:1833)(cid:1843)(cid:2871)+(cid:1834)(cid:1843)(cid:2870)+(cid:1835)(cid:1843)+(cid:1836) (9) (cid:2880)(cid:2869) Thesecurvescanbeusedwhentheflowisbetweentheinterpolatedrange,whereA,B,C,Dand EareTchoeesfefi cciuernvtesso cfatnh ebeQ u-Hsedch warhaecnt etrhies tfilcocwu risv ebeatnwdeFen,G th,eH i,nItearnpdolJaatered croaenfgfiec,i ewnhtseroef Ath, eB,e Cffi, cDie anncdy cEu arrvee .coTehfefiflcioewntsli mofi tthoef Qth-eHt ucrhbairnaectiesrdisetfiicn ceudrbvye aanmdi nFi, mGu, Hm, eIf afincide nJ cayrec oconedfiftiicoinen,wts hoifc hthies epfrfoicpioensecdy tcourbvee0. .T3hfeo rfltohwis lciamsiet sotfu tdhye. turbine is defined by a minimum efficiency condition, which is proposed to be 0.3 for this case study. 1. Definition of the operation Characteristic curves parameters: Head number; =fn() ns, N, D , min, max ymin. Efficiency;  =fn() Yes Isnsknown exactly? No 2. Interpolatethe characteristiccurves int-int-int 3. Generatehead and efficiencycurves for=1 Q=intND3 H= intN2D2 4. ObtainRunawaycurve 5. DevelopBEH/BEL pointsfor = range(min, max) Are theremore Yes turbine togenerate? No END The recovery machine can be used in the optimization strategy FFiigguurree 33.. SScchheemmee ooff tthhee ooppeerraattiioonn ooff tthhee ttuurrbbiinnee ((PPAATT)) mmoodduullee.. 3. To obtain runaway curve: the runaway curve is generated by second polynomic equation curve 4. tThoaot bctoanintariunns atwhea yfoclulorvwei:ntgh eporuinntasw: caoyorcduirnvaeteiss ogreingeinra atnedd tbhye smecionnimdupmol yvnaloume iocbetaqiunaetdio tnhrcouurgvhe Ethqautactoionnta (i8n)s. thefollowingpoints: coordinatesoriginandtheminimumvalueobtainedthrough Equation(8). 5. TodevelopBEL/BEH:thebestefficiencypointisestimatedforeachrotationalspeed(α),adjusting byregressionthecurvesdefinedbyEquations(10)and(11): H = HQ4+IQ3+JQ2+KQ+L (10) BEH Water2017,9,799 7of21 η = MQ4+NQ3+OQ2+PQ+R (11) BEL whereH,I,J,KandLcharacterisethebestefficiencyheadandM,N,O,PandRarecoefficients thatdefinethebestefficiencyline. 2.3. OptimizationStrategy When the previously-cited material and methods are implemented, the development of the optimizationstrategytoimprovetheenergyefficiencyinpressurizedirrigationnetworksispossible. Thedevelopmentofthisstrategymakessensesincetherearenotanysimilarstrategiesforpressurized waterdistributionnetworkspublishedintheexpertliterature. Thedevelopedoptimizationstrategy fortheenergyefficiencyimprovementisdefinedbydifferentsteps. Thismethodologyneedsdifferent inputs. Theprocedureisshowedinthefollowingflowchart(Figure4). 1. Theknowledgeoftheflowovertimeisthestartingpointintheoptimizationstrategy. Theflow canbeknownwhenthewatermanagerhasflowmetersinthepipes. However,theknowledge of the flow in all lines over time is almost impossible, and therefore, the flow has to be estimatedineachline. Inthissortofirrigationwaterdistributionnetwork,theflowdependson consumptionflowpatternswhichmustbedeterminedasafunctionoftheagronomistparameters. Toestimatetheconsumptionflowpatterns,theusedmethodologyconsidersthefarmers’habits andthecharacteristicsofthenetwork[39]. Thismethodologyisabletoestimatetheflowover timeinanylineofthesystems,dependingonthenetworkcharacteristics(Input1)andthefarmers’ habits(Input2). Thefarmers’habitsareirrigationneeds,irrigationduration,maximumdays between irrigation and the irrigation volume. The knowledge of the farmers’ habits allows the determination of the opening or closing in consumption nodes over time. The state of theirrigationpointdeterminestheflow(Output1)ofthestrategy. Thisoutputisaninputfor thenextstep: Input3. 2. Thesecondstagestandsonthecalibrationstrategy. Ituseskeyperformanceindicators(KPIFs) thatareadaptedfromthetraditionalhydrologicalmodels(Input4)[40]. Thecharacterizationof thegoodness-of-fitisdividedintoverygood,good,satisfactory,andunsatisfactory,depending ontheKPIFvalues(Table1). Thecomparisonisdevelopedwiththeregisteredflowdata(Input5) todeterminethesuccessofthefit. Ifthecalibrationissatisfactory,theenergybalance(Step3)can bedone. Table1.Classificationofthegoodness-of-fit(adaptedfrom[40]). Goodness-of-Fit E RRSE PBIAS(%) VeryGood E>0.6 0.00≤RRSE≤0.50 PBIAS<±10 Good 0.40<E≤0.60 0.50<RRSE≤0.60 ±10≤PBIAS<±15 Satisfactory 0.20<E≤0.40 0.60<RRSE≤0.70 ±15≤PBIAS<±25 Unsatisfactory E<0.20 RRSE>0.70 PBIAS>±25 Water2017,9,799 8of21 Water 2017, 9, 799 8 of 21 Network’s 1. Determination Farmer’s habits characteristics ofconsumption (Input 1) (Input 2) patterns Estimated flows overtime (Output 1// Input 3) Registeredreal flows Proposed KPIF 2. Calibration overtime (Input 4) Strategy (Input 5) Goodness No fitof KPIFs Minimum irrigation Yes pressure in 3. Energy Balance consumption point (Input 6) Estimated pair data (Q, H) (Output 2// Input 7) 4. Selection of the machine Experimental values No Are (Head and Efficiency) machines curves (Input 8) known? Yes 5. Modifiedaffinitylaws Turbine BEL; BEH module (Output 4// Input 9) Economical 6. Energy feasibility index Maximization Strategy (Input 10) OPTIMIZATION STRATEGY Final Outputs: - Optimal number of machines - Optimal rotational speed depending on flow - Real energy recovered - Efficiencyparameterstoanalysethe energy improvement FFiigguurree4 4.. SScchheemmee ooff tthhee ooppttiimmiizzaattiioonn ssttrraatteeggyyt tooi immpprroovveet thheee enneerrggyye effiffcicieiennccyy.. 3. The energy balance is able to discretize different energy terms (e.g., total, irrigation, friction) 3. The energy balance is able to discretize different energy terms (e.g., total, irrigation, friction) differentiatingthetermsfortheavailableenergybetweenthetheoreticallyrecoverableenergy differentiating the terms for the available energy between the theoretically recoverable energy andtheoreticallynon-recoverableenergy,consideringtheminimumirrigationpressureateach and theoretically non-recoverable energy, considering the minimum irrigation pressure at each consumptionpoint(Input6)[39]. Theavailableenergyenablesustodeterminethetheoretical consumption point (Input 6) [39]. The available energy enables us to determine the theoretical recoverycoefficientatanyline,hydrantorconsumptionpoint. Inaddition,theenergybalance recovery coefficient at any line, hydrant or consumption point. In addition, the energy balance enablesustoestimatetherecoveredheadforeachflowovertime. Knowingthesepairsofdata enables us to estimate the recovered head for each flow over time. Knowing these pairs of data (Q, H), the most suitable machine at each study point can be selected. The formula used to (Q, H), the most suitable machine at each study point can be selected. The formula used to determinetheannualbalanceofthenetworkisdefinedbyEquations(12)to(18): determine the annual balance of the network is defined by Equations (12) to (18): E = E +E + E +E (12) (cid:1831)T=(cid:1831) FR+(cid:1831) R+I (cid:1831) T+R (cid:1831) N TR (12) (cid:3021) (cid:3007)(cid:3019) (cid:3019)(cid:3010) (cid:3021)(cid:3019) (cid:3015)(cid:3021)(cid:3019) 9.81 E (kWh) = Q (z −z )∆t (13) Ti 9.386100 i o i (cid:1831) (kWh)= (cid:1843)((cid:1878) −(cid:1878))(cid:1986)(cid:1872) (13) E (kW(cid:3021)(cid:3284)h) =2.72356·1000−3(cid:3036)Q ((cid:3042)z −(cid:3036)(z +P))∆t (14) FRi i o i i Water2017,9,799 9of21 E (kWh) =2.725·10−3Q P ∆t (15) RIi i minIi E (kWh) =2.725·10−3Q H∆t (16) TRi i i E (kWh) =2.725·10−3Q (cid:0)P −P (cid:1)∆t (17) TAi i i mini E = E −E (18) NTRi TAi TRi whereE isthetotalprovidedenergyinthenetwork(kWh/year);E isthetotalfrictionenergy T FR inthenetwork(kWh/year);E isthetotalrequiredenergytoirrigatecorrectlyallconsumption RI points (kWh/year); E is the total theoretical recovered energy in the network (kWh/year); TR E isthetotalunrecoverableenergyinthenetwork(kWh/year);E isthepotentialenergyin NTR Ti eachirrigationpointwhentheconsumptioninthenetworkisnull(kWh);E isthedissipated FRi frictionenergyuntiltheirrigationpoint(kWh);E istherequiredenergyattheconsumption RIi pointtoensuretheirrigation(kWh);E istheavailableenergyforrecoveryinahydrantorline TAi (kWh); E isthemaximumtheoreticalrecoverableenergyinanirrigationpoint,hydrantor TRi lineofthenetwork,ensuringtheminimumpressureofirrigationdownstream(kWh);E is NTRi theenergythatcannotberecoveredinahydrantorlineonthenetwork(kWh);Q istheflowby i aline(m3/s);z isthegeometrylevelabovereferenceplaneoftheirrigationpoint,considering i the reference datum level (m); z is the geometry level above the reference plane of the free o watersurfaceofthereservoir(m); P istheservicepressureinanypointofthenetworkwhen i consumption exists (m w.c.); P is the minimum pressure of service of an irrigation point minIi requiredtoensuretheirrigationwaterevenly;and H isthevalueoftheheadofanirrigation i point,hydrantorline(mw.c.). Thisheadisobtainedas H = P −max(cid:0)P ;P (cid:1);and∆tis i i mini minIi thetimeinterval(s). 4. Knowingtheflow(Q)andrecoverablehead(H)overtimefromtheenergybalance(Output2, i i thatisInput7),enablestheselectionofthehydraulicmachinetype(e.g.,radial,axial)according to the frequency histogram of the power generated among other conditions. To develop a guaranteed estimation of the recovered energy, the head and efficiency curve as a function of flow should be known for different rotational speeds (Input 8). If this information is not provided by the manufacturer, experimental tests are recommended to obtain the efficiency variationdependingontheflowandfordifferentrotationalspeeds. However,ifexperimental tests cannot be carried out, the experimental curves are determined using the characteristic numbers (discharge and head number, Figure 1) to select a machine considering its specific speed[41]usingtheturbinethatwasdescribedintheprevioussection(Figure2). 5. Whenthetestsarecarriedorthecharacteristiccurvesareused,themodifiedclassicalaffinitylaws basedonthevariationofthespecificparameters(dischargecoefficient,q;headcoefficient,h;and velocitycoefficient,n)canbeused[33,42]. TheseparametersaredefinedbyEquations(19)to(21): H h = (19) H 0 Q q = (20) Q 0 N n = (21) N 0 where H is the recovered head in m w.c.; Q is the flow through the turbine in m3/s when therotationalspeedofthemachineisN;andH andQ areheadandflow,respectively,when 0 0 themachineoperatesinitsbestefficiencypoint(BEP),fortherotationalspeedN . 0 Based on modified classical similarity laws (when there are not experimental data), two new concepts(thebestefficiencyline, BELandbestheadline, BEH)areproposed(Output4). TheBEL adaptstherotationalspeedasafunctionoftheflow,adjustingthemaximumefficiencyateachtime Water2017,9,799 10of21 pointandmaximisingtheenergyrecovered.TheBEHrelatesthebestefficiencypointforeachrotational speedwiththerecoveredheadasafunctionoftheflow[35]. TheknowledgeoftheBELand/orBEH (Input9)makespossibletheuseofthesecurvestodeveloptheoptimizationoftheenergyrecoveryon awatersystemthroughthevariationoftherotationalspeedasafunctionoftheflow. Theclassical lawsaredefinedbyEquations(22)to(24)[36]: Q (cid:18)D (cid:19)3N 1 = 1 1 (22) Q D N 0 0 0 H (cid:18)D (cid:19)2(cid:18)N (cid:19)2 1 = 1 1 (23) H D N 0 0 0 P (cid:18)D (cid:19)2(cid:18)N (cid:19)3 1 = 1 1 (24) P D N 0 0 0 whereQ istheflowinthenewconditionsoftherotationalspeedinm3/s;D isthediameterofthe 1 1 impellerinthenewN statusinm; D isthenominaldiameteroftheimpellerinm; N isthenew 0 1 rotationalspeedinrpm;H istheheadinthenewNstatusinmw.c.;P istheshaftpowerforeachN 1 1 inkW;andP istheshaftpowerinthenominalconditioninkW. 0 6. ThisnewstrategytomaximizetheenergyrecoveredwasdevelopedbyusingPATsoranytype ofturbine. Thetheoreticallyrecoveredenergyandtheeconomicfeasibilityindexes(Input10), particularlythesimplepaybackperiodareconsidered(PSR)[39]. Thisstrategymakesuseof asimulatedannealingalgorithmtocarryouttheoptimization,selectingthebestlinestoinstall turbinesasafunctionofthenumberofinstalledturbinesinthewatersystem. Theoptimization canbedevelopedwithtwodifferentfunctions: thefirstfunctiononlyconsiderstherecovered energy,whilethesecondoneanalysestheratiobetweenrecoveredenergyandPSR[35]. Thefinal output results of the optimization strategy are the optimal number of machines to install in thenetworkaccordingtotheobjectivefunction; theoptimalrotationalspeedasafunctionof theflow;therealrecoveredenergy;aswellastheefficiencyparameterstoanalysetheenergy improvementinthenetwork. 3. ResultsandDiscussion The previously-described methodology was implemented in a real case study for an existing irrigationnetwork. ThisnetworkwaslocatedinVallada(Valencia,Spain)andthewatermanagerknew thevolumemeasurementsforthefinaluserpointsaswellasmainlineflowmeasurementsovertime. 3.1. CaseStudyDescription TheValladanetworkisabranchedagronomicpressurizedwaterdistributionnetwork,inwhich 30mw.c. shouldbeguaranteedateachirrigationpoint,sothatfarmersreceivedqualitywaterservice (Figure5). Thedrippednetworkhadseventyhydrants,whichsupply371irrigationpoints. These irrigationpointswereconnectedbypipelineswithdiametersbetween150and500mm.

Description:
strategy shows the real possibility of installing micro hydropower machines . recovered energy since the flow varies over time in any water system. maximum efficiency of one machine for a determined rotational speed and flow.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.