ebook img

On the perturbative expansion of tau hadronic spectral function moments PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the perturbative expansion of tau hadronic spectral function moments

On the perturbative expansion of τ hadronic spectral function moments 3 1 0 Diogo Boito∗ 2 PhysikDepartmentT31,TechnischeUniversitätMünchen, n James-Franck-Straße1,D-85748Garching,Germany a E-mail: [email protected] J 4 1 In the determination of α from tau decays several different moments of the hadronic spectral s ] functions have been used. In a recent work, we performed an analysis of their perturbative be- h p haviour under two different assumptions for the higher-order coefficients of the Adler function. - We showed that the various moments can be divided in a small number of classes. We con- p e cludedthatsomeofthemomentscommonlyemployedinα extractionsshouldbeavoideddueto s h theirbadperturbativebehaviour. Furthermore,forthemomentsthathaveagoodperturbativebe- [ haviour,andunderreasonableassumptionsforthehigher-orderbehaviouroftheAdlerfunction, 1 v fixed-orderperturbationtheory(FOPT)providesthesuperiorframeworkfortherenormalization 8 groupimprovement. Herewediscussanextensionofthisanalysiswhereweconsiderthepertur- 0 0 bativeseriesforvaluesofthehadronicinvariantmasssquareds0≤m2τ. Ourconclusionsarenot 3 alteredwithinareasonables window. . 0 1 0 3 1 : v i X r a XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany ∗Speaker. †TUM-HEP-873/13 (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1. Introduction Inthelast20years,hadronictaudecayshavebeenanimportantsourceofempiricalinforma- tion on fundamental parameters of QCD. Notably, the strong coupling, α , can be extracted with s a good precision at relatively low energies, close to the edge of the validity of perturbative QCD. AfterthemeasurementofthespectralfunctionsatLEP,otherparameterssuchasthestrangequark mass, the CKM matrix element V , as well as non-perturbative condensates could be extracted us (seee.g.[1]). Theextractionoftheseparametersreliesonsumrules. Quark-hadrondualityandthe opticaltheoremallowtoexpressthedecayrateasweightedintegralsofthevectorandaxial-vector spectralfunctionsrunningoverthehadronicinvariantmasssquaredsfromthresholduptom2. τ Using the analytic properties of the quark-antiquark correlators, the theoretical counter-part oftheexperimentalquantitiesareexpressedascontour-integralsinthecomplexenergyplanewith fixed |s| = m2. However, in the theoretical description of τ decays two main obstacles remain. τ The first is referred to as duality violations (DVs). They are related to the break-down of local quark-hadron duality in the vicinity of the Minkowski axis (where resonance effects become im- portant). In the past, they have been neglected due to a fortuitous kinematical suppression of the problematic region in the contour integration. Recently, thanks to the progress in modelling DVs realistically[3,4],theyhavebeenincludedself-consistentlyinafull-fledgedα analysis[5,6]. The s second important obstacle is the prescription for the renormalization group (RG) improvement of theperturbativeseries. Themostwidelyemployedprescriptionsarefixed-orderperturbationtheory (FOPT) [7, 8] and contour improved perturbation theory (CIPT) [9, 10]. When used in practice, theyleadtodifferentα results. Withtherecentlycomputedα4 correction[11],thedifferencebe- s s cameevenmorepronounced. Severalworkshavedealtwiththisdiscrepancy[8,12,13,14,15,16] in the light of the α4 term. The conclusions in favour of FOPT or CIPT (or a third prescription) s arebasedon(implicitorexplicit)assumptionsontheyetunknownhigherorderα corrections. In s thiscontext,thegoalofRef.[8]wastoconstructaplausiblemodelforthehigher-ordercorrections of the Adler function from the leading renormalon singularities of its Borel transform, using only generalRGargumentstodescribethestructureofthesingularitiesintheBorelplane. Aftermatch- ingthemodeltotheknowncoefficientsinQCD,themainconclusionofRef.[8]wasthatFOPTis to be preferred over CIPT, since FOPT provides a closer approach to the Borel resummed results —inthespiritofanasymptoticseries. Thisconclusionwasbasedsolelyontheanalysisoftheweightw (x),obtainedfromthekine- τ matics of the decay. This is not entirely satisfactory since realistic determinations of α employ s (and often require) several different weight functions w(x). In fact, any analytical w(x) gives i i rise to a valid sum-rule that emphasises a given part of the spectral functions, as well as different contributions in the theoretical description. In the literature, several weight-functions have been employed and yet little attention has been paid to the moment dependence of the convergence properties of the perturbative series. We have addressed this question in Ref. [17] and pursued the FOPT/CIPT comparison for several weight functions. We showed that the different moments employed in the literature can be divided in a small number of categories. The characteristics of theirperturbativeseriescouldbelinkedtogenericfeaturesofthemomentweightfunctionandthe dominantrenormalonsingularitiesoftheAdlerfunction. Weconcludedthatsomeofthemoments currentlyemployedinsomeα extractionsshouldbeavoidedduetothepoorconvergenceoftheir s 2 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito perturbative expansions. Additionally, for all moments that display good perturbative behaviour — and under reasonable assumptions for the higher-order corrections — FOPT provided the best frameworktotheRGimprovement. A point that was not discussed in [17] is the stability of the conclusions with respect to s 0 variations(s beingtheupperlimitofintegrationinthesum-rule,seeEq.(2.1)). Therelevanceof 0 thisissueliesinthefactthatseveralα analysesusesum-ruleswherethedataareintegratedupto s s <m2. Hereweshowthattheconclusionsof[17]remainvalidwhens isvariedawayfromm2. 0 τ 0 τ 2. Theoreticalframework,model,andresults We work with generalized sum-rules, where the weight function in the integrals can be any analytical function w(x) and the upper limit of integration is taken to be any point s ≤m2. The i 0 τ experimentalsideofthesum-rulesarethenwrittenasintegralsoverthespectralfunctionsas Rwi (s ) = 12πS |V |2(cid:90) s0 ds(cid:18)1− s (cid:19)2(cid:18)1+2 s (cid:19)(cid:20)ImΠ(1+0)(s)− 2s ImΠ(0) (s)(cid:21). τ,V/A 0 EW ud s s s V/A s +2s V/A 0 0 0 0 0 (2.1) The two point functions are defined as Πµν (p) ≡ i(cid:82)dxeipx(cid:104)Ω|T{Jµ (x)Jν (0)†}|Ω(cid:105) and they V/A V/A V/A assume the usual decomposition into longitudinal and transversal components. TheV and A cur- rentsaregivenbyJµ (x)=(u¯γµ(γ )d)(x). V/A 5 Thetheoreticalcounter-partofEq.(2.1)isobtainedfromthecounter-clockwisecontourinte- grationofthecorrelatorswith|s|=s . Thecontributionsonthetheorysidecanbeorganizedas 0 (cid:20) (cid:21) N Rwi (s ) = cS |V |2 δtree+δ(0)(s )+ ∑ δ(D) (s )+δDV (s ) . (2.2) V/A 0 2 EW ud wi wi 0 wi,V/A 0 wi,V/A 0 D≥2 Theperturbativecontributioniscontainedinδtree andδ(0),ofwhichδ(0) containstheloopcorrec- wi wi wi tions. InthechirallimittheyarethesameforV andAcorrelators,andcorrespondtotheperturba- (1+0) tiveseriesofΠ (s). The quark-mass corrections, aswellascontributionsfromoperatorswith V/A D>2intheOPE,areencodedinthetermsδ(D) ;DVcontributionsarerepresentedbyδDV . wi,V/A wi,V/A Our focus is on the behaviour of the perturbative correction and it is convenient to write it in termsoftheRGinvariantAdlerfunction,whoseexpansioninα canbewrittenas s d N ∞ n+1 (cid:18) −s(cid:19)k−1 D(1+0)(s) ≡ −s Π(1+0)(s)= c ∑an ∑kc log , (2.3) ds 12π2 µ n,k µ2 n=0 k=1 where a =α(µ)/π. RG invariance implies that only the coefficients c are independent. The µ n,1 otherc canbeexpressedintermsofc andβ-functioncoefficients. Theperturbativecontribu- n,k n,1 tiontothetheorysideofthesum-rulesisthen ∞ n 1 (cid:73) dx (cid:18)−s x(cid:19) δ(0) = ∑ ∑kc W(x)logk−1 0 an , (2.4) wi n,k 2πi x i µ2 µ n=1k=1 |x|=1 withx=s/s andW(x)=2(cid:82)1dzw(z). DuetotheRGinvarianceofD(1+0)(s)onehasthefreedom 0 i x i of setting the scale µ. The FOPT prescription corresponds to the choice µ2 =s . In this case, 0 3 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito the coupling a(s ) is taken out-side the integrals and one is left with the integration of powers of 0 log(−x). TheCIPTchoicecorrespondtoµ2=−s x,whichresumsthelogarithmsbut,inturn,the 0 integralsaredone(numerically)overtherunningcouplinga(−s x). 0 In order to compare FOPT and CIPT as well as understand the perturbative behaviour of spectralfunctionmoments, onemusthaveanansatzfor theunknownhigher-orderAdlerfunction coefficientsc . HerewefollowthemethodintroducedinRef.[8]whichmakesuseoftheavailable n,1 knowledge of the renormalon structure of the Borel transformed Adler function. The idea is to construct a realistic model for the Borel transform using the leading singularities. We work with thefunctionD(cid:98)(s)anditsBoreltransform,B[D(cid:98)](t),definedas 12π2 ∞ √ ∞ tn N DV(1+0)(s) ≡ 1+D(cid:98)(s) ≡ 1+∑rnαs( s)n+1, B[D(cid:98)](t) ≡ ∑rnn!. (2.5) c n=0 n=0 TheoriginalseriescanbeunderstoodasanasymptoticexpansionoftheinverseofB[D(cid:98)](t), (cid:90) ∞ D(cid:98)(α) ≡ dte−t/αB[D(cid:98)](t), (2.6) 0 when the integral exists. Singularities of B[D(cid:98)](t) on the positive real axis (infra red (IR) renor- malons)giverisetofixed-signasymptoticseriesandobstructtheBorelsummation,Eq.(2.6). This introducesanambiguityintheintegralthatisexpectedtobecancelledagainstexponentiallysmall termsinα ,orpowercorrections(duetothelogarithmicrunningofthecoupling). Singularitieson s thenegativerealaxis(ultravioletrenormalons(UV))giverisetosign-alternatingseries. General RG arguments and the structure of the OPE allow one to determine the position and strengthoftherenormalonsingularitiesinthetplane,thoughnottheirresidues[18]. Thefixed-sign natureoftheexactlyknowncoefficientsoftheAdlerfunctionsuggestthatatlowandintermediate orders the series is dominated by IR singularities. The reference model (RM) of [8] contains the firsttwoIRandtheleadingUVsingularities. TheBoreltransformisgivenby B[D(cid:98)](u) = B[D(cid:98)UV](u)+B[D(cid:98)IR](u)+B[D(cid:98)IR](u)+dPO+dPOu. (2.7) 1 2 3 0 1 Thestructureofthebranch-cutsingularitiescanbefoundin[8]. Theresiduesandthecoefficients dPO arefixedbymatchingtotheexactlyknownc toc (augmentedbyanestimateforc ). 0,1 1,1 4,1 5,1 Within this model, the conclusion of Ref. [8] in favour of FOPT has been corroborated and extended in our recent work [17]. All moments that display a good perturbative behaviour favour theFOPTprescriptionwithintheRM.Thisconclusioncanbetracedbacktothecontributionofthe leadingIRsingularity, relatedtotheD=4correctionsintheOPE.Ifthissingularityisarbitrarily suppressed,onegeneratesamodel—lessrealistic,inouropinion—inwhichCIPTisthepreferred prescription. To realize this scenario in practice, and assess possible model dependencies in our conclusions, weintroducedthefollowingalternativemodel(AM)wheretheleadingsingularityis absentwhereasthesub-leadingoneatu=4isexplicitlytakenintoaccount: B[D(cid:98)](u) = B[D(cid:98)UV](u)+B[D(cid:98)IR](u)+B[D(cid:98)IR](u)+dPO+dPOu. (2.8) 1 3 4 0 1 WithintheAM,momentswithgoodperturbativebehaviourfavourCIPT. 4 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.30 1.30 Borel Amb. s =1.5 GeV2 1.20 1.20 BCoIrPeTl Asm0=b1.. 5s0 G=meVτ22 CIPT s0=2.5 GeV2 1.10 1.10 C0IPT s =mτ2 0 1.00 1.00 0.90 0.90 Borel Amb. s =1.5 GeV2 Borel Am0b. s =mτ2 0.80 FOPT s =1.50 GeV2 0.80 FOPT s0=2.5 GeV2 0.70 FO0PT s =mτ2 0.70 0 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2(1+2x),FOPT. (b) w (x)=(1−x)2(1+2x),CIPT. τ τ (0) Figure1: Referencemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and wτ 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ ThemodelsrepresenttwoquitedifferentsituationsregardingtheinterplayoftheAdlerfunc- tion coefficients and the running coupling effects. In the RM, there are cancellations between the contributionfromthehigh-ordercoefficientsc andtherunningcouplingeffects,atagivenorder n,1 in α . In this case FOPT is superior since it treats these contributions on an equal footing, while s CIPT misses the cancellations due to the resummation of the running effects to all orders. On the other hand, the AM represents a situation where the running effects are dominant and should be resummed. Inthiscase,thehigh-ordercoefficientscanbeneglectedandCIPTisabetterprescrip- tion. SincethereisnoknownmechanismthatwouldnaturallysuppresstheleadingIRsingularity inQCD,webelievethescenarioofEq,(2.7)tobemorerealistic. Usingthesetwomodels,wecomparedinRef.[17]theperturbativeseriesinFOPTandCIPT generatedfrom17polynomialweight-functionsw(x). Weshowedthattheycanbedividedintoa i small number of categories regarding the behaviour of their perturbative series. Generic features of thefunctions w(x)(such asstarting or not withthe unity), together withthe assumptions upon i the Adler function, suffice to determine whether they are suitable for α extractions and whether s FOPT or CIPT is more suitable for the RG improvement. We showed that some of the weight functionsusedintheliterature,e.g. polynomialscontainingsolelypowersofxi withi≥2,should beavoidedduetotheirbadperturbativebehaviour. Wealsoprovidedfurtherargumentsthatsupport theplausibilityoftheRMof[8]andconcludedthatforwell-behavedmomentsFOPTispreferred. Anaspectthatwasnotconsideredin[17]wasthes dependenceoftheseconclusions. Thisis 0 importantbecausesum-ruleswithdifferentvaluesofs ≤m2areusedinextractionsofα [5,6,19]. 0 τ s Here we show explicit results for the FOPT/CIPT comparison for two moments within the two models given in Eqs. (2.7) and (2.8) and considering three values of s : 1.5 GeV2, 2.5 GeV2, and 0 m2. The interval [1.5 GeV2: m2] spans the values used in the fits of [5, 6]. Since we intent to τ τ comparetheperturbativeseriesatdifferentvaluesofs anormalisationprocedureisinorder. For 0 better comparison, we normalise the series generated for each value of s by its corresponding 0 Borelsum,Eq.(2.6). Hence,intheplots,meaningfulseriesshouldbeasymptotictotheunity. Westartbyconsideringthecaseofmomentsthathavegoodperturbativebehaviourfors =m2. 0 τ As a representative we choose to use the kinematic moment w . In Fig. 1, we consider the FOPT τ andCIPTserieswithintheRM.Ontheleft-handside, Fig.1(a), oneobservesthatthenormalised 5 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.80 1.80 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 Borel Am0b. s =mτ2 Borel Am0b. s =mτ2 1.60 FOPT s =1.50 GeV2 1.60 CIPT s =1.50 GeV2 FOPT s0=2.5 GeV2 CIPT s0=2.5 GeV2 1.40 FO0PT s0=mτ2 1.40 C0IPT s0=mτ2 1.20 1.20 1.00 1.00 0.80 0.80 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2x3(1+2x),FOPT. (b) w (x)=(1−x)2x3(1+2x),CIPT. 17 17 (0) Figure2: Referencemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and w17 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ FOPT series still behaves as a good asymptotic series even for s significantly smaller than m2. 0 τ As expected, for lower s , the larger values of α amplify the divergent behaviour above the 8th 0 s order. Nevertheless, the first few terms of the series approach the Borel resummed value. Note also that the Borel sum has a larger ambiguity for smaller s due to larger α . On the right-hand 0 s side, in Fig. 1(b), one sees that the poor performance of CIPT is amplified by the larger values of the coupling at lower s . That is, within the RM, CIPT is not a good approximation to the Borel 0 resummedvalues,andevenlesssoforsmallers . 0 We now turn to a moment with bad perturbative behaviour: w (x)=(1−x)2x3(1+2x) (to 17 employ the notation of [17]). In Ref. [17] we showed that moments starting with powers of x (that do not contain the unity) tend to have bad perturbative behaviour and are largely dominated by power corrections. In Fig. 2 we address the s dependence of this conclusion. On the left, 0 Fig.2(a)showsthatforhighervaluesofs FOPTcanapproachtheBorelresultonlyathighorders 0 (not available exactly). At low s the series displays a wild behaviour and cannot be considered a 0 good approximation to the Borel sum. In CIPT, Fig. 2(b), the bad behaviour already observed for s =m2 isamplifiedatlowers . Theseriesareerraticandcannotbeconsidersuitableasymptotic 0 τ 0 approximationstotheBorelsum. Notethatthismoment,despiteofitsbadperturbativebehaviour, entersseveraldeterminationsofα fromτ decays(e.g. Refs.[20,21]). s Wecanperformthesameanalysisinthealternativemodel,Eq.(2.8),whichreceivesnocontri- butionfromtheleadingIRsingularity. InFig.3,weshowtheseriesnormalisedtotheirrespective Borel resummed values within the AM for w (x). In this model, CIPT provides the better frame- τ workalsoforlowervaluesofs ,asshowninFig.3(b). Theseriesremainsverystablefors =2.5 0 0 GeV2 andstillapproachestheBorelresultwell. Fors =1.5GeV2 CIPTcanstillbeconsidereda 0 goodapproximationtakingintoaccounttheamplifiedBorelambiguity. TheoscillationsofFOPT, already present at s =m2, are much amplified for lower s (see Fig. 3(a)). Within the AM, the 0 τ 0 FOPTseriesarenotagoodapproximationtotheBorelresummedvalues. To conclude we examine the case of w in the context of the AM. The results are shown in 17 Fig.4. The badperturbative behaviourof FOPT andCIPT remainsfor all values ofs . Thisis an 0 indicationofthemodelindependenceoftheconclusionthatw (andanumberofothermoments 17 alsodiscussedinRef.[17])shouldbeavoidedindeterminationsofα . s 6 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.40 1.40 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 1.30 FBOorPeTl Asm0=b1.. 5s0 G=meVτ22 1.30 BCoIrPeTl Asm0=b1.. 5s0 G=meVτ22 FOPT s0=2.5 GeV2 CIPT s0=2.5 GeV2 1.20 FO0PT s =mτ2 1.20 C0IPT s =mτ2 0 0 1.10 1.10 1.00 1.00 0.90 0.90 0.80 0.80 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2(1+2x),FOPT. (b) w (x)=(1−x)2(1+2x),CIPT. τ τ (0) Figure3: Alternativemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and wτ 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ 1.80 1.80 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 1.60 Borel Am0b. s =mτ2 1.60 Borel Am0b. s =mτ2 FOPT s =1.50 GeV2 CIPT s =1.50 GeV2 1.40 FOPT s0=2.5 GeV2 1.40 CIPT s0=2.5 GeV2 FO0PT s =mτ2 C0IPT s =mτ2 0 0 1.20 1.20 1.00 1.00 0.80 0.80 0.60 0.60 0.40 0.40 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2x3(1+2x),FOPT. (b) w (x)=(1−x)2x3(1+2x),CIPT. 17 17 (0) Figure4: Alternativemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and w17 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ 3. Conclusions Recently, we have analysed the perturbative behaviour of several moments often employed in analyses of α from τ decays under different assumptions for the large-order behaviour of the s Adler function [17]. We have shown that some of these moments should be avoided due to their badperturbativebehaviour. Furthermore,underreasonableassumptionsfortheBoreltransformed Adlerfunction, weshowedthatFOPTprovidesthepreferredframeworkfortheRGimprovement ofmomentsthatdisplaygoodperturbativebehaviour. Here we showed, for the first time, that these conclusions are still valid if one considers the perturbativeseriesgeneratedbyFOPTandCIPTfors ≤m2. Thisisarelevantquestion,sincein 0 τ α extractionsoneoftenconsiderssum-ruleswiths ≤m2. Wehaveshownexplicitlytheresultsfor s 0 τ two representative moments previously investigated in Ref. [17] for s =m2. The s dependence 0 τ 0 analysis was also carried out for the remaining moments studied in [17] with similar conclusions; theyarenotshownhereforthesakeofbrevity. 7 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito Acknowledgements The author wishes to thank Martin Beneke and Matthias Jamin for the careful reading of the manuscript. ThisworkwassupportedbytheAlexandervonHumboldtFoundation. References [1] M.Davier,A.HöckerandZ.Zhang,Rev.Mod.Phys.78(2006)1043[hep-ph/0507078]. [2] E.Braaten,S.Narison,andA.Pich,Nucl.Phys.B373(1992)581. [3] B.Blok,M.A.ShifmanandD.X.Zhang,Phys.Rev.D57(1998)2691[Erratum-ibid.D59(1999) 019901][hep-ph/9709333];I.I.Y.Bigi,M.A.Shifman,N.Uraltsev,A.I.Vainshtein,Phys.Rev.D59 (1999)054011[hep-ph/9805241];M.A.Shifman,[hep-ph/0009131]. [4] O.Catà,M.Golterman,S.Peris,JHEP0508(2005)076[hep-ph/0506004];Phys.Rev.D77(2008) 093006[arXiv:0803.0246[hep-ph]];Phys.Rev.D79(2009)053002[arXiv:0812.2285[hep-ph]]. [5] D.Boito,O.Catà,M.Golterman,M.Jamin,K.Maltman,J.Osborne,andS.Peris, Phys.Rev.D84(2011)113006[arXiv:1110.1127[hep-ph]]. [6] D.Boito,M.Golterman,M.Jamin,A.Mahdavi,K.Maltman,J.Osborne,andS.Peris, Phys.Rev.D85(2012)093015[arXiv:1203.3146[hep-ph]]. [7] M.Jamin,JHEP0509(2005)058[hep-ph/0509001]. [8] M.BenekeandM.Jamin,JHEP0809(2008)044[arXiv:0806.3156[hep-ph]]. [9] A.A.Pivovarov,Z.Phys.C53(1992)461[Sov.J.Nucl.Phys.54(1991)676][Yad.Fiz.54(1991) 1114][hep-ph/0302003]. [10] F.LeDiberderandA.Pich,Phys.Lett.B289(1992)165. [11] P.A.Baikov,K.G.ChetyrkinandJ.H.Kühn,Phys.Rev.Lett.101(2008)012002[arXiv:0801.1821 [hep-ph]]. [12] S.Menke,[arXiv:0904.1796[hep-ph]]. [13] I.CapriniandJ.Fischer,Eur.Phys.J.C64(2009)35[arXiv:0906.5211[hep-ph]]. [14] S.Descotes-Genon,B.Malaescu,[arXiv:1002.2968[hep-ph]]. [15] G.Cveticˇ,M.Loewe,C.MartinezandC.Valenzuela,Phys.Rev.D82(2010)093007 [arXiv:1005.4444[hep-ph]]. [16] G.Abbas,B.AnanthanarayanandI.Caprini,Phys.Rev.D85(2012)094018[arXiv:1202.2672 [hep-ph]]. [17] M.Beneke,D.BoitoandM.Jamin,arXiv:1210.8038[hep-ph].ToappearinJHEP. [18] M.Beneke,Phys.Rept.317(1999)1[hep-ph/9807443]. [19] K.MaltmanandT.Yavin,Phys.Rev.D78(2008)094020[arXiv:0807.0650[hep-ph]]. [20] M.Davier,S.Descotes-Genon,A.Höcker,B.Malaescu,andZ.Zhang,Eur.Phys.J.C56(2008)305 [arXiv:0803.0979[hep-ph]]. [21] K.Ackerstaffetal.[OPALCollaboration],Eur.Phys.J. C7(1999)571[hep-ex/9808019]. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.