ebook img

Optical and Infrared Non-detection of the z=10 Galaxy Behind Abell 1835 PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optical and Infrared Non-detection of the z=10 Galaxy Behind Abell 1835

DRAFTVERSIONFEBRUARY5,2008 PreprinttypesetusingLATEXstyleemulateapjv.6/22/04 OPTICALANDINFRAREDNON–DETECTIONOFTHEZ=10GALAXYBEHINDABELL1835 GRAHAMP.SMITH,1DAVIDJ.SAND,1 EIICHIEGAMI,2 DANIELSTERN,3ANDPETERR.EISENHARDT3 DraftversionFebruary5,2008 ABSTRACT Gravitationallensingbymassivegalaxyclustersisapowerfultoolforthediscoveryandstudyofhighred- shift galaxies, including those at z≥6 likely responsible for cosmic re–ionization. Pelló et al. recently used thistechniquetodiscoveracandidategravitationallymagnifiedgalaxyatz=10behindthemassiveclusterlens Abell1835(z=0.25). We presentnew Keck (LRIS) andSpitzer SpaceTelescope (IRAC) observationsof the z=10candidate(hereafter#1916)togetherwithare-analysisofarchivalopticalandnear-infraredimagingfrom 6 theHubbleSpaceTelescopeandVLTrespectively.Ouranalysisthereforeextendsfromtheatmosphericcut-off 0 at λ ≃0.35µm out to λ ≃5µm with Spitzer/IRAC. The z=10 galaxy is not detected in any of these data, obs obs 0 includinganindependentreductionofPellóetal.’sdiscoveryH-andK-bandimaging. Weconcludethatthere 2 is nostatistically reliable evidenceforthe existenceof#1916. We also assess the implicationsofourresults n forground-basednear-infraredsearchesforgravitationallymagnifiedgalaxiesatz∼>7. Thebroadconclusionis a thatsuchexperimentsremainfeasible,assumingthatspace-basedopticalandmid-infraredimagingareavail- J abletobreakthedegeneracywithlowredshiftinterlopers(e.g.z∼2- 3)whenfittingspectraltemplatestothe 9 photometricdata. Subjectheadings:cosmology:observations—earlyuniverse—galaxies: evolution—galaxies: formation— 1 infrared:galaxies v 1 8 1. INTRODUCTION ThefaintendoftheluminosityfunctionofLyman-αemitters 1 atz=5hasalsobeenconstrainedwiththehelpofgravitational 1 Observations of distant QSOs (Becker et al. 2001; Fan et lensing (Santos et al. 2004; Ellis et al. 2001). Extension of 0 al.2002)andthecosmicmicrowavebackground(Kogutetal. 6 2003)togethersuggestthattheuniversewasre-ionizedsome- thesetechniquestoz∼>7isthereforeanimportantelementof 0 where betweenz≃6 and z≃20. Searchingforthe sourcesof observationalstudiesofcosmicre-ionization. / re-ionizing photons is currently an intense observational ef- Pelló et al. (2004 – hereafter P04) reported a gravitation- h fort. Most searches naturally concentrate on luminous sys- allymagnified(µ∼25- 100)galaxyatz=10(hereafter#1916, p - tems, i.e. QSOs and luminous galaxies, at z∼6- 8 as these followingP04’snomenclature)behindtheforegroundgalaxy o shouldbeeasiertodetectthanlessluminousandmoredistant clusterA1835(z=0.25). Thisinterpretationisbasedonnon- r objects. HoweverQSOslikelyproducedinsufficientphotons detection in optical imaging from the ground (3σ limits in st toaccomplishre-ionizationalone(Fanetal.2001;Bargeret a 0.6′′ diameter aperture: V≥27.4, R≥27.5, I≥26.9) and v:a gala.l2ax0i0e3s)b,aanseddthoenssammaellmsaamybpeletsrufreoomfltuhmeiHnuobubsl(eLS∼>p0a.c3eLT⋆z=e3l.e8)- sapnadcethe(3sσhalpimeiotfitnheac0o.n2t′i′nuduiammaetteλroabsp≥er1tµurme:(uRs7in02g≥a271..25)′′, i scopeUltraDeepField(hereafterHST UDF;Bouwensetal. aperture: (J- H)≥0.6, (H- K)=- 0.5±0.4) which is reminis- X cent of the Lyman-break selection technique (Steidel et al. 2004;Bunkeretal.2004;Yanetal.2004).Thisraisestheim- r 1996).P04corroboratedtheputativeLyman-breakredshifted portant possibilities that re-ionization either occurred much a toλ ≃1.3µmwithanemissionlineatλ =1.3375µmwith earlier,orthatthebulkofthere-ionizingphotonswereemit- obs obs tedbysub-luminousgalaxies,i.e.L∼<0.1L⋆. integrated flux of (4.1±0.5)×10- 18ergcm- 2s- 1, which they interpret as Lyman-α. Lower redshift interpretations of the The UDF studies operate close to the detection threshold line ([OII] at z=2.59; [OIII] at z=1.68; Hα at z=1.04) were of the deepest optical/near-infrared imaging available. It is discardedbyP04largelyonthebasisofthelowprobabilityof thereforedifficult to envisage substantial progressin the de- tectionofmoreremoteand/orlessluminousgalaxiesviadeep solutionsatz∼<7whenfittingsyntheticspectralenergydistri- butions(SEDs)totheirphotometricdata. Themostlikelyof imagingof“blankfields”withthecurrentgenerationoftele- these lower-redshiftsolutions (z=2.59) was further excluded scopes. WiththeadventoftheJamesWebbSpaceTelescope on the basis of the dust extinction required to fit the photo- still some years ahead, the magnifying power of massive metric data (A ≥2), and the absence of doublet structure in galaxyclusterlensesisthereforeamuchneededboostforthe V theobservedemissionline. discoverypower of HST and large ground-basedtelescopes. Basedsolelyonthephotometry(opticalnon-detection,red Indeed,thegalaxyredshiftrecordhasbeenbrokenonseveral (J- H) and blue (H- K) colors) the z=10 interpretation of occasionswith the help of the gravitationalmagnificationof #1916 is plausible. However P04’s preference for this so- distantgalaxiesby foregroundgalaxyclusters(Mellier etal. lution over the lower redshift alternatives was controversial 1991; Franx et al. 1997; Hu et al. 2002; Kneib et al. 2004). fromtheoutset.Forexample,theemissionlinedoesnothave 1DepartmentofAstronomy,CaliforniaInstituteofTechnology,MailCode the characteristic P-Cygni profile of Lyman-α, and the dif- 105–24,Pasadena,CA91125.–Email:[email protected] ferent photometric apertures adopted in the optical (0.6′′ – 2StewardObservatory,UniversityofArizona,933NorthCherryAvenue, smallerthantheground-basedseeingdisc)andnear-infrared Tucson,AZ85721. (1.5′′ – 3× the seeing disk) may suppress the likelihood of 3JetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800Oak lower-redshiftsolutionswhenfittingsyntheticSEDs. Bremer GroveDrive,MS169–327,Pasadena,CA91109. 2 Non–detectionofthez=10Galaxy etal.havealsosuggestedthat#1916mayeithernotexist,or TABLE1 be intrinsically variable, based on their non-detection in the SUMMARYOFPHOTOMETRY H-bandwith NIRI on Gemini-North,H(3σ)>26, in contrast toP04’s4σdetectionofH=25.00±0.25withISAAConVLT. Filter Telescope/ FWHM AperturePhotometrya The spectroscopic identification of #1916 is also in doubt. Instrument (′′) Pellóetal.b ThisPaper Weatherleyetal.(2004)re-analyzedP04’sspectroscopicdata V CFHT/12k 0.76 ≥27.5(0.6′′) ... R CFHT/12k 0.69 ≥27.6(0.6′′) ... andfailedto detectthe emissionline atλ =1.3375µm,cit- ing spuriouspositive flux arising from varoibasble hot pixelsin IR702 CHFSHT/TW/1F2PkC2 00..7187 ≥≥2276..20((00..26′′′′))c ≥27.0..(.0.5′′) theISAACarrayasthelikelysourceofthediscrepancy. J VLT/ISAAC 0.65 ≥25.6(1.5′′) ... A1835 has been used previously as a gravitational tele- H VLT/ISAAC 0.50 25.00±0.25(1.5′′) ≥25.0(1.5′′) scope, for example targeting sub-millimeter galaxies (here- K VLT/ISAAC 0.38 25.51±0.36(1.5′′) ≥25.0(1.5′′) after SMGs; e.g. Smail et al. 2002) and galaxies with 3.6µm Spitzer/IRAC 1.7 ... ≥24.3(5.1′′) extremely red optical/near-infrared colors (Smith et al. 4.5µm Spitzer/IRAC 1.7 ... ≥24.3(5.1′′) 2002). One of the galaxies detected in these surveys, SMMJ14011+0252, lies at z=2.56 and suffers an estimated a Eachnumberinparenthesesisthediameteroftheapertureusedforthe mexitnindcrteiocnenotfd1is.c8o∼<vAerVy∼<o6f.5ga(lIavxiysognroeutpasl.at2z0∼002)-.3Basesaoricniagteind rrees-spceaclteivdetophaopthoomtoemtriectrmiceaapsuerretumreenotfs.2′I′nd§ia4mPe0t4e’rs(∼op3titciamlensotnh-edeseteecintigondsisacr)e: V≥26.2,R≥26.3,I≥24.7. with gravitationally lensed SMGs (Kneib et al. 2004; Bo- bWeconvertallofP04’sopticaldetectionlimitsandtheir1σJ-banddetec- rys et al. 2004), and the strong clustering of SMGs (Blain tionto3σlimits. et al. 2004), #1916 is plausibly at a similar redshift to cP04donotstatewhethertheirR702 detectionlimitisintheVegaorAB SMMJ14011+0252,andmayalsobeobscuredbydust. Fur- system. Wehaveassumedtheformerandconverted ittoABinthistable. P04 also do not explain how they reduced the WFPC2 data, specifically thercircumstantialevidenceforalowerredshiftinterpretation whetherthefinalpixelscale wasdifferent fromthenative 0.0996′′/pixof of#1916comesfromRichardetal.(2003)whousedthesame theWFCdetectors. Inthistablewehaveassumedthatthefourpixelsover spectroscopicdataaspresentedbyP04todiscoverastrongly which this detection limit is measured (see P04 §2.1) subtend a solid an- gleof0.0996′′×0.0996′′. Giventheseuncertaintiesandtheabsenceofthis reddened star-forming galaxy at z=1.68. This redshift coin- detection limitfromP04’sTable1andFig.3,weignoreP04’slimitwhen cideswiththe[OIII]interpretationofPO4’sputativeemission attemptingtoreproducetheirphotometricredshiftresultsin§4. lineatλ =1.3375µm. obs In this paper, we address three questions: (i) is #1916 at z∼2- 3?; (ii) is #1916 intrinsically variable?; (iii) does #1916 exist? These tests exploit new optical and mid- inatethe z=10interpretation(e.g.Stern etal. 2000). Incon- infrared observations using the Keck-I 10-m telescope and trast,opticalnon-detectionwouldhaveseveralalternativein- theSpitzerSpaceTelescoperespectively,plusanindependent terpretations,including: agalaxyatz=10asperP04;adusty reduction of P04’s H- and K-band imaging data from VLT. galaxyat z∼2- 3; non-existenceof #1916. The mid-infrared Throughout this article we assume that the emission line at observations (§2.4) should therefore help to constrain the λ =1.3375µmis a false detection(Weatherleyetal. 2004). amountof energyre-radiatedby dustin the z∼2- 3 interpre- obs In §2 we present the new Keck and Spitzer data, explain in tation, and our re-reductionof P04’s VLT data also helps to detailthe re-reductionof the archivalVLT/ISAAC data, and clarify the possibility that #1916 may not exist, or may be summarizethe archivalHubbleSpaceTelescope (HST)data. variable(Bremeretal.2004). TheKeckandSpitzerdatade- Then in §3 we describe the analysis and key results, focus- scribedinthissectionwerecollectedandanalyzedinparallel ing on the three questions posed above; this section closes withthosepresentedbyBremeretal.(2004). withasummaryofthecurrentobservationalstatusof#1916. Finally, we discuss the implications of our results for future 2.1. KeckSpectroscopy ground-basednear-infraredsearchesforgalaxiesatz∼>7(§4) As part of a broad effort to secure spectroscopic redshifts andsummarizeourconclusionsin(§5). ofgravitationalarcsspanningseveralobservationalprograms We assume H0=65kms- 1Mpc- 1, ΩM=0.3 and ΩΛ=0.7 (Smithetal.2001,2002,2005;Sandetal.2002,2004,2005; throughout. Unless otherwise stated all error bars are at Edge et al. 2003; Sharon et al. 2005), we observed A1835 1σ significance; photometric detection limits are at 3σ sig- withtheLowResolutionImagerSpectrograph(LRIS;Okeet nificance; upper and lower limits on colors are based on al.1995)inmulti-slitmodeontheKeck-I10-mtelescope4on 3σ detection thresholds in the non-detection filter. Mag- UT2004March29.Asinglemaskwasobserved,includinga nitudes are stated in the AB system; conversion between slittargeting#1916.Thepurposeofthisslitwastosearchfor the AB and Vega systems for the specific filters used in line emission in the 0.35≤λ ≤0.95µm wavelength range. this paper are as follows:- ∆B=BAB- BVega=- 0.1, ∆V=0.1, For example, if #1916 doesoibnsdeed lie at z≃2.6 (§1), then ∆∆R3.=6µ0m.2=,2∆.8,F∆7024W.5µ=m0=.33,.2∆.I=0.5, ∆J=0.9, ∆H=1.4, ∆K=1.9, LyTmhaen-oαbsmeravyatbieondsetteoctatalebdle3a.t6λ-kobss,≃sp0l.i4t4iµnmto.two exposures, using the D560 dichroic with the 400/8500 grating and the 2. OBSERVATIONSANDDATAREDUCTION 400/3400grism. On the redside the spectraldispersionwas We describe new and archival observations of #1916 in 1.86Å/pixel with a pixel scale of 0.214′′/pixel and on the order of increasing wavelength, spanning the observed opti- bluesidethespectraldispersionwas1.09Å/pixelwithapixel cal, near-infraredand mid-infrared: spectroscopywith LRIS scale of 0.135′′/pixel. Overhead conditions were moderate on Keck-I (0.35≤λ ≤0.95µm); imaging with WFPC2 on- obs (FWHM≃1′′),andprobablynotphotometric,howeveraflux boardHST (λ =0.7µm);near-infraredimagingwithISAAC obs on ESO’s VLT (λ =1.6µm and 2.2µm); IRAC/Spitzer ob- obs 4 The W. M. Keck Observatory is operated as a scientific partnership servationsatλ =3.6µmand4.5µm. obs amongtheCalifornia Institute ofTechnology, theUniversity ofCalifornia, The detectionof any opticalflux from #1916would elim- andNASA. Smith,G.P.,etal. 3 H (1.6um) K (2.2um) 3.6um FIG. 1.—Infraredimagesofthez=10candidateat1.6,2.2,and3.6µmrespectively. Thetwoleftpanelsarebasedonourindependentre-reductionofP04’s ISAACdatadescribedin§2.3. Thewhitecirclesmarkthepositionof#1916fromP04–thereisnoobvioussignoffluxinanyofthesepanels. Formal3σ detectionlimitsare:H≥25,K≥25,F≤0.75µJy.NorthisupandEastleft.Eachpanelis23′′×16′′. calibration was obtained using the spectrophotometric stan- Deep near-infrared imaging of A1835 was obtained by dard star HZ44 (Oke et al. 1990). The data were de-biased, P04 with the ISAAC 1024×1024Hawaii Rockwellarrayon flat-fielded,sky-subtracted,extractedandcalibratedinastan- ESO’s 8-m VLT7 in February 2003. We reduced indepen- dardmannerwithinIRAF5. dently the H- and K-band data using standard IRAF tasks, No flux at observed optical wavelengths has yet been de- paying careful attention to rejection of cosmetic defects in tected at the position of #1916 (P04; Lehnert et al. 2004; theISAACarray,includingbadpixels,andtoconservingthe §2.2). We therefore did not expect to detect any contin- noisepropertiesofthedata.Wedetailkeyfeaturesofthedata uumemission,andconcentratedinsteadonsearchingforfaint reductionbelow. emissionlinesoflargeequivalentwidth. Visualinspectionof thereduced2Ddatarevealedneithercontinuumnorlineemis- (i) Flat-fielding and sky-subtraction were combined into a sion. Toestimatethesensitivitylimitweextracteda1Dtrace singlestepusingamedianoftheeightframestemporally fromthe center of the slit correspondingto the fullwidth of adjacentto eachscienceframe. We referto thisstep as theseeingdisk,andestimatedthe3σ detectionlimitper5-A “flat-fielding”,andtotherollingtemporalmedianframes spectral resolution element to be ∼4.5×10- 19ergs- 1cm- 2 at as“sky-flats”. λ =0.44µm–i.e.theobservedwavelengthatwhichLyman- obs (ii) Flat-fielding was performed twice. First on the dark- αwouldbefoundif#1916isatz=2.6. subtracted frameswhich were then registered and aver- 2.2. ArchivalHubbleSpaceTelescopeImaging aged to producea first-pass reducedframe. This frame was then used to mask out flux from identified sources A1835 has also been observed through the F702W filter from the individual dark-subtracted frames, and these withtheWFPC2cameraon-boardHST6.Wereferthereader maskedframeswerethenusedtoconstructthesky-flats toSmithetal.(2005)fordetailsofthesedataandtheirreduc- in a second-pass reduction. This approach minimizes tion.P04donotdetect#1916inthesedata(Table1),although the loss of flux from objects with angular extents com- theyneitherexplainhowtheyreducedthedatanorhowthede- parable with the size of the dither pattern. This is im- tectionlimitwascalculated.Here,weuseSmithetal.’s(2005) portantwhen searching for faint objects along lines-of- reducedframewhichhasapixel-scaleof0.0498′′/pixelafter sight throughthe crowded cores of rich galaxy clusters drizzling. To simplify the analysis, we re-bin the data back becausethelightfrombrightclustergalaxieseffectively to the original pixel-scale of 0.0996′′/pixel to minimize the form a spatially varying background against which the impactofpixel-to-pixelcorrelationsinthebackgroundnoise faint sourcesare detected. The goalof the second-pass whenestimatingthesensitivitylimitofthedata. flat-fieldistoconservethis“background”. Visual inspection reveals no obvious flux at the position of #1916 in these data. To quantify this non-detection, we (iii) Independent bad pixel masks were made by sigma- follow the same procedureas P04 – we measured the back- clipping both the darks and the sky-flats. The former groundnoiseinaperturesplacedrandomlyintoblankskyre- identifies22,020pixels(2.1%ofthetotalarray)asstatic, gionsofbothframesneartothepositionof#1916.Weensure i.e.“bad”,andthelatteridentifiesthesame22,020pix- consistencywithotherwavelengthsbymatchingthediameter els plus an additional 12,373 pixels (a further 1.2% of of these apertures to a diameter 3× that of the seeing disk, the total array)as bad. The latter mask was adoptedas i.e. 0.5′′. We obtaina 3σ sensitivity limit in thatapertureof thefiducialbadpixelmask. R =27.0(Table1). 702 (iv) Detectorbiasresidualswereremovedbysubtractingthe 2.3. ArchivalVLT/ISAACImaging medianalongrowsinindividualflat-fieldedframesafter masking identified sources, in a manner similar to that describedbyLabbéetal.(2003). 5 IRAFisdistributedbytheNationalOpticalObservatories,whichisop- erated by the Association of Universities for Research in Astronomy, Inc. (v) The individualframes were integer pixel aligned. This (AURA)undercooperativeagreementwiththeNationalScienceFoundation. 6BasedinpartonobservationswiththeNASA/ESAHubbleSpaceTele- has the important benefit of minimizing pixel-to-pixel scopeobtainedattheSpaceTelescopeScienceInstitute, whichisoperated bytheAssociationofUniversities forResearchinAstronomy,Imc.,under 7 Basedinpartonobservations collected withtheESOVLT-UT1Antu NASAcontractNAS5-26555. Telescope. 4 Non–detectionofthez=10Galaxy correlations in the noise properties of each frame and 3.1. Is#1916atz∼2- 3? thus the final stacked frame. Calculation of the back- This test concentrates on the optical data because the de- groundnoise is therefore simplified relative to a reduc- tection of any flux shortward of the putative Lyman limit of tionschemebasedonsub-integerpixelalignmentofthe a galaxy at z≃10 would immediately discount that interpre- individualframes. tation. The red observed optical/near-infrared spectral en- ergydistributiondescribedbyP04couldthenbenaturallyex- (vi) No frameswere rejected whenmakingthe final combi- plainedbyadustygalaxyatz∼2- 3, perhapsassociatedwith nation of the reduced, aligned frames. Two versionsof the SMGsthat lie within ∼30′′ (∼200- 300kpcin projection thefinalstackedframeweremade:astraightaverageand atz∼2- 3)of#1916(Ivisonetal.2000;Smailetal.2005). a weightedaverage– the weightofan individualframe Ournewnon-detectionof#1916withLRIS(§2.1),coupled was proportionalto (σ×rms)- 2, where σ is the FWHM with confirmationof P04’s non-detectionwith HST/WFPC2 of the seeing disk, and rms is the rootmean square per and Lehnert et al.’s non-detection in the V-band with pixelofthenoiseineachframe.Theweightedversionof VLT/FORSaremutuallyconsistentinthesensethatnooptical thefinalframehasslightlybetterimagequalitythanthe fluxhasbeendetectedatthispositiontodate. Howeverthese straight average. We therefore adopt it for the analysis non-detectionsareconsistentwithallofthefollowing: z=10, describedbelow. extreme dust obscuration at z∼2- 3, an intrinsically variable source,andnon-existence. Theresultofthistestistherefore The final reduced H- and K-band frames have seeing inconclusive. ofFWHM=(0.45±0.01)′′andFWHM=(0.34±0.02)′′respec- tively.Photometriccalibrationwasachievedwiththestandard 3.2. Is#1916IntrinsicallyVariable? star observationsthat were interspersedwith the science ob- TheobjectiveofthissectionistotestBremeretal.’s(2004) servationsaspartofP04’soriginalprogram.Weshowextracts proposalthat#1916isintrinsicallyvariable.IfP04’sphotom- from the reduced H- or K-bandframes in Fig. 1. Visual in- etry(H=25.00±0.25andK=25.51±0.51)isreproducibleus- spectionofboththefitsframesandFig.1revealsnoobvious ingourindependentreductionoftheirnear-infrareddata,then fluxatthelocationof#1916ineithertheH-orK-band. Fol- lowingP04weagainrandomlyinsert1.5′′diameterapertures the variable hypothesiswould be supported. If not, then the ideathat#1916doesnotexistwouldgaincredibility(§3.3). (roughly3timestheseeingdisc)intoblankskyregionsnear We attempt to reproduce P04’s analysis using SExtractor tothepositionof#1916,obtaining3σsensitivitylimitsinthis (Bertin & Arnouts 1996). SExtractor was configured to lo- apertureof:H=25.0andK=25.0. cate all sources with at least 7 pixels that are ≥0.75σ per pixel above the background – i.e. a signal-to-noise ratio of 2.4. Spitzer/IRACImaging ∼>2 perresolutionelement, basedon the H-bandseeingdisk A1835 was observed with the InfraRed Array Camera ofFWHM=0.45±0.01′′(§2.3)andthe0.15′′/pixscaleofthe (IRAC;Fazioetal.2004)on-boardSpitzer8onUT2004Jan- ISAACpixels.Wealsosmoothedthedatawithagaussianfil- uary 16 in the 3.6, 4.5, 5.8 and 8.0µm channels. Here we terthatmatchedtheFWHMoftheobservedpointsources,i.e. discussthetwoshortestwavelength,moresensitive,observa- agaussianofFWHM=3pixels.InthisconfigurationSExtrac- tions. Twelve and eighteen 200-second exposures were ac- torfailedtodetectasourceatthepositionof#1916.Wethere- cumulatedat3.6µmand4.5µmrespectively,usingthesmall- foreexperimentedwithdifferentsmoothingschemes,bothin- stepcyclingditherpattern.TheBasicCalibratedData(BCD) creasinganddecreasingthefullwidthofthegaussianfilter. A were combined using custom routines to produce the final “detection”wasonlypossiblewiththesmallestavailablefil- stackedframewithapixelscaleof0.6′′/pixel. Were-binned ter–FWHM=1.5pixels,i.e.halfthewidthoftheseeingdisk thedatabacktotheoriginalpixelscaleof1.2′′/pixeltoelim- – yielding H=25.3±0.6. Experimentation with block filters inatecorrelationsinthebackgroundnoise. producedsimilarresultsinthata“detection”wasnotpossible Visual inspection of the final frames again indicates that withanyofthestandardSExtractorblockfilters: 3×3,5×5, thereisnofluxatthepositionof#1916(Fig.1). Toquantify 7×7pixels. WealsoanalyzedtheK-banddatainexactlythe this non-detection we follow the same procedure as P04, as same mannerand failed to detectanythingat the position of describedin §2.2. We used 5.1′′ diameter apertures, i.e. 3× #1916withanygaussianorblockfilter. theseeingdiskoftheIRACobservationstoobtain3σ sensi- TheH-bandsegmentationmapproducedwhensmoothing tivity limits of: F(3.6µm)=0.75µJy and F(4.5µm)=0.75µJy with the FWHM=1.5 pixel gaussian reveals that the “detec- respectively. tion”isveryelongated,withawidthof1- 2pixelsandalength of∼5pixels.Theorientationofthesepixelsisconsistentwith the orientation of #1916 reported by P04. It is importantto 3. ANALYSISANDRESULTS stress thatthe motivationfor filteringdata with a kernelthat Theobjectiveofthissectionistoanswerthethreequestions matchestheresolutionelementofthedataistosuppressfalse posedin§1:(i)is#1916atz∼2- 3?;(ii)is#1916intrinsically detections. The collection of pixels identified by SExtractor variable?; (iii) does #1916 exist? Preliminary inspection of atthepositionof#1916wasonly“detectable”withasmooth- the data in §2 indicates that no flux is detected at the posi- ing kernel that has a linear scale half that of the resolution tionof#1916atanywavelengthtodate.Combiningthiswith elementofthedata.Itisthereforeinstructivetoconsiderhow Bremeretal.’smoresensitivenon-detectionofH(3σ)>26.0, manysuch∼2σblobsexistwithintheISAACdata.Inasingle itistemptingtoleaptothethirdquestionandreply“no”.We 1.5′′ diameter aperture (i.e. matching that used for the pho- adoptamoreconservativeapproach. tometry described above) placed randomly in these H-band data, there is a 5% chance of detecting a 2σ noise fluctua- 8ThisworkisbasedinpartonobservationsmadewiththeSpitzerSpace tion – i.e. a spurious detection. However the ISAAC array Telescope, which is operated bythe Jet Propulsion Laboratory, California InstituteofTechnologyunderacontractwithNASA. (1024×1024pixels, each pixel0.15′′×0.15′′) containsof or- Smith,G.P.,etal. 5 der104 independentphotometricaperturesof1.5′′ diameter. prior to producingthe final stacked frame, then the noise in TheH-bandframethereforecontains∼500noisefluctuations the stacked frame is correlated. Such pixel-to-pixelcorrela- of2σsignificance. tionsaregenerallyabsentfrominteger-pixelaligneddata,thus Sadly, the only reasonable conclusion to draw from this simplifying the noise properties of the final frame. Neither analysis is that #1916 is not detected in our independentre- sub-integer nor integer pixel alignment is intrinsically cor- duction of P04’s data. We therefore place 3σ limits on the rect. The relevantissue is correctmeasurementof the noise fluxatthispositionof:H≥25.0andK≥25.0(§2.3). Theonly ineachcase–thisiscriticaltoassessaccuratelythestatistical wavelengthatwhichtwodirectlycomparableobservationsare significance of sources detected close to the sensitivity limit availableisintheH-band.Combiningournon-detectionwith of the data. Specifically, if the pixel-to-pixelcorrelationsin thatofBremeretal.(2004),weconcludethatthereisnoev- sub-integer pixel aligned data are not included in the error idence for variability of #1916, and that (if it exists) its H- analysis, then the noiseis under-estimatedandthe statistical bandflux isfainterthanH=26at3σ significance(Bremeret significanceofthe detectionover-estimated(Casertanoetal. al.2004). 2000). Weintegerpixelalignedtheindividualframesin§2.3 in order to simplify the error analysis. We now estimate by 3.3. Does#1916exist? how much we would have under-estimated the noise if we Theresultsoftheprecedingtwosectionswerederivedfrom had sub-integerpixelaligned the individualframesand then non-detectionof#1916acrossthebroadestwavelengthrange ignoredthepixel-to-pixelcorrelationswhencalculatingnoise todate: 0.35≤λ ≤5µm. Wenowcombineallofthesenon- level. Thisisachievedbysimplysub-integeraligningthein- obs detections to address the question of whether #1916 exists. dividualframesandre-combiningthemusingaweightedav- The data force us to conclude that there is no statistically erage. Ignoringany resulting pixel-to-pixelcorrelations, we soundevidencethat#1916exists. Thebalanceofprobability obtaina3σthresholdofH=25.2,whichisslightlyfainterthan isthat#1916wasafalse detectionin P04’sdiscoveryobser- ourthresholdofH=25.0. vations. New observational data yielding statistically sound Insummary,itisplausiblethatthedifferencebetweenour detections are required before P04’s claim that #1916 is the near-infrarednon-detectionandP04’sdetectionof#1916us- most distant galaxy yet discovered may be resurrected. We ingthesamerawdatacanatleastinpartbeexplainedbythe considerthisunlikely,butwehopetobesurprisedbyPellóet efficiency of bad pixel identification and treatment of corre- al.’sforthcomingHST observations. latednoise. 4. DISCUSSION 4.2. ImplicationsforFutureWork 4.1. TheNear-infraredNon-detection We now discuss the implications of our results for future Wefirstdiscusspossiblereasonsforthedifferencebetween work, focusingon the feasibility of searchesfor gravitation- our non-detection of #1916 and P04’s ∼3- 4σ near-infrared ally magnified stellar systems at z∼>7 using ground-based detections. Wesingleouttwodatareductionsteps(§2.3)for near-infrared data. We begin by noting that, had their pho- discussion–theefficiencyofbadpixelrejectionandthecon- tometry been reliable, P04’s original z=10 interpretation of servationofnoiseproperties. #1916 was plausible, based solely on the photometric data. We therefore adopt P04’s optical and near-infrared photom- 4.1.1. Efficiencyofbadpixelrejection etry as being representative of what may be expected from Theefficiencywithwhichbadpixelsareidentifiedcanaf- similarfutureexperiments–i.e.opticalnon-detectionsinsev- fect estimates of the signal coming from faint sources – if eral filters based on a few hours of observationswith a 4-m some bad pixels are not identified, they could enhance the class telescope, a non-detection in a single red optical filter flux detected by SExtractor. In §2.3 we used two different withHST,∼3- 4σ detectionsintwonear-infraredfilters,and methodstoidentifybadpixels,findingasmallbutpotentially possiblyobservationswithSpitzer/IRAC.Specifically,wein- importantdifferencebetweenthetwomethods. Toassessthe vestigatethedegeneracybetweenz∼>7interpretationsofsuch impact of reduced efficiency of bad pixel identification we datasetswithlowerredshiftalternatives,andhowsuchdegen- madeamaskimagethatcontainedthe12,373badpixelsiden- eraciesmightbebroken. tifiedonlyinthebadpixelmaskgeneratedfromthesky-flats. We use Version 1.1 of HYPER-Z9 (Bolzonella et al. 2000) We then made one copy of the mask per science frame and to fit standard Bruzual & Charlot (1993) single stellar pop- integer-pixel shifted them to match the observed dither pat- ulation models (Burst, E, Sa, Sc, Im) to the photometric tern. Finally we took the weighted average of these aligned data. We assume a Calzetti et al. (2000) extinction law, al- maskframesandsummedthepixelcountsina1.5′′diameter low dust extinction in #1916 to lie in the range 0≤A ≤4, V aperture centered on #1916. From this we concluded that 7 adopt E(B- V)=0.03 for extinction within the Milky Way badpixelsthatareonlyidentifiedin our“sky-flat”badpixel (Schlegel et al. 1998), and use Madau’s (1995) prescription mapsfallwithinthefinalphotometricaperture. We estimate for absorption by the inter-galactic medium. In each case that if not identified and excluded from the analysis, these described below, if we fit the models to all available photo- pixelscouldincreasethefluxestimatesbyseveraltenthsofa metric information across the full redshift range (0≤z≤11), magnitude. thenweobtainχ2∼<1(allχ2 valuesarequotedperdegreeof freedom) for all redshifts beyond z≃7. This is because the 4.1.2. Conservationofnoiseproperties modelsaredefinedtohavezerofluxshort-wardoftheLyman Theapproachtore-sampling(ornot)theindividualframes limit (λrest=0.0912µm). At z∼>6, the models also have neg- during the data reduction process, especially the alignment ligible flux short-ward of Lyman-α(λ =0.1215µm)due to rest of individual frames affects the noise properties of the fi- theLymanforestsandGunnPetersonabsorption. Thesetwo nal stacked frame. If the individual frames are re-sampled, for example by sub-integerpixel aligningthem immediately 9Availablefromhttp://webast.ast.obs-mip.fr/hyperz 6 Non–detectionofthez=10Galaxy FIG. 2.— LEFT: Reducedχ2 asafunctionofphotometricredshiftandthefiltersusedinthemodelfits. Thereddashedcurvehasbeenoffset+0.2inthe Y-directionforclarity. ThispaneldemonstratesthatP04’sdiscoveryphotometry(VRIJHK)isdegeneratebetweenz≃2.6andz=10(bluesolidcurve). Adding insensitivespace-baseddetectionthresholdsfromHST andSpitzer/IRAC(reddashedandblackdot-dashedcurvesrespectively)liftsthisdegeneracy. RIGHT: Thebest-fitspectraltemplatestotheR702JHK-bandphotometryatz=2.6(redsolid)andz=10(bluedashed). TheIRACdetectionthresholdsarealsomarkedto illustratethepowerofthesedatatodiscriminatebetweenlow-andhigh-redshiftinterpretationsoftheshorterwavelengthdata. spectralfeaturesareprogressivelyredshiftedlong-wardofthe HST dataisnowclearlyevidentinthenewχ2distribution,as observedopticalfiltersathighredshift,renderingtheshorter showninFig.2. TheonlyacceptablefittotheR JHK-band 702 wavelength detection limits irrelevantto the fits. The good- dataisatz≃10. ness of fit is therefore systematically over-estimated at high We show the best fit SEDs at z=2.6 and z=10, based on redshift if all photometric information is included in the fit the R JHK-band data in the right panel of Fig. 2. This 702 acrossthe fullredshiftrange. We thereforefit the modelsto demonstratesthepotentialpowerofIRACphotometrytofur- thedatainaseriesofredshiftchunks–onlythephotometric ther discriminate between low and high-redshift interpreta- informationthatlieslongwardofred-shiftedLyman-αiscon- tions of candidate high-redshift galaxies. The SED of low sidered in each redshift chunk. The results described below redshiftsolutions(e.g.z≃2.6)isredatλ ∼3- 5µm,andthe obs are insensitive to whether the Lyman limit is substituted for SEDofhighredshiftsolutions(z≃10)isblueatsimilarwave- Lyman-α. lengths. We addthedetectionlimitsobtainedatλ =3.6µm obs First, we fit the models to P04’s VRIJHK-band ground- and 4.5µm to the R JHK-band data and re-fit the spectral 702 basedphotometry(i.e.theVRIJ-banddetectionlimitsandthe templates.TheresultisshownintheleftpanelofFig.2–the HK-banddetectionslistedincolumn4ofTable1). Notethat reducedχ2 of the z≃2.6 solution is now in excess of 2, and P04useddifferentsizedaperturesforthenear-infrared(1.5′′) theonlyredshiftswhichachieveanacceptablefittothe data and optical (0.6′′) photometryrespectively. We find two ac- are9.5∼<z∼<11.5. ceptablesolutions:z≃2.6andz≃10(Fig.2),neitherofwhich In summary, a single sensitive non-detection derived require any dust-obscurationwithin #1916, the latter having from HST imaging, combined with deep ground-based the lower formal χ2 value. We also scale P04’s ground- near-infrared imaging and ∼2,400 second integrations with basedopticalnon-detectionstothatappropriatefora consis- Spitzer/IRACat3.6and4.5µmcanbreakthedegeneracybe- tentphotometricapertureofthreetimestheseeingdiskatall tweenlowandhigh-redshiftinterpretationsofcandidatez∼>7 wavelengths(V≥26.2,R≥26.3,I≥24.7).Thismarginallyim- stellarsystems(seealsoEgamietal.2004;Eylesetal.2005). provesthe goodnessof fit of the z≃2.6 solution, and is oth- Whilstthisisnotanexhaustivestudy,itdemonstratesthatde- erwise indistinguishable from the original fit. We retain the spitethedemiseof#1916,searchesforgravitationallymagni- matchedphotometricaperturesfortheremainderofthisanal- fied galaxiesat extremelyhigh redshiftsusing ground-based ysis. near-infrareddata remain feasible when combinedwith sen- To improve the discrimination between low- and high- sitivespace-basedopticalandmid-infrareddata. redshift solutions, we add the sensitive HST/WFPC2 de- tection threshold of R ≥27.0 (Table 1) to the photomet- 702 5. CONCLUSIONS ric constraints. We fit the synthetic SEDs to the combined VRR IJHK dataset. Thegoodnessoffit of the z≃2.59so- We have analyzed new and archival observations of the 702 z=10 galaxy #1916 behind the foreground galaxy clus- lutionismarginallyworserelativetotheVRIJHK-bandanal- ysis, becausethe moststringentopticalnon-detectioncomes ter lens A1835 (z=0.25) spanning 0.35≤λobs≤5µm. Sta- from the R -band. However, in general, the χ2 as a func- tistically significant flux is not detected in any of these 702 data, including our independent re-analysis of P04’s dis- tion of redshift is indistinguishable between this fit and the VRIJHK-bandfits. Thisis probablybecausethe χ2 is dom- covery H- and K-band data. The 3σ detection thresh- inatedby the non-detectionsin six outof the eightobserved olds are: F(λobs=0.44µm)∼>4.5×10- 19ergs- 1cm- 2 per spec- filters. To test this we re-fit the models, limiting the data to tral resolution element, R702≥27.0, H≥25.0, K≥25.0, justtheR JHK-bands,i.e.themostsensitivenon-detection F(3.6µm)≤0.75µJyandF(4.5µm)≤0.75µJy,wherethepho- 702 (R ), the reddest non-detection (J) and the two detections tometriclimitsarecalculatedinapertureswithadiameter3× 702 (HK). The impact of the sensitive detection limit from the thatoftheseeingdisk. CombiningtheseresultswiththoseofBremeretal.(2004) Smith,G.P.,etal. 7 and Weatherley et al. (2004), we are thereforeforcedby the with10-mclasstelescopesremainapowerfultoolforthedis- data to concludethat there is no statistically soundevidence covery of intrinsically faint galaxies (L∼<0.1L⋆) at z>7 that fortheexistenceof#1916.Wealsoshowthatinefficientbad- maybe responsibleforcosmic re-ionization. Futuresurveys pixel rejection and issues relating to the calculation of the shouldcombinethesedatawithsensitivespace-basedoptical backgroundnoisecanbroadlyaccountforthedifferencesbe- andmid-infraredobservations. tweenP04’snear-infraredphotometryandourownusingthe samedata. Thebalanceofprobabilityisthereforethat#1916 ACKNOWLEDGMENTS was a false detectionin P04’sanalysis. Froma broaderper- We acknowledge the bold efforts of Roser Pelló and col- spective, the demise of #1916warns of the hazards of oper- laborators, and GPS acknowledges cordial discussions with ating close to the detection threshold of deep ground-based RoserinLausanneduringthesummerof2004.Specialthanks near-infrareddata. gotoJean-PaulKneibformakingtherawnear-infraredimag- The need for gravitational magnification to boost the ob- ing data available. GPS acknowledges the Caltech Opti- servedfluxoffaint(L∼<0.1L⋆)galaxiesatz∼6–8andpopula- cal Observatories TAC for enthusiastic support, and thanks tionsofgalaxiesatstillhigherredshifts(see§1) isundimin- RichardEllisandAvishayGal-Yamforhelpfulcommentson ished by our results on #1916. However an important issue draftsofthemanuscript. ThanksalsogotoMalcolmBremer, is whether it is feasible to find such galaxies using ground- Michael Cooper, Joe Jensen, Dan Stark, Chuck Steidel and based facilities. We explore this issue using HYPERZ to fit Dave Thompson for a variety of discussions and assistance. syntheticspectraltemplatestorepresentativedata. Ourmain DJS thanks Dawn Erb, Alice Shapley, Naveen Reddy and conclusionsarethatdeepnear-infraredimagingsimilartothat Tommaso Treu for assistance with the LRIS data reduction, presented by P04 in combinationwith a single sensitive op- and acknowledges financial support from NASA’s Graduate tical non-detection from HST imaging and moderate depth StudentResearchProgramunderNASAgrantNAGT-50449. Spitzer/IRACimagingat3.6and4.5µmcandiscriminatebe- DSandPRMEacknowledgesupportfromNASA.Werecog- tween low (e.g. z∼2- 3) and high (e.g. z∼>7) redshift solu- nizeandacknowledgetheculturalroleandreverencethatthe tionswithstrongstatisticalsignificance.Insummary,ground- summit of Mauna Kea has within the Hawaiian community. based near-infraredsurveysof massive galaxycluster lenses Wearefortunatetoconductobservationsfromthismountain. REFERENCES BargerA.J.,CowieL.L.,CapakP.,AlexanderD.M.,BauerF.E.,Fernandez KneibJ.-P.,EllisR.S.,SantosM.R.,RichardJ.,2004,ApJ,607,697 E.,BrandtW.N.,GarmireG.P.,HornschemeierA.E.,2003,AJ,126,632 KneibJ.-P.,vanderWerfP.P.,KraibergKnudsenK.,SmailI.,BlainA.W., Becker R.H., Fan X., White R.L., Strauss M.A., Narayanan V.K., Lupton FrayerD.,BarnardV.,IvisonR.,2004,MNRAS,349,1211 R.H.,GunnJ.E.,AnnisJ.,BahcallN.A.,BrinkmannJ.,etal.,2001,AJ, KogutA.,SpergelD.N.,BarnesC.,BennettC.L.,HalpernM.,HinshawG., 122,2850 Jarosik N., Limon M., Meyer S.S., Page L., Tucker G.S., Wollack E., BolzonellaM.,MirallesJ.-M.,PellóR.,2000,A&A,363,476 WrightE.L.,2003,ApJS,148,161 BlainA.W.,ChapmanS.C.,SmailI.,IvisonR.,2004,ApJ,611,725 Labbé I., Franx M., Rudnick G., Förster Schreiber N.M., Rix H.-W., BorysC.,ChapmanS.,DonahueM.,FahlmanG.,HalpernM.,KneibJ.-P., Moorwood A., van Dokkum, P.G., van der Werf P., Röttgering H., NewburyP.,ScottD.,SmithG.P.,2004,MNRAS,352,759 vanStarkenburgL.,etal.,2003,AJ,125,1107 Bouwens R.J., Thompson R.I., Illingworth G.D., Franx M., van Dokkum LehnertM.D.,FörsterSchreiberN.M.,BremerM.E.,2004,ApJ,submitted, P.G.,FanX.,DickinsonM.E.,EisensteinD.J.,RiekeM.J.,2004,ApJ,616, astro-ph/0412432 L79 BremerM.N.,JensenJ.B.,LehnertM.D.,Förster-Schreiber N.M.,Douglas MadauP.,1995,ApJ,441,18 L.,2004,ApJ,615,L1 MellierY.,FortB.,SoucailG.,MathezG.,CaillouxM.,1991,ApJ,380,334 BruzualA.G.,CharlotS.,1993,ApJ,405,358 OkeJ.B.,1990,AJ,99,1621 BunkerA.J.,StanwayE.R.,EllisR.S.,McMahonR.G.,2004,MNRAS,355, OkeJ.B.,CohenJ.G.,CarrM.,CromerJ.,DingizianA.,HarrisF.H.,1995, 374 PASP,107,375 Calzetti D., Armus L., Bolin R.C., Kinney A.L., Koornneef J., Storchi- PellóR.,SchaererD.,RichardJ.,leBorgneJ.-F.,KneibJ.-P.,2004,A&A, BergmannT.,2000,ApJ,553,682 416,L35 Casertano S., de Mello D., Dickinson M., Ferguson H.C., Fruchter A.S., RichardJ.,SchaererD.,PellóR.,LeBorgneJ.-F.,KneibJ.-P.,2003,A&A, Gonzalez-LopezliraR.A.,HeyerI.,HookR.N.,LevayZ.,LucasR.A.,et 412,57 al.,2000,AJ,1202747 SandD.J.,TreuT.,EllisR.S.,2002,ApJ,574,L129 Edge A.C., Smith G.P., Sand D.J., Treu T., Ebeling H., Allen S.W., van SandD.J.,TreuT.,SmithG.P.,EllisR.S.,2004,ApJ,604,88 DokkumP.G.,2003,ApJ,599,L69 SandD.J.,TreuT.,EllisR.S.,SmithG.P.,2005,ApJ,accepted EgamiE.,Kneib,J.-P.,RiekeG.H.,EllisR.S.,RichardJ.,RigbyJ.,Papovich SantosM.R.,EllisR.S.,KneibJ.-P.,RichardJ.,KuijkenK.,2004,ApJ,606, C.,StarkD.,SantosM.R.,HuangJ.-S.,etal.,2005,ApJ,618,L5 683 EllisR.S.,SantosM.R.,KneibJ.-P.,KuijkenK.,2001,ApJ,560,L119 SchlegelD.J.,FinkbeinerD.P.,DavisM.,1998,ApJ,500,525 Eyles L.,Bunker A.,Stanway E.,Lacy M., Ellis R.S.,Doherty M., 2005, SharonK.,OfekE.O.,SmithG.P.,Broadhurst T.,MaozD.,Kochanek C., MNRAS,submitted,astro-ph/0502385 OguriM.,SutoY.,InadaN.,FalcoE.E.,2005,ApJL,629,73 FanX.,NarayananV.K.,StraussM.A.,WhiteR.L.,BeckerR.H.,Pentericci SmailI.,IvisonR.J.,BlainA.W.,KneibJ.-P.,2002,MNRAS,331,495 L.,RixH.-W.,2002,AJ,123,1247 SmailI.,SmithG.P.,IvisonR.J.,2005,ApJ,inpress,astro-ph/0506176 FanX.,Narayanan V.K.,Lupton R.H.,Strauss M.A.,KnappG.R.,Becker SmithG.P.,KneibJ.-P.,EbelingH.,CsozkeO.,SmailI.,2001,ApJ,552,493 R.H.,WhiteR.L.,PentericciL.,LeggettS.K.,ZoltánH.,etal.,2001,AJ, Smith G.P., Smail I., Kneib J.-P., Davis C.J., Takamiya M., Ebeling H., 122,2833 CzoskeO.,2002,MNRAS,333,L16 FazioG.G.,HoraJ.L.,AllenL.E.,AshbyM.L.N.,BarmbyP.,DeutschL.K., HuangJ.-S.,KleinerS.,MarengoM.,MegeathS.T.,etal.,2004,ApJS, SmithG.P.,KneibJ.-P.,SmailI.,MazzottaP.,EbelingH.,CzoskeO.,2005, 154,10 MNRAS,359,417 Franx M., Illingworth G.D., Kelson D.D., van Dokkum P.G., Tran K.-V., Steidel C.C.,Giavalisco M.,Pettini M.,Dickinson M.E.,Adelberger K.L., 1997,ApJ,486,L75 1996,ApJ,462,L17 HuE.M.,Cowie L.L.,McMahonR.G.,CapakP.,IwamuroF.,KneibJ.-P., Stern D., Eisenhardt P., Spinrad H., Dawson S., van Breugel W.,Dey A., MaiharaT.,MotoharaK.,2002,ApJ,568,L75 deVriesW.,StanfordS.A.,2000,Nature,408,560 IvisonR.J.,SmailI.,BargerA.J.,KneibJ.-P.,BlainA.W.,OwenF.N.,Kerr WeatherleyS.J.,WarrenS.J.,BabbedgeT.S.R.,2004,A&A,428,L29 T.H.,CowieL.L.,2000,MNRAS,315,209 YanH.,WindhorstR.,2004,ApJ,600,L1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.