ebook img

On the robustness of topological quantum codes: Ising perturbation PDF

0.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the robustness of topological quantum codes: Ising perturbation

On the robustness of topological quantum codes: Ising perturbation MohammadHosseinZarei1 5 1 PhysicsDepartment,CollegeofSciences,ShirazUniversity,Shiraz71454,Iran 0 2 n a J 9 2 ] h Abstract p - Westudythephasetransitionfromtwodifferenttopologicalphasestotheferromagneticphase t n byfocusingonpointsofthephasetransition.Tothisend,wepresentadetailedmappingfromsuch a modelstotheIsingmodelinatransversefield. Suchamappingisderivedbyre-writingtheinitial u Hamiltonianinanewbasissothatthefinalmodelinsuchabasishasawell-knownapproximated q phasetransitionpoint.Specifically,weconsiderthetoriccodesandthecolorcodesonsomevarious [ latticeswithIsingperturbation. Ourresultsprovideausefultabletocomparetherobustnessofthe 1 topological codesandtoexplicitlyshow thattherobustnessofthetopological codes depends on v triangulationoftheirunderlyinglattices. 9 1 6 1 Introduction 7 0 Oneoftheimportantproblemsinthecontrolofquantumsystemsisthedecoherencewhichemerges . 1 fromundesirableinteractions[1]. Speciallyin quantumcomputationprocesses, itis veryimportant 0 tofindaquantummemorywhichisrobustagainstemergenterrors.Inrecentyears,findingasolution 5 for the decoherence problem has been one of the biggest challenges [2, 3]. One of the options to 1 circumventthisproblemistopologicalquantumcomputationwheretopologicalnatureofaphysical : v systemisusedtoperformafaulttolerantquantumcomputation[4,5]. i X Thekeypropertyinthetopologicalquantumcomputationalmodelistopologicalorder. Topological r orderisanewphaseofmatterwhichforthefirsttimewaspresentedbyWenin1980[6]. Itiscom- a pletelydifferentfromordinaryordersuchasferromagneticordersothatthetopologicalorderscannot be described by Landau paradigm and symmetry breaking theory [7]. Also there is no local order parameterwhichrecognizestopologicalphase. Infacttopologicalorderisdescribedbyanon-local order parameter and it is independent from local details of physical systems [8]. There are many physicalsystemsincondensedmatterphysicswithtopologicalorder[9],forexampleinquantumHall effects[10],high-temperaturesuperconductors[11,12,13]andfrustratedmagnetism[14,15,16]. Amongphysicalsystemswithtopologicalorder,latticemodelshavebeentakenintomoreconsider- ation, becauseof theirsimplicity. In1997, Kitaev presenteda modelHamiltonianona toruswhich couldencodethesubspaceoftwoqubitsinit’sgroundstates[4]. Thereafter,topologicalcolorcodes wereintroducedbyBombinetal. [17,18,19,20]wheretheunitaryCliffordgatescouldbetopologi- callyappliedwhilethiswasnotpossibleinthetoriccode. 1email:[email protected] 1 Degeneracyof the groundstate in the topologicalcodesdependon topologicalnature of the model andlocalsmallperturbationscannotliftsuchadegeneracy. Therobustnessofthedegeneracyofthe groundstateisonlyguaranteedinsmallperturbationssothatwhenperturbationincreases,atacritical value,aphasetransitionoccurs.Infact,thereisatopologicalphasetransition(TPT)wherethepointof phasetransitionisameasureoftherobustnessofthecode.Therobustnessofthetopologicalcodesare studiedagainstthermalperturbationsandlocalperturbations[21,22,23,24,25,26]. Asanexample, robustnessofthetoriccodesagainstparallelandtransversemagneticfieldshavebeenstudiedwhere magneticfieldcanbetreatedasanextrinsicfactorwhichperturbstopologicalorder[27,28,29,30]. If the perturbationis as Ising interaction, there is a phase transition between topologicalphase and theferromagneticphase. SuchaproblemhasbeenstudiedforthetoriccodeinanIsingperturbation (TCI) on a square lattice [31] and for the colorcode in Ising perturbation(CCI) on the honeycomb latticein[32]. In this paper, we focus on the effect of the Ising perturbation on topological codes on various lat- tices. WeshowthatsuchmodelsaremappedtoIsingmodelintransversefield(IT)byre-writingthe Hamiltonian in a new basis. Since the approximatedphase transition points for the IT on different latticesarewell-known[33,34,35],weprovideausefultabletocomparethephasetransitionpoints oftopologicalcodesonvariouslattices. Weconsiderdependenceofthephasetransitionpointandalsotherobustnessoftopologicalcodeson triangulationof their underlyinglattices. In fact, for a pure topologicalmodel on a specific lattice, therearesometopologicalpropertieswhichareindependentoftriangulationofthelattice[4]. When theperturbationisadded,thesystemisnottopological. However,beforethephasetransitionoccurs, topologicalpropertiesare still independentof triangulation. Since the pointof phase transition is a propertyof the perturbedtopologicalcode, it is expectedthat the phase transition pointdependson triangulation.Wederivepointsofphasetransitionforperturbedtopologicalcodesonvarioustriangu- lationsandexplicitlyshowdependenceofphasetransitionpointsontriangulationofthelattice. In the first step, we compare the robustness of CCI’s on two specific lattices. We show that they aremappedtoIsingmodelintransversefieldontwodifferentlatticeswithdifferentphasetransition points.ThesameresultisderivedfortheTCI’sonthreedifferentlattices. Weemphasizethatalthough itiswellknownthatthephasetransitionpointinanordinaryquantumphasetransitiondependsonthe underlyinglattice,suchaproblemhasnotbeenexplicitlystudiedforaTPT. Inthesecondstep,wecomparetherobustnessoftheTCIandCCI.Suchaworkhasbeenperformed forthetopologicalcodesinaparallelfield. In[24],theauthorshavecomparedtherobustnessofthe colorcodeandthetoriccodeinparallelfield. Theyhaveconcludedthatthecolorcodeismorerobust thanthetoriccodeagainstparallelmagneticfield. Weshowthatunderlyinglatticesofthesecodesare importantinsuchaproblemsothattherobustnessofTCIonsquarelatticeislessthantherobustness oftheCCIonhoneycomblatticewhiletheTCIonhoneycomblatticeisasrobustastheCCIonhon- eycomblattice. Sotherobustnessoftopologicalcodesisverysensitivetotriangulationofthelattices andwecannotcomparedifferenttopologicalcodeswithoutconsideringtheunderlyinglattices. The structureofthispaperisasfollows: InSection(2)wereviewtopologicalpropertiesoftwotopologicalcodes,thecolorcodesandthetoric codes. InSection (3) we apply Isingperturbationto the topologicalcolorcodeson variouslattices. Thenweapplythesameperturbationtothetoriccode. Inthissectionwepresentadetailedmapping to re-write Hamiltonianof the models in a new basis so that the initial models are convertedto the Isingmodelinthetransversefield. Finally,inSection(4),weprovideatableofthephasetransition pointsandcomparetherobustnessofthetopologicalcodes. 2 Topological code states Inthissection,wereviewsomeimportantpropertiesofthetopologicalquantumcodes. Specifically, weconsidertwowell-knowntopologicalcodes,thecolorcodesandthetoriccodes.Topologicalorder 2 ofthesemodelsisanon-localpropertywhichdoesnotdependontheunderlyinglattices. Forexample thecolorcodescanbedefinedonthehoneycombandsquare-octagonallatticessothat,inbothcases, topologicalorderisthesame. 2.1 Topologicalcolorcodes Inthissubsection,wereviewthetopologicalcolorcodes(TCC).Ithasbeenshownthattheycanbe used for topologicalimplementation of Clifford unitary gates and it is an advantage of these codes comparedwiththetoriccodes[18]. The TCC models are defined on three-colorable lattices where one can color all faces (plaquettes) of the lattice by threedifferentcolorsso thatany two neighborplaquettesare notin the same color [19]. Here we consider the TCC modelon a honeycomblattice, but we emphasize thattopological propertiesarethesameforallTCCmodels.Tothisend,considerahoneycomblatticeonatoruswhere spinsliveonverticesofthelattice,seeFigure(1). Therearetwokindsofoperatorscorrespondingto eachplaquetteofthelatticeasfollows: Px = YXi , Pz = YZi, (1) i∈P i∈P whereX andZ denotethePaulioperatorsσ andσ ,respectively. Ifthenumberoftheplaquettesis x z N,thenumberoftheplaquetteoperatorswillbeequalto2N. Themostimportantproblemistofind thestabilizedsubspaceofthecodewhichisdefinedasfollows: L={|ψi | P |ψi=|ψi,P |ψi=|ψi}. (2) x z ThissubspacecanalsobeconsideredasthesubspaceofgroundstatesofaHamiltonianas: H =−XPx−XPz. (3) p p BythefactthatP (1+P )=(1+P ),itissimpletocheckthatthefollowingstateisagroundstate x x x oftheHamiltonian(3): |ψi=Y(1+Px)|00...0i, (4) p where|0iiseigenstateofthePaulioperatorZ.Alsotherearemanyconstraintsbetweentheplaquette operators. Asithasbeenshowninfigure(1), thehoneycomblattice iscoloredbythreecolorssuch as blue, green, red. According to the periodic boundry conditions on the torus, it is clear that the followingconstraintswillbeholdontheplaquetteoperators: Y Px = Y Px = Y Px , Y Pz = Y Pz = Y Pz, (5) P∈R P∈G P∈B P∈R P∈G P∈B whereP ∈ Rreferstotheplaqutteswhicharecoloredbyredandsoon. Hence,from2N plaquette operators,only2N −4numberofthemareindependent. Becausethenumberofqubitsisalsoequal to2N,degeneracyofthegroundstateissixteen-fold. Inthefollowing,weshowthatallgroundstatesareconstructedbyapplyingsomenon-localoperators tostate(4). Fordefiningthesenon-localoperators,weconsiderthatalledgesofthehoneycomblattice canalsobecoloredbythreecolorssothateachedgewithaspecificcolorconnectstwoplaquetteswith the same color, see figure(1). Then we define three kindsof color strings on the lattice where each stringmovesontheedgesandplaquetteswiththesamecolorandtwoendpointsofthestringslivein theplaquettes,seefigure(1). WedenotethesestringsbySR,SG,SB. Wedefinetwostringoperators SC,SC correspondingtoeachstringintheformof: z x SzC = Y Zi , SxC = Y Xi, (6) i∈SC i∈SC 3 Figure 1: (Color online) In the color code on the honeycomb lattice, spins live on vertices of the lattice. Thelattice is coloredby threedifferentcolors, red, blue andgreen. Each linkconnectstwo plaquetteswith the same color and it is coloredby the same color, so all links are colored by three colors,red,blueandgreen.Agreenstringmoveongreenlinksandithastwoendpointsintwogreen plaquettes. where the Pauli operators are applied on all qubits which live on the string SC and C can be each one of three colors, red, green or blue. If two end pointsof a string are connectedto each other, it generatesaclosedloopandwewillhaveacorrespondingloopoperator.Sinceeachplaquettesharesin twospinswiththeloopoperator,itissimpletoshoweachloopoperatorcommuteswithallplaquette operatorsintheHamiltonian(3). Byattentiontotopologyofthetorus,theloopoperatorsaredivided to two generalclasses. One class containstrivialloops which are contractibleand anothercontains non-trivialloopswhicharenon-contractible. Importantpointisaboutnon-trivialoperators. Therearesixfundamentalnon-trivialloopswhichare denotedby three colorsand two directionson the torus, see figure (2). Related to each kind of the non-trivialloops,therearetwooperatorswhichareconstructedbyZorX operators.Wedenotethese operatorsas: LCx,σ = Y Xi , LCz,σ = Y Zi, (7) i∈lC,σ i∈lC,σ where l refers to a non-trivial loop and C denotes color of the loop and σ = {0,1} denotes C,σ directionofthelooparoundthetorus. Animportantpropertyofthenon-trivialloopoperatorsisthat theycannotbewrittenasproductoftheplaquetteoperatorsintheHamiltonian(3). Butitissimpleto showfromthreeloopoperatorsLR,σ,LG,σ andLB,σ,onlytwonumberofthemareindependentand onecanbewrittenasproductoftwootheronesandsomeplaquetteoperators. Soweselectonlytwo colorsoftheseloops,forexampleredandgreen. Becauseofthetopologyofthetorus,twonon-trivialloopswhereoneisindirection0andanotheris in direction1 crosseach other, see Figure (2), so thereis an anti-commutationrelationbetween the non-trivialloopoperatorsasfollows: {LR,0,LB,1}=0 , {LR,1,LB,0}=0 , {LB,0,LR,1}=0 , {LB,1,LR,0}=0. (8) x z x z x z x z Otherrelationsbetweentheseoperatorsarecommutation. Accordingtotheaboverelationsthenon- trivialloopoperatorsgeneratea24dimensionalspacewhichcanencodethespaceoffourqubits.Also wecanexplicitlyconstructallsixteenbasesofthisspacebythenon-localoperatorsinrelation(8). In fact,itisclearthatthestate|ψias(4)isstabilizedbyLB,1,LB,0,LR,1,LR,0,becausetheycommute z z z z withoperatorsP thentheyare appliedtostate |00...0iwhichiseigenstateofthePaulioperatorZ. x Soallbasesofthedegeneratesubspaceareconstructedasfollows: |ψ i=(LB,1)i.(LB,0)j.(LR,1)k.(LR,0)l|ψi, (9) ijkl x x x x wherei,j,kandlare0or1. Weshouldemphasizethatdegeneracyofthegroundstateinthismodel isrelatedtothetopologyoftorusandthecolorablestructureofthelattice. 4 l l l R,0 B,0 G,0 l R,1 l B,1 l G,1 Figure2: (Coloronline)Schematicallyweshowthreecoloredloopswhichwindaroundtorusintwo differentdirections. B p l0 l^0 Av Figure3: (Coloronline)Inthetoriccodeonthehoneycomblattice,spinsliveonedgeofthelattice, vertexoperatorsareappliedonthreespinswhichareneighborsofeachvertexandplaquetteoperators areappliedonsixspinswhichareontheedgesofeachplaquette.Twonon-trivialloopsonlatticehas beenshown,onemovesonedgesoflatticewhichhasbeendenotedbyredstringandanothermoves onedgesofduallatticewhichhasbeendenotedbybluestring. 2.2 The toriccodes Themostsimple ofthetopologicalcodesarethe toriccodeswhichcanbedefinedoneachoriented graph[36]. HereweconsiderahoneycomblatticeonatoruswithN spinswhichliveontheedgesof thelattice. Thetoriccodeonsuchalatticeisdefinedbythefollowingplaquetteandvertexoperators: Bp =YZi , Av =YXi, (10) i∈p i∈v wherei ∈preferstospinswhichbelongtoplaquettepandi ∈vreferstospinswhichareneighbor ofvertexv, see Figure(3). Thestabilizedsubspaceofthiscodecantreatedasthegroundstate ofa Hamiltonianas: HK =−XBp−XAv. (11) p v SinceA (1+A ) = 1+A ,itissimpletoshowthatthefollowingun-normalizedstateisaground v v v stateofthisHamiltonian: |φi=Y(1+Av)|00...0i. (12) v Also there are two constraints between the plaquette and vertex operators in the Hamiltonian as A = I and B = I. So the number of independentoperators is equal to N −2 and the Qv v Qp p groundstatehasfour-folddegeneracy.Tofindothergroundstatesweshouldconsidertwonon-trivial 5 loopsl0,l1 aroundtwo directionsof the toruswhereloopscan be definedon the edgesof lattice as wellastheedgesofduallattice wherethevertices,edgesandfacesofduallattice areinonetoone correspondencewiththefaces,edgesandverticesofthelattice,respectively.Therearetwooperators correspondingtoa non-triviallooplσ onthe latticeanda non-trivialloopˆlσ onthe duallattice, see figure(3),intheformof: Lσ,x = YXi , Lσ,z = YZi. (13) i∈ˆlσ i∈lσ Ononehandtheseoperatorscommutewiththe Hamiltonianso theyhavejointeigenstates, andfur- thermorethereexistthefollowinganti-commutationrelationsbetweentheseoperators: {L0,x,L1,z}=0 , {L0,z,L1,x}=0. (14) Other relationsbetween these operatorsare commutation. Accordingto the aboverelationsall four groundstatesofthemodelarederivedas: (L0,x)i.(L1,x)j|φi, (15) where i,j are 0 or 1, and |φi is a state as in Eq.(12). Thus in the toric codes, topologicalorder of the groundstates is associated to theperiodicconditionsof the torusandit is independentfromthe underlyinglattice. 2.3 The robustness ofthe topologicalcodes The degenerategroundstate of the topologicalcodes can be used as a robust memory for quantum computationgoals. Forexample,consideraperturbationasmagneticfieldonspinsinthetoriccode. Suchaperturbationleadstosplittingbetweenthedegeneratestates. Theimportantpointinthiscaseis thattwogroundstatesofthemodelareonlymappedtoeachotherbyanon-localoperatorasproduct ofPaulioperatorsonanon-trivialloopwhichisrelatedtothetopologyofthemodel.Therefore,ifthe perturbationissmallenough,suchasplittingcannothappen. Itisclearthattherobustnessofthedegeneracyisliftedwhenperturbationincreases. Infactapertur- bationeveninthefirstorderleadstoatransitiontermbetweenthegroundstateandtheexitedstates intheperturbedenergylevels. Thisproblemleadstoaphasetransitionfromtopologicalordertoan ordinaryorder. Finally,thetopologicalorderisliftedataphasetransitionpoint. Therefore,thepoint ofphasetransitionisameasureoftherobustnessofthetopologicalcodes. 3 Ising perturbation on the topological code states Inthissection,weconsiderthetopologicalcodesondifferenttwo-dimensionallatticeswithIsingper- turbation. WeshowthatthesemodelsaremappedtotheIsingmodelintransversefieldbyre-writing theinitialHamiltonianinanon-localbasis. Inageneralform,theHamiltonianofthetopologicalcode withIsingperturbationisintheformof: H =−Jh −kh (16) Top I whereh istheHamiltonianofthetopologicalcodeandh istheHamiltonianoftheIsingperturba- Top I tion. Atthefirst,letusconsidertwospecialregimesofthecouplings. IncasethatJ =0orK =∞, wehavetheIsingmodelwhichhaveatwo-folddegenerategroundstatewhereZ componentsofall spinsare upordown. Inthiscase system is in the ferromagneticphase anda localorderparameter candescribephaseofthemodel[7]. NowweconsideracasethatJ = ∞orK = 0,sowehavethe 6 topologicalmodelwhere the system is in a topologicalphase and any local orderparameter cannot describesucha phase[6]. Since inthesetwo differentregimeswehavetwo differentphases, itisa reasonableexpectationthatatacriticalratioofk/J aphasetransitionoccurs. Were-writetheHamiltonian(16)inanewbasisandweshowthatinthisnewbasissuchaHamiltonian ismappedtotheIsingmodelinthetransversefieldona2Dlattice. 3.1 The topologicalcolorcodeonthe honeycomb lattice Our method in studying the topological codes in presence of the Ising perturbation is to re-write Hamiltonianofthemodelinanewbasis. ItleadstoconverttheinitialmodeltoanIsingmodelinthe transversefield. Similarmethodhasbeenalreadyusedinotherpapersaboutthetoriccodeonsquare lattice[31]andthecolorcodeonthehoneycomblattice[32]. Inthissubsection,weexplainthemain ideafortheTCCmodelonthehoneycomblatticethenweapplyittoothermodelsonvariouslattices. Tothisend,weconsideraHamiltonianas: H =−J(XPx+XPz)−KXZiZj, (17) p p hi,ji where hi,ji denotesneighborspins on the honeycomblattice. In this model, we have considereda positivcouplingconstantJ fortheTCCHamiltonianandapositivcouplingconstantK fortheIsing perturbation. Atthefirst,bythefactthattheIsingperturbationcommuteswiththeoperatorsP intheTCCmodel, z we find thatgroundstate of the new modelis in a subspacewhich is stabilized byall operatorsP . z Were-writetheHamiltonian(17)insuchasubspacebychoosinganun-normalizedbasisasfollows: |φr1,r2,r3,...,rNi=Y(1+(−1)rpPx)|00...0i. (18) P whereN isthenumberofplaquettesofthelatticeandr ’sarebinarynumberswhichareattributedto p eachplaquette. Infactwecanattributeavirtualspintoeachplaquettewherer denotesthevalueof p thevirtualspininaplaquettep. ThestatesinEq(18)arenon-localsothattheycorrespondtoanyonic excitationsoftheTCCmodel. The number of states as (18) is 2N and all of them are stabilized by the operators P . About the z above basis, we should emphasize that all these states are not independent, in fact there are con- straints between the plaquette operators in different colors according to relation (5). For example productofalloperatorsPRandPGisequaltotheIdentityandwefindthatPR.PG|φ i= x x x x r1,r2,r3,...,rN |φ i. Thisbasiswouldbecompleteifwe addsomenewstateswhichareconstructedby r1,r2,r3,...,rN applyingthenon-trivialloopoperatorsonthestate|φi. Inthefollowingweshouldre-writetheHamiltonian(17)inthebasis(18). Asweexplained,allstates (18)arestabilizedbyP ’s,soP |φ i = |φ iandsincethenumberofP ’sis z z r1,r2,r3,...,rN r1,r2,r3,...,rN z equaltoN,wefindthat P |φ i=N|φ i. Pp z r1,r2,r3,...,rN r1,r2,r3,...,rN ThenweapplytheoperatorPx onthestates(18). BythefactthatPx(1+(−1)rpPx)=(−1)rp(1+ (−1)rpPx),wefindthatPx|φr1,r2,r3,...,rNi = (−1)rp|φr1,r2,r3,...,rNi. Wecandescribethisfinalre- sult in an interesting view so that effect of P in the basis (18) is equivalent to effect of the Pauli x operatorZpinabasisas|r1,r2,...,rNionthevirtualspins. Interesting situation occurswhen we apply the Ising term on the basis (18). To this end, as we ex- plainedintheprevioussection,wecancoloralllinksofthehoneycomblatticeinthreecolors. Thus wedividetheIsinginteractionstothreepartscorrespondingtothecoloroftheirlinksas: HI = X ZiZj + X ZiZj + X ZiZj, (19) hi,ji∈B hi,ji∈G hi,ji∈R 7 P P ' x x Px Figure4: (Coloronline)Left: AnIsingperturbationcorrespondingtoabluelinkdoesnotcommute withtwoplaqutteoperatorsP andP′ intwoendpointsofthatlink. Right: Thevirtualspinswhich x x liveinblueplaquettesaredenotedbybluecircles.AnIsinginteractionZ Z betweentworealspinson i j bluelinksdoesnotcommutewithtwoplaquetteoperatorsP ontwoit’sendpointsanditisequivalent x toanIsinginteractionXpXp′ betweenvirtualspinswhichliveoncorrespondingplaquettes. Finally wehaveanIsingmodelonatriangularlattice. wherehi,ji∈ B denotessitesi,j whichareintwoendpointsofabluelinkandsoon. Forexample, weapplytheIsinginteractiononthebluelinkstothestate|φ i. Eachlinkhi,jihasfour r1,r2,r3,...,rN neighborplaquettes and it is simple to show that correspondingoperator to hi,ji as Z Z does not i j commutewith two plaquetteoperatorsP correspondingto two plaquettesin two endpointsof that x link, see Figure(4, left). Therefore, we find that ZiZj(1+(−1)rpPx) = (1+(−1)rp+1Px)ZiZj, whereP iscorrespondingoperatortooneoftheendpointsoftheedgehi,ji. Finally,weconclude x whentheIsinginteractioncorrespondingtoabluelinkofthelatticeisappliedtobasis|φ i, r1,r2,r3,...,rN itrisesupthevirtualspinsrp,rp′ correspondingtotwoblueplaquettesintwoendpointsofthatlink. Therefore, we can describe the Ising interaction ZiZj as an Ising interaction XpXp′ on the basis |r1,r2,...,rNi, wherep,p′ aretwo blueplaquetteswhichare connectedbya bluelink. Asyoucan seeinFigure(4,right),ifwedenotethisIsinginteractionbetweentheneighborvirtualspinsbyalink, wewillhaveatriangularlatticewhereallvirtualspinsinblueplaquettesliveontheverticesofthat lattice. TheaboveargumentcanalsoberepeatedfortheIsinginteractionsonthegreenandredlinkswhere, correspondingtoeachcolor,wewillhaveanIsingmodelonatriangularlattice. ByconsideringalltermsintheHamiltonian(17)inthenewbasis,wewillhaveanewHamiltonianin theformof: H =−JN− X (JZp+KXpXp′)− X (JZp+KXpXp′)− X (JZp+KXpXp′), (20) {p}∈B {p}∈R {p}∈G where {P} ∈ B refers to all virtual spins on the blue plaquettes and P,P′ refer to the neighbor plaquettesinthesamecolorona triangularlattice. ForfindingthegroundstateoftheHamiltonian, we use this fact that the final Hamiltonian in (20) on the virtual spins has been written as summa- tionofthreeindependentHamiltonianonthreetriangularlatticeswithdifferentcolors. Therefore,it is enoughto find the groundstate ofeach part, independently. Interestingresultis thateach partof theHamiltonianisanIsingmodelinatransversefieldonatriangularlatticewhichaquantumphase transitionhasbeenknownforitatJ/K ≈4.77[33].AtJ ≫K limitallvirtualspinsareinpositive directionofZ andcorrespondinglytherealspinsareingroundstateofthecolorcode. AtK ≫ J limit All virtualspins are in the groundstate of the Ising model on the triangularlattice and corre- spondinglytherealspinsareinthegroundstateoftheIsingmodelonthehoneycomblattice. 8 Figure 5: (Color online) In the color code on Square-octagonallattice, spins live on vertices of the lattice. Similar to thehoneycomblattice, we colorallplaquettesandlinksbythreedifferentcolors, red,blueandgreen. 3.2 the colorcodeonthe square-octagonal lattice The color codes can be defined on any three-colorablelattices. Definition of the stabilizers are the sameforallofthemsothattherearetwokindsofstabilizerscorrespondingtoeachplaquetteP ,P x z whichareasproductofX orZ operatorsonthespinsofeachplaquette. Inthissubsection,weconsiderthecolorcodeonasquare-octagonallatticeinaIsingperturbation,see Figure(5). Inordertofindthephasetransitionpoint,similartotheprevioussection,were-writethe Hamiltonian of the modelin the basis (18). All of argumentsare similar to the previoussection so thatherewe dividetheHamiltonianto threepartscorrespondingto threecolorsoftheplaquettesof thelattice. EachpartoftheHamiltonianinthebasis(18)isasanIsingmodelinthetransversefield onthevirtualspinsinplaquetteswiththesamecolor. OnlydistinctioniskindoftheIsinginteraction patternonthevirtualspinsineachcolor. AsithasbeenshowninFigure(6),linksofthelatticewithgreencolorgenerateasquarelatticewhere thevirtualspinsliveonit’svertices. Moreover,bluelinksgenerateasquarelatticewherethevirtual spinsliveonit’svertices,seeFigure(7). Alsoweshouldbecarethattherearetwobluelinksbetween eachtwoblueneighborplaquettes. ThisfinalpointleadstoanimportantdistinctionsothattwoIsing interactionsinoriginalmodelontherealspinscorrespondtoanIsinginteractioninthesquarelattice onthevirtualspins. Byconsideringasimilarargumentfortheredplaquettes,thefinalHamiltonian onthevirtualspinswillbeasfollows: H =−KN− X (JZp+KXpXp′)− X (JZp+2KXpXp′)− X (JZp+2KXpXp′), (21) {p}∈G {p}∈R {p}∈B where{P}∈GreferstoallvirtualspinsonthegreenplaquettesandP,P′areneighborplaquettesin thesamecolorwhichgenerateasquarelattice. EachpartoftheaboveHamiltonianisanIsingmodel inthetransversefieldonasquarelattice. Forthefirstpart,phasetransitionoccursatJ/K ≈ 3[34] andfortwootherparts,phasetransitionoccursatJ/2K ≈3.WhentheIsingperturbationisincreased byK, atK ≈ J/6forthe redandbluesublatticesa phasetransitionoccursfromtopologicalorder to ferromagneticorderbutthe greensublattice staysintopologicalphase. AtK ≈ J/3topological orderiscompletelyremovedandwehaveaferromagneticorder.Wecancomparethisresultwiththat forthecolorcodeonthehoneycomblatticewherephasetransitionoccursatK ≈J/4.77. 3.3 The toriccode onthe honeycomb lattice In this subsection, we study the toric code on a honeycomb lattice with the Ising perturbation. To thisend,weconsiderthenearestneighborsofeachspinandweassumeanIsinginteractionbetween them. AsithasbeenshowninFigure(8, left),ifweillustrateeachIsinginteractionbyalink,Ising interactionpatternisdescribedbyatriangle-hexagonallatticewhichthespinsliveonit’svertices. In 9 Figure6:(Coloronline)Thevirtualspinswhichliveingreenplaquettesaredenotedbygreencircles. AnIsinginteractionZ Z betweentworealspinsongreenlinksdoesnotcommutewithtwoplaquette i j operatorsPx ontwoit’sendpointsanditisequivalenttoanIsinginteractionXpXp′ betweenvirtual spins which live on corresponding plaquettes. Finally we have an Ising model on a green square lattice. Figure7: (Color online)Thevirtualspinswhich livein blueplaquettesare denotedbyblue circles. Therearetwo IsinginteractionsZ Z betweenrealspinsontwobluelinkswhichconnecttwo blue i j plaquettes.BythefactthatthesetwoIsinginteractionsdoesnotcommutewithtwoplaquetteoperators Px on two it’s end points, we find that they are equivalent to an Ising interaction XpXp′ between virtual spins which live on corresponding plaquettes. Finally we have an Ising model on a square lattice. thisnewlatticethevertexoperatorsofthetoriccodecorrespondtothetriangularplaquettesandthe plaquette operatorsof the toric code correspondto the hexagonalplaquettes. Finally the toric code withtheIsingperturbationcanbedescribedbyaHamiltonianintheformof: H =−J(XAv +XBp)−kXZiZj. (22) v p hi,ji BythefactthattheoperatorZ Z commutewiththeoperatorsB andthenon-trivialloopoperators i j p Lσ,Z ,wefindthatthegroundstateoftheaboveHamiltonianisinasubspacewhichisstabilizedby B ’sandLσ,Z. Therefore,weselectthefollowingbasistore-writetheHamiltonian(22): p |φr1,r2,...,rNi=Y(1+(−1)rvAv)|00...0i. (23) v Then,wefindnewformoftheHamiltonian(22)inthisbasis.First,BythefactthatB ’scommutewith p alloperatorsA ,wefindthat B |φ i=N|φ i. Second,weapplytheoperators v Pp p r1,r2,...,rN r1,r2,...,rN Av,bythefactthatAv(1+(−1)rvAv)=(−1)rv(1+(−1)rvAv),wefindthatPvAv|φr1,r2,...,rNi= Pv(−1)rv)|φr1,r2,...,rNi. Itisusefultodescribethefinalrelationinviewofvirtualspins.Tothisend, if we insertvirtualspins on the verticesof the initial honeycomblattice, the state |φ i can r1,r2,...,rN treatedasproductstate|r1,r2,...,rNionthevirtualspins.Therefore,effectoftheoperatorAv onthe 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.