ebook img

On the hybrid mean value of the Smarandache kn-digital sequence and Smarandache function PDF

2010·0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the hybrid mean value of the Smarandache kn-digital sequence and Smarandache function

Scientia Magna Vol. 6 (2010), No. 4, 20-23 On the hybrid mean value of the Smarandache kn-digital sequence and Smarandache function 1 Chan Shi Department of Mathematics, Northwest University, Xi’an, Shaanxi, P.R.China E-mail: [email protected] Abstract Themainpurposeofthispaperisusingtheelementarymethodtostudythehybrid meanvaluepropertiesoftheSmarandachekn-digitalsequenceandSmarandachefunction,and give an interesting asymptotic formula for it. Keywords Smarandache kn-digital sequence, Smarandache function, hybrid mean value, as -ymptotic formula, elementary method. §1. Introduction For any positive integer k, the famous Smarandache kn-digital sequence a(k,n) is defined as all positive integers which can be partitioned into two groups such that the second part is k times bigger than the first. For example, Smarandache 2n and 3n digital sequences a(2,n) and a(3,n) are defined as {a(2,n)} = {12,24,36,48,510,612,714,816,···} and {a(3,n)} = {13,26,39,412,515,618,721,824,···}. Recently, Professor Gou Su told me that she studied the hybrid mean value properties of the Smarandache kn-digital sequence and the divisor sum function σ(n), and proved that the asymptotic formula (cid:88) σ(n) 3π2 = ·lnx+O(1) a(k,n) k·20·ln10 n≤x holds for all integers 1≤k ≤9. WhenIreadprofessorGouSu’swork,Ifoundthatthemethodisverynew,andtheresults are also interesting. This paper as a note of Gou Su’s work, we consider the hybrid mean value properties of the Smarandache kn-digital sequence and Smarandache function S(n), which is defined as the smallest positive integer m such that n|m!. That is, S(n)=min{m:n|m!, m∈ N}. Inthispaper,wewillusetheelementaryandanalyticmethodstostudyasimilarproblem, and prove a new conclusion. That is, we shall prove the following: Theorem. Let1≤k ≤9,thenforanyrealnumberx>1,wehavetheasymptoticformula (cid:88) S(n) 3π2 = ·lnlnx+O(1). a(k,n) k·20 n≤x 1ThispaperissupportedbytheN.S.F.ofP.R.China. Vol. 6 OnthehybridmeanvalueoftheSmarandachekn-digitalsequenceandSmarandachefunction 21 §2. Proof of the theorem In this section, we shall use the elementary and combinational methods to complete the proof of our theorem. First we need following: Lemma. For any real number x>1, we have (cid:181) (cid:182) (cid:88) S(n) π2 x x = · +O . n 6 lnx ln2x n≤x Proof. For any real number x>2, from [4] we have the asymptotic formula (cid:181) (cid:182) (cid:88) π2 x2 x2 S(n)= · +O . (1) 12 lnx ln2x n≤x Then from Euler summation formula (see theorem 3.1 of [3]) we can deduce that (cid:181) (cid:181) (cid:182)(cid:182) (cid:90) (cid:181) (cid:181) (cid:182) (cid:182) (cid:88) S(n) 1 π2 x2 x2 x π2 t2 t2 1 = · +O + · +O dt n x 12 lnx ln2x 12 lnt ln2t t2 1<n≤x 1 (cid:181) (cid:182) (cid:90) π2 x x π2 x 13π2 x 1 = · +O + · + dt 12 lnx ln2x 12 lnx 12 ln2t (cid:181) (cid:182) 1 π2 x x = · +O . 6 lnx ln2x This proves our Lemma. Now we take k = 2 (or k = 4), then for any real number x > 1, there exists a positive integer M such that 5·10M ≤x<5·10M+1, then we can deduce that 1 M = ·lnx+O(1). (2) ln10 So from the definition of a(2,n) we have (cid:88) S(n) (cid:88)4 S(n) (cid:88)49 S(n) (cid:88)499 S(n) 5·1(cid:88)0M−1 S(n) = + + +···+ a(2,n) a(2,n) a(2,n) a(2,n) a(2,n) 1≤n≤x n=1 n=5 n=50 n=5·10M−1 (cid:88) S(n) + a(2,n) 5·10M≤n≤x (cid:88)4 S(n) (cid:88)49 S(n) (cid:88)499 S(n) = + + +··· n·(10+2) n·(102+2) n·(103+2) n=1 n=5 n=50 5·1(cid:88)0M−1 S(n) (cid:88) S(n) + + (3) n·(10M+1+2) n·(10M+2+2) n=5·10M−1 5·10M≤n≤x 22 ChanShi No. 4 and (cid:88) S(n) (cid:88)2 S(n) (cid:88)24 S(n) (cid:88)249 S(n) 41·1(cid:88)0M−1 S(n) = + + +···+ a(4,n) a(4,n) a(4,n) a(4,n) a(4,n) 1≤n≤x n=1 n=3 n=25 n=1·10M−1 4 (cid:88) S(n) + a(4,n) 1·10M≤n≤x 4 (cid:88)2 S(n) (cid:88)24 S(n) (cid:88)249 S(n) = + + +··· n·(10+4) n·(102+4) n·(103+4) n=1 n=3 n=25 14·1(cid:88)0M−1 S(n) (cid:88) S(n) + + . (4) n·(10M +4) n·(10M+1+4) n=1·10M−1 1·10M≤n≤x 4 4 Then from (2), (3) and Lemma we may immediately deduce 5·1(cid:88)0k−1 S(n) (cid:88) S(n) (cid:88) S(n) = − n·(10k+1+2) n·(10k+1+2) n·(10k+1+2) n=5·10k−1 n≤5·10k−1 n≤5·10k−1 (cid:181) (cid:182) π2 5·10k−5·10k−1 1 1 = · · +O 6 10k+1+2 ln(5·10k) k2 (cid:181) (cid:182) 3π2 1 1 = · +O (5) 40 k k2 Similarly, 14·(cid:88)10k−1 S(n) (cid:88) S(n) (cid:88) S(n) = − n·(10k+4) n·(10k+4) n·(10k+4) n=1·10k−1 n≤1·10k−1 n≤1·10k−1 4 4 4 (cid:181) (cid:182) π2 1 ·10k− 1 ·10k−1 1 1 = · 4 4 · +O 6 10k+4 ln(1 ·10k) k2 (cid:181) (cid:182) 4 3π2 1 1 = · +O . (6) 80 k k2 (cid:88)∞ 1 Noting that the identity =π2/6 and the asymptotic formula n2 n=1 (cid:181) (cid:182) (cid:88) 1 1 =lnM +γ+O , k M 1≤k≤M where γ is the Euler constant. Vol. 6 OnthehybridmeanvalueoftheSmarandachekn-digitalsequenceandSmarandachefunction 23 From (2), (3) and (5) we have (cid:88) S(n) (cid:88)4 S(n) (cid:88)49 S(n) (cid:88)499 S(n) 5·1(cid:88)0M−1 S(n) = + + +···+ a(2,n) a(2,n) a(2,n) a(2,n) a(2,n) 1≤n≤x n=1 n=5 n=50 n=5·10M−1 (cid:88) S(n) + a(2,n) 5·10M≤n≤x (cid:195) (cid:33) (cid:88)M 3π2 1 (cid:88)M 1 = · +O 40 k k2 k=1 k=1 3π2 = lnlnx+O(1). 40 Similarly, (cid:88) S(n) (cid:88)2 S(n) (cid:88)24 S(n) (cid:88)249 S(n) 41·1(cid:88)0M−1 S(n) = + + +···+ a(4,n) a(4,n) a(4,n) a(4,n) a(4,n) 1≤n≤x n=1 n=3 n=25 n=1·10M−1 4 (cid:88) S(n) + a(4,n) 1·10M≤n≤x 4 (cid:195) (cid:33) (cid:88)M 3π2 1 (cid:88)M 1 = · +O 80 k k2 k=1 k=1 3π2 = lnlnx+O(1). 80 For using the same methods, we can also prove that the theorem holds for all integers k =1,3,5,6,7,8,9. This completes the proof of our theorem. References [1] F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, 2006. [2] Gou Su, Smarandache 3n-digital sequence and it’s asymptotic properties, Journal of Inner Mongolia Normal University (Natural Science Edition), 6(2010), No. 39, 450-453. [3]TomM.Apostol.,IntroductiontoAnalyticalNumberTheory,Spring-Verlag,NewYork, 1976. [4] Chen Guohui, New Progress on Smarandache Problems, High American Press, 2007. [5] Kenichiro Kashihara, Comments and topics on Smarandache notions and problems, Erhus University Press, USA, 1996. [6]ZhangWenpeng, Theelementarynumbertheory(inChinese), ShaanxiNormalUniver- sity Press, Xi’an, 2007. [7]WuNan,OntheSmarandache3n-digitalsequenceandtheZhangWenpeng’sconjecture, Scientia Magna, 4(2008), No. 4, 120-122. [8]GuoXiaoyan,NewProgressonSmarandacheProblemsResearch,HighAmericanPress, Xi’an, 2010.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.