On the perturbative expansion of τ hadronic spectral function moments 3 1 0 Diogo Boito∗ 2 PhysikDepartmentT31,TechnischeUniversitätMünchen, n James-Franck-Straße1,D-85748Garching,Germany a E-mail: [email protected] J 4 1 In the determination of α from tau decays several different moments of the hadronic spectral s ] functions have been used. In a recent work, we performed an analysis of their perturbative be- h p haviour under two different assumptions for the higher-order coefficients of the Adler function. - We showed that the various moments can be divided in a small number of classes. We con- p e cludedthatsomeofthemomentscommonlyemployedinα extractionsshouldbeavoideddueto s h theirbadperturbativebehaviour. Furthermore,forthemomentsthathaveagoodperturbativebe- [ haviour,andunderreasonableassumptionsforthehigher-orderbehaviouroftheAdlerfunction, 1 v fixed-orderperturbationtheory(FOPT)providesthesuperiorframeworkfortherenormalization 8 groupimprovement. Herewediscussanextensionofthisanalysiswhereweconsiderthepertur- 0 0 bativeseriesforvaluesofthehadronicinvariantmasssquareds0≤m2τ. Ourconclusionsarenot 3 alteredwithinareasonables window. . 0 1 0 3 1 : v i X r a XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany ∗Speaker. †TUM-HEP-873/13 (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1. Introduction Inthelast20years,hadronictaudecayshavebeenanimportantsourceofempiricalinforma- tion on fundamental parameters of QCD. Notably, the strong coupling, α , can be extracted with s a good precision at relatively low energies, close to the edge of the validity of perturbative QCD. AfterthemeasurementofthespectralfunctionsatLEP,otherparameterssuchasthestrangequark mass, the CKM matrix element V , as well as non-perturbative condensates could be extracted us (seee.g.[1]). Theextractionoftheseparametersreliesonsumrules. Quark-hadrondualityandthe opticaltheoremallowtoexpressthedecayrateasweightedintegralsofthevectorandaxial-vector spectralfunctionsrunningoverthehadronicinvariantmasssquaredsfromthresholduptom2. τ Using the analytic properties of the quark-antiquark correlators, the theoretical counter-part oftheexperimentalquantitiesareexpressedascontour-integralsinthecomplexenergyplanewith fixed |s| = m2. However, in the theoretical description of τ decays two main obstacles remain. τ The first is referred to as duality violations (DVs). They are related to the break-down of local quark-hadron duality in the vicinity of the Minkowski axis (where resonance effects become im- portant). In the past, they have been neglected due to a fortuitous kinematical suppression of the problematic region in the contour integration. Recently, thanks to the progress in modelling DVs realistically[3,4],theyhavebeenincludedself-consistentlyinafull-fledgedα analysis[5,6]. The s second important obstacle is the prescription for the renormalization group (RG) improvement of theperturbativeseries. Themostwidelyemployedprescriptionsarefixed-orderperturbationtheory (FOPT) [7, 8] and contour improved perturbation theory (CIPT) [9, 10]. When used in practice, theyleadtodifferentα results. Withtherecentlycomputedα4 correction[11],thedifferencebe- s s cameevenmorepronounced. Severalworkshavedealtwiththisdiscrepancy[8,12,13,14,15,16] in the light of the α4 term. The conclusions in favour of FOPT or CIPT (or a third prescription) s arebasedon(implicitorexplicit)assumptionsontheyetunknownhigherorderα corrections. In s thiscontext,thegoalofRef.[8]wastoconstructaplausiblemodelforthehigher-ordercorrections of the Adler function from the leading renormalon singularities of its Borel transform, using only generalRGargumentstodescribethestructureofthesingularitiesintheBorelplane. Aftermatch- ingthemodeltotheknowncoefficientsinQCD,themainconclusionofRef.[8]wasthatFOPTis to be preferred over CIPT, since FOPT provides a closer approach to the Borel resummed results —inthespiritofanasymptoticseries. Thisconclusionwasbasedsolelyontheanalysisoftheweightw (x),obtainedfromthekine- τ matics of the decay. This is not entirely satisfactory since realistic determinations of α employ s (and often require) several different weight functions w(x). In fact, any analytical w(x) gives i i rise to a valid sum-rule that emphasises a given part of the spectral functions, as well as different contributions in the theoretical description. In the literature, several weight-functions have been employed and yet little attention has been paid to the moment dependence of the convergence properties of the perturbative series. We have addressed this question in Ref. [17] and pursued the FOPT/CIPT comparison for several weight functions. We showed that the different moments employed in the literature can be divided in a small number of categories. The characteristics of theirperturbativeseriescouldbelinkedtogenericfeaturesofthemomentweightfunctionandthe dominantrenormalonsingularitiesoftheAdlerfunction. Weconcludedthatsomeofthemoments currentlyemployedinsomeα extractionsshouldbeavoidedduetothepoorconvergenceoftheir s 2 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito perturbative expansions. Additionally, for all moments that display good perturbative behaviour — and under reasonable assumptions for the higher-order corrections — FOPT provided the best frameworktotheRGimprovement. A point that was not discussed in [17] is the stability of the conclusions with respect to s 0 variations(s beingtheupperlimitofintegrationinthesum-rule,seeEq.(2.1)). Therelevanceof 0 thisissueliesinthefactthatseveralα analysesusesum-ruleswherethedataareintegratedupto s s <m2. Hereweshowthattheconclusionsof[17]remainvalidwhens isvariedawayfromm2. 0 τ 0 τ 2. Theoreticalframework,model,andresults We work with generalized sum-rules, where the weight function in the integrals can be any analytical function w(x) and the upper limit of integration is taken to be any point s ≤m2. The i 0 τ experimentalsideofthesum-rulesarethenwrittenasintegralsoverthespectralfunctionsas Rwi (s ) = 12πS |V |2(cid:90) s0 ds(cid:18)1− s (cid:19)2(cid:18)1+2 s (cid:19)(cid:20)ImΠ(1+0)(s)− 2s ImΠ(0) (s)(cid:21). τ,V/A 0 EW ud s s s V/A s +2s V/A 0 0 0 0 0 (2.1) The two point functions are defined as Πµν (p) ≡ i(cid:82)dxeipx(cid:104)Ω|T{Jµ (x)Jν (0)†}|Ω(cid:105) and they V/A V/A V/A assume the usual decomposition into longitudinal and transversal components. TheV and A cur- rentsaregivenbyJµ (x)=(u¯γµ(γ )d)(x). V/A 5 Thetheoreticalcounter-partofEq.(2.1)isobtainedfromthecounter-clockwisecontourinte- grationofthecorrelatorswith|s|=s . Thecontributionsonthetheorysidecanbeorganizedas 0 (cid:20) (cid:21) N Rwi (s ) = cS |V |2 δtree+δ(0)(s )+ ∑ δ(D) (s )+δDV (s ) . (2.2) V/A 0 2 EW ud wi wi 0 wi,V/A 0 wi,V/A 0 D≥2 Theperturbativecontributioniscontainedinδtree andδ(0),ofwhichδ(0) containstheloopcorrec- wi wi wi tions. InthechirallimittheyarethesameforV andAcorrelators,andcorrespondtotheperturba- (1+0) tiveseriesofΠ (s). The quark-mass corrections, aswellascontributionsfromoperatorswith V/A D>2intheOPE,areencodedinthetermsδ(D) ;DVcontributionsarerepresentedbyδDV . wi,V/A wi,V/A Our focus is on the behaviour of the perturbative correction and it is convenient to write it in termsoftheRGinvariantAdlerfunction,whoseexpansioninα canbewrittenas s d N ∞ n+1 (cid:18) −s(cid:19)k−1 D(1+0)(s) ≡ −s Π(1+0)(s)= c ∑an ∑kc log , (2.3) ds 12π2 µ n,k µ2 n=0 k=1 where a =α(µ)/π. RG invariance implies that only the coefficients c are independent. The µ n,1 otherc canbeexpressedintermsofc andβ-functioncoefficients. Theperturbativecontribu- n,k n,1 tiontothetheorysideofthesum-rulesisthen ∞ n 1 (cid:73) dx (cid:18)−s x(cid:19) δ(0) = ∑ ∑kc W(x)logk−1 0 an , (2.4) wi n,k 2πi x i µ2 µ n=1k=1 |x|=1 withx=s/s andW(x)=2(cid:82)1dzw(z). DuetotheRGinvarianceofD(1+0)(s)onehasthefreedom 0 i x i of setting the scale µ. The FOPT prescription corresponds to the choice µ2 =s . In this case, 0 3 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito the coupling a(s ) is taken out-side the integrals and one is left with the integration of powers of 0 log(−x). TheCIPTchoicecorrespondtoµ2=−s x,whichresumsthelogarithmsbut,inturn,the 0 integralsaredone(numerically)overtherunningcouplinga(−s x). 0 In order to compare FOPT and CIPT as well as understand the perturbative behaviour of spectralfunctionmoments, onemusthaveanansatzfor theunknownhigher-orderAdlerfunction coefficientsc . HerewefollowthemethodintroducedinRef.[8]whichmakesuseoftheavailable n,1 knowledge of the renormalon structure of the Borel transformed Adler function. The idea is to construct a realistic model for the Borel transform using the leading singularities. We work with thefunctionD(cid:98)(s)anditsBoreltransform,B[D(cid:98)](t),definedas 12π2 ∞ √ ∞ tn N DV(1+0)(s) ≡ 1+D(cid:98)(s) ≡ 1+∑rnαs( s)n+1, B[D(cid:98)](t) ≡ ∑rnn!. (2.5) c n=0 n=0 TheoriginalseriescanbeunderstoodasanasymptoticexpansionoftheinverseofB[D(cid:98)](t), (cid:90) ∞ D(cid:98)(α) ≡ dte−t/αB[D(cid:98)](t), (2.6) 0 when the integral exists. Singularities of B[D(cid:98)](t) on the positive real axis (infra red (IR) renor- malons)giverisetofixed-signasymptoticseriesandobstructtheBorelsummation,Eq.(2.6). This introducesanambiguityintheintegralthatisexpectedtobecancelledagainstexponentiallysmall termsinα ,orpowercorrections(duetothelogarithmicrunningofthecoupling). Singularitieson s thenegativerealaxis(ultravioletrenormalons(UV))giverisetosign-alternatingseries. General RG arguments and the structure of the OPE allow one to determine the position and strengthoftherenormalonsingularitiesinthetplane,thoughnottheirresidues[18]. Thefixed-sign natureoftheexactlyknowncoefficientsoftheAdlerfunctionsuggestthatatlowandintermediate orders the series is dominated by IR singularities. The reference model (RM) of [8] contains the firsttwoIRandtheleadingUVsingularities. TheBoreltransformisgivenby B[D(cid:98)](u) = B[D(cid:98)UV](u)+B[D(cid:98)IR](u)+B[D(cid:98)IR](u)+dPO+dPOu. (2.7) 1 2 3 0 1 Thestructureofthebranch-cutsingularitiescanbefoundin[8]. Theresiduesandthecoefficients dPO arefixedbymatchingtotheexactlyknownc toc (augmentedbyanestimateforc ). 0,1 1,1 4,1 5,1 Within this model, the conclusion of Ref. [8] in favour of FOPT has been corroborated and extended in our recent work [17]. All moments that display a good perturbative behaviour favour theFOPTprescriptionwithintheRM.Thisconclusioncanbetracedbacktothecontributionofthe leadingIRsingularity, relatedtotheD=4correctionsintheOPE.Ifthissingularityisarbitrarily suppressed,onegeneratesamodel—lessrealistic,inouropinion—inwhichCIPTisthepreferred prescription. To realize this scenario in practice, and assess possible model dependencies in our conclusions, weintroducedthefollowingalternativemodel(AM)wheretheleadingsingularityis absentwhereasthesub-leadingoneatu=4isexplicitlytakenintoaccount: B[D(cid:98)](u) = B[D(cid:98)UV](u)+B[D(cid:98)IR](u)+B[D(cid:98)IR](u)+dPO+dPOu. (2.8) 1 3 4 0 1 WithintheAM,momentswithgoodperturbativebehaviourfavourCIPT. 4 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.30 1.30 Borel Amb. s =1.5 GeV2 1.20 1.20 BCoIrPeTl Asm0=b1.. 5s0 G=meVτ22 CIPT s0=2.5 GeV2 1.10 1.10 C0IPT s =mτ2 0 1.00 1.00 0.90 0.90 Borel Amb. s =1.5 GeV2 Borel Am0b. s =mτ2 0.80 FOPT s =1.50 GeV2 0.80 FOPT s0=2.5 GeV2 0.70 FO0PT s =mτ2 0.70 0 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2(1+2x),FOPT. (b) w (x)=(1−x)2(1+2x),CIPT. τ τ (0) Figure1: Referencemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and wτ 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ ThemodelsrepresenttwoquitedifferentsituationsregardingtheinterplayoftheAdlerfunc- tion coefficients and the running coupling effects. In the RM, there are cancellations between the contributionfromthehigh-ordercoefficientsc andtherunningcouplingeffects,atagivenorder n,1 in α . In this case FOPT is superior since it treats these contributions on an equal footing, while s CIPT misses the cancellations due to the resummation of the running effects to all orders. On the other hand, the AM represents a situation where the running effects are dominant and should be resummed. Inthiscase,thehigh-ordercoefficientscanbeneglectedandCIPTisabetterprescrip- tion. SincethereisnoknownmechanismthatwouldnaturallysuppresstheleadingIRsingularity inQCD,webelievethescenarioofEq,(2.7)tobemorerealistic. Usingthesetwomodels,wecomparedinRef.[17]theperturbativeseriesinFOPTandCIPT generatedfrom17polynomialweight-functionsw(x). Weshowedthattheycanbedividedintoa i small number of categories regarding the behaviour of their perturbative series. Generic features of thefunctions w(x)(such asstarting or not withthe unity), together withthe assumptions upon i the Adler function, suffice to determine whether they are suitable for α extractions and whether s FOPT or CIPT is more suitable for the RG improvement. We showed that some of the weight functionsusedintheliterature,e.g. polynomialscontainingsolelypowersofxi withi≥2,should beavoidedduetotheirbadperturbativebehaviour. Wealsoprovidedfurtherargumentsthatsupport theplausibilityoftheRMof[8]andconcludedthatforwell-behavedmomentsFOPTispreferred. Anaspectthatwasnotconsideredin[17]wasthes dependenceoftheseconclusions. Thisis 0 importantbecausesum-ruleswithdifferentvaluesofs ≤m2areusedinextractionsofα [5,6,19]. 0 τ s Here we show explicit results for the FOPT/CIPT comparison for two moments within the two models given in Eqs. (2.7) and (2.8) and considering three values of s : 1.5 GeV2, 2.5 GeV2, and 0 m2. The interval [1.5 GeV2: m2] spans the values used in the fits of [5, 6]. Since we intent to τ τ comparetheperturbativeseriesatdifferentvaluesofs anormalisationprocedureisinorder. For 0 better comparison, we normalise the series generated for each value of s by its corresponding 0 Borelsum,Eq.(2.6). Hence,intheplots,meaningfulseriesshouldbeasymptotictotheunity. Westartbyconsideringthecaseofmomentsthathavegoodperturbativebehaviourfors =m2. 0 τ As a representative we choose to use the kinematic moment w . In Fig. 1, we consider the FOPT τ andCIPTserieswithintheRM.Ontheleft-handside, Fig.1(a), oneobservesthatthenormalised 5 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.80 1.80 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 Borel Am0b. s =mτ2 Borel Am0b. s =mτ2 1.60 FOPT s =1.50 GeV2 1.60 CIPT s =1.50 GeV2 FOPT s0=2.5 GeV2 CIPT s0=2.5 GeV2 1.40 FO0PT s0=mτ2 1.40 C0IPT s0=mτ2 1.20 1.20 1.00 1.00 0.80 0.80 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2x3(1+2x),FOPT. (b) w (x)=(1−x)2x3(1+2x),CIPT. 17 17 (0) Figure2: Referencemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and w17 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ FOPT series still behaves as a good asymptotic series even for s significantly smaller than m2. 0 τ As expected, for lower s , the larger values of α amplify the divergent behaviour above the 8th 0 s order. Nevertheless, the first few terms of the series approach the Borel resummed value. Note also that the Borel sum has a larger ambiguity for smaller s due to larger α . On the right-hand 0 s side, in Fig. 1(b), one sees that the poor performance of CIPT is amplified by the larger values of the coupling at lower s . That is, within the RM, CIPT is not a good approximation to the Borel 0 resummedvalues,andevenlesssoforsmallers . 0 We now turn to a moment with bad perturbative behaviour: w (x)=(1−x)2x3(1+2x) (to 17 employ the notation of [17]). In Ref. [17] we showed that moments starting with powers of x (that do not contain the unity) tend to have bad perturbative behaviour and are largely dominated by power corrections. In Fig. 2 we address the s dependence of this conclusion. On the left, 0 Fig.2(a)showsthatforhighervaluesofs FOPTcanapproachtheBorelresultonlyathighorders 0 (not available exactly). At low s the series displays a wild behaviour and cannot be considered a 0 good approximation to the Borel sum. In CIPT, Fig. 2(b), the bad behaviour already observed for s =m2 isamplifiedatlowers . Theseriesareerraticandcannotbeconsidersuitableasymptotic 0 τ 0 approximationstotheBorelsum. Notethatthismoment,despiteofitsbadperturbativebehaviour, entersseveraldeterminationsofα fromτ decays(e.g. Refs.[20,21]). s Wecanperformthesameanalysisinthealternativemodel,Eq.(2.8),whichreceivesnocontri- butionfromtheleadingIRsingularity. InFig.3,weshowtheseriesnormalisedtotheirrespective Borel resummed values within the AM for w (x). In this model, CIPT provides the better frame- τ workalsoforlowervaluesofs ,asshowninFig.3(b). Theseriesremainsverystablefors =2.5 0 0 GeV2 andstillapproachestheBorelresultwell. Fors =1.5GeV2 CIPTcanstillbeconsidereda 0 goodapproximationtakingintoaccounttheamplifiedBorelambiguity. TheoscillationsofFOPT, already present at s =m2, are much amplified for lower s (see Fig. 3(a)). Within the AM, the 0 τ 0 FOPTseriesarenotagoodapproximationtotheBorelresummedvalues. To conclude we examine the case of w in the context of the AM. The results are shown in 17 Fig.4. The badperturbative behaviourof FOPT andCIPT remainsfor all values ofs . Thisis an 0 indicationofthemodelindependenceoftheconclusionthatw (andanumberofothermoments 17 alsodiscussedinRef.[17])shouldbeavoidedindeterminationsofα . s 6 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito 1.40 1.40 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 1.30 FBOorPeTl Asm0=b1.. 5s0 G=meVτ22 1.30 BCoIrPeTl Asm0=b1.. 5s0 G=meVτ22 FOPT s0=2.5 GeV2 CIPT s0=2.5 GeV2 1.20 FO0PT s =mτ2 1.20 C0IPT s =mτ2 0 0 1.10 1.10 1.00 1.00 0.90 0.90 0.80 0.80 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2(1+2x),FOPT. (b) w (x)=(1−x)2(1+2x),CIPT. τ τ (0) Figure3: Alternativemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and wτ 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ 1.80 1.80 Borel Amb. s =1.5 GeV2 Borel Amb. s =1.5 GeV2 1.60 Borel Am0b. s =mτ2 1.60 Borel Am0b. s =mτ2 FOPT s =1.50 GeV2 CIPT s =1.50 GeV2 1.40 FOPT s0=2.5 GeV2 1.40 CIPT s0=2.5 GeV2 FO0PT s =mτ2 C0IPT s =mτ2 0 0 1.20 1.20 1.00 1.00 0.80 0.80 0.60 0.60 0.40 0.40 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 (a) w (x)=(1−x)2x3(1+2x),FOPT. (b) w (x)=(1−x)2x3(1+2x),CIPT. 17 17 (0) Figure4: Alternativemodel. δ (s )orderbyorderinα normalisedtotheBorelsumforFOPT(left)and w17 0 s CIPT(right)withthreevaluesofs : 1.5GeV2,2.5GeV2,andm2. BandsgivetheBorelambiguities. 0 τ 3. Conclusions Recently, we have analysed the perturbative behaviour of several moments often employed in analyses of α from τ decays under different assumptions for the large-order behaviour of the s Adler function [17]. We have shown that some of these moments should be avoided due to their badperturbativebehaviour. Furthermore,underreasonableassumptionsfortheBoreltransformed Adlerfunction, weshowedthatFOPTprovidesthepreferredframeworkfortheRGimprovement ofmomentsthatdisplaygoodperturbativebehaviour. Here we showed, for the first time, that these conclusions are still valid if one considers the perturbativeseriesgeneratedbyFOPTandCIPTfors ≤m2. Thisisarelevantquestion,sincein 0 τ α extractionsoneoftenconsiderssum-ruleswiths ≤m2. Wehaveshownexplicitlytheresultsfor s 0 τ two representative moments previously investigated in Ref. [17] for s =m2. The s dependence 0 τ 0 analysis was also carried out for the remaining moments studied in [17] with similar conclusions; theyarenotshownhereforthesakeofbrevity. 7 Perturbativeexpansionofτ hadronicspectralfunctionmoments DiogoBoito Acknowledgements The author wishes to thank Martin Beneke and Matthias Jamin for the careful reading of the manuscript. ThisworkwassupportedbytheAlexandervonHumboldtFoundation. References [1] M.Davier,A.HöckerandZ.Zhang,Rev.Mod.Phys.78(2006)1043[hep-ph/0507078]. [2] E.Braaten,S.Narison,andA.Pich,Nucl.Phys.B373(1992)581. [3] B.Blok,M.A.ShifmanandD.X.Zhang,Phys.Rev.D57(1998)2691[Erratum-ibid.D59(1999) 019901][hep-ph/9709333];I.I.Y.Bigi,M.A.Shifman,N.Uraltsev,A.I.Vainshtein,Phys.Rev.D59 (1999)054011[hep-ph/9805241];M.A.Shifman,[hep-ph/0009131]. [4] O.Catà,M.Golterman,S.Peris,JHEP0508(2005)076[hep-ph/0506004];Phys.Rev.D77(2008) 093006[arXiv:0803.0246[hep-ph]];Phys.Rev.D79(2009)053002[arXiv:0812.2285[hep-ph]]. [5] D.Boito,O.Catà,M.Golterman,M.Jamin,K.Maltman,J.Osborne,andS.Peris, Phys.Rev.D84(2011)113006[arXiv:1110.1127[hep-ph]]. [6] D.Boito,M.Golterman,M.Jamin,A.Mahdavi,K.Maltman,J.Osborne,andS.Peris, Phys.Rev.D85(2012)093015[arXiv:1203.3146[hep-ph]]. [7] M.Jamin,JHEP0509(2005)058[hep-ph/0509001]. [8] M.BenekeandM.Jamin,JHEP0809(2008)044[arXiv:0806.3156[hep-ph]]. [9] A.A.Pivovarov,Z.Phys.C53(1992)461[Sov.J.Nucl.Phys.54(1991)676][Yad.Fiz.54(1991) 1114][hep-ph/0302003]. [10] F.LeDiberderandA.Pich,Phys.Lett.B289(1992)165. [11] P.A.Baikov,K.G.ChetyrkinandJ.H.Kühn,Phys.Rev.Lett.101(2008)012002[arXiv:0801.1821 [hep-ph]]. [12] S.Menke,[arXiv:0904.1796[hep-ph]]. [13] I.CapriniandJ.Fischer,Eur.Phys.J.C64(2009)35[arXiv:0906.5211[hep-ph]]. [14] S.Descotes-Genon,B.Malaescu,[arXiv:1002.2968[hep-ph]]. [15] G.Cveticˇ,M.Loewe,C.MartinezandC.Valenzuela,Phys.Rev.D82(2010)093007 [arXiv:1005.4444[hep-ph]]. [16] G.Abbas,B.AnanthanarayanandI.Caprini,Phys.Rev.D85(2012)094018[arXiv:1202.2672 [hep-ph]]. [17] M.Beneke,D.BoitoandM.Jamin,arXiv:1210.8038[hep-ph].ToappearinJHEP. [18] M.Beneke,Phys.Rept.317(1999)1[hep-ph/9807443]. [19] K.MaltmanandT.Yavin,Phys.Rev.D78(2008)094020[arXiv:0807.0650[hep-ph]]. [20] M.Davier,S.Descotes-Genon,A.Höcker,B.Malaescu,andZ.Zhang,Eur.Phys.J.C56(2008)305 [arXiv:0803.0979[hep-ph]]. [21] K.Ackerstaffetal.[OPALCollaboration],Eur.Phys.J. C7(1999)571[hep-ex/9808019]. 8