ebook img

On Taylor series expansion of $(1+ z)^{A}$ for $|z|>1$ PDF

0.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Taylor series expansion of $(1+ z)^{A}$ for $|z|>1$

On Taylor series expansion of (1 + z)A for |z| > 1 AkhilaRaman UniversityofCaliforniaatBerkeley,CA-94720.Email:[email protected]. Ph:510-540-5544 0 1 0 Abstract 2 ItiswellknownthattheTaylorseriesexpansionof(1+z)Adoesnotconvergefor|z|>1where n Aisarealnumberwhichisnotequaltozeroorapositiveinteger. Alimitedseriesexpansionof a J thisexpressionisobtainedinthispaperfor|z|>1asaproductofconvergentseries. 1 Keywords: 1 ] O 1. Introduction H . h ItiswellknownthattheTaylorseriesexpansionof(1+z)Aisgivenby t a m ∞ A (1+z)A = zn (1) [ n! Xn=0 2 v for |z| < 1 where A is the binomial choose function. It is well known that the series ex- n 9 pansiondoesnotconv(cid:16)er(cid:17)gefor|z| > 1whereA isarealnumberwhichisnotequaltozeroora 4 positiveinteger. 2 We could obtain a limited series expansion for |z| > 1 by writing the above expression as 0 follows . 1 0 z z z z z z 0 (1+z)A =(1+ 2 + 2)A =(1+ 2)A(1+ (1+2 z))A =(1+ 2)A(1+ z+2)A (2) 1 2 : The second term in the above equation has a convergent series representation, given that v Xi |z+z2|<1. If|2z|>1,wecanwrite ar (1+ 2z)A =(1+ 4z)A(1+ z+z4)A (3) Repeatingthisprocedureiteratively,ifm istheminimumvalueforwhich| z | < 1,wecan 0 2m0 write z m0 z (1+z)A =(1+ )A (1+ )A (4) 2m0 Yr=1 z+2r Eachofthetermsintheaboveproductoftermshasaconvergentseriesrepresentation.Given that we can write the convergentseries expansionfor each of the terms aboveas (1+ z )A = 2m0 PreprintsubmittedtoNumberTheory January11,2010 ∞ A ( z )nand(1+ z )A = ∞ A ( z )m,where A representstheChoosefunction[1], n=0 n 2m0 (z+2r) m=0 m (z+2r) n wPeha(cid:16)ve(cid:17)theseriesexpansionforP(1+z(cid:16))A(cid:17)expressedasa(cid:16)pr(cid:17)oductofconvergentseries,which convergesfor |z|>1asfollows: ∞ A z m0 ∞ A z (1+z)A =[ ( )n][ [ ]m] (5) Xn=0 n! 2m0 Yr=1Xm=0 m! z+2r 2. Section2 Let us take the case of m = 1 for 1 < |z| < 2. Expanding the term 1 in the above 0 (z+2r)m equation5asTaylorseriesaroundapointz=0,wehaveform>0 ∞ 1 = b(j,r,m)zj (6) (z+2r)m Xj=0 whereb(0,r,m)= 1 andb(j,r,m)isgivenasfollowsfor j=1,2,3... (2r)m m+ j−1 (−1)j b(j,r,m)= ; (7) j !(2r)m+j Form=0, 1 =1.Nowwecanwritethetheseriesexpansionof(1+z)Awhichconverges (z+2r)m for1<|z|<2,asaproductoftermsexpandedinTaylorseriesasfollows: ∞ ∞ ∞ A z A (1+z)A =[ ( )n][ zm b(j,1,m)zj] (8) n! 2 m! Xn=0 Xm=0 Xj=0 Forthecaseofm >1for|z|>2,wecanwriteasfollows: 0 ∞ A z ∞ A ∞ m0−1 ∞ A 1 (1+z)A =[ ( )n][ zm b(j,m ,m)zj][ zm[ ]m] (9) Xn=0 n! 2m0 Xm=0 m! Xj=0 0 Yr=1 Xm=0 m! z+2r Thelasttermintheaboveequation( 1 )mcanbeexpressedasfollows: z+2r 1 z ( )m =(z+2r)−m =2−r∗m(1+ )−m (10) z+2r 2r The term(1 + z)−m can be recursively expanded using Eq.9 by substituting z → z and 2r 2r A→−mandm →m −rtoobtaintheseriesexpansionof(1+z)A whichconvergesfor|z|>1 0 0 asaproductoftermsexpandedinTaylorseries. 3. Section3 Letusconsiderthefollowingbinomialexpression 2 (x+y)A (11) whereAisarealnumberwhichisnotequaltozeroorapositiveintegerandz= x and|z|>1. y Writing(x+y)A =(1+ x)AyA =(1+z)AyA,wecanwritetheseriesexpansionofthisexpression y usingresultsobtainedinequations5and9asfollows: ∞ A z m0 ∞ A z (x+y)A =yA ( )n [ ]m (12) Xn=0 n! 2m0 Yr=1Xm=0 m! z+2r ∞ A z ∞ A ∞ m0−1 ∞ A 1 (x+y)A =yA[ ( )n][ zm b(j,m ,m)zj][ zm[ ]m] (13) Xn=0 n! 2m0 Xm=0 m! Xj=0 0 Yr=1 Xm=0 m! z+2r 4. Conclusion IthasbeenshownthattheTaylorseriesexpansionof(1+z)A canbeexpandedasaproduct ofconvergentseries,for|z|>1whereAisarealnumberwhichisnotequaltozeroorapositive integer. 5. Acknowledgements The author would like to thank Michael Schlosser(Universitat Wien) for his constructive commentsonthepaper. 6. References [1] Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas,Graphs,andMathematicalTables,9thprinting.NewYork:Dover,1972. 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.