ebook img

On Riesz type inequalities for harmonic mappings on the unit disk PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Riesz type inequalities for harmonic mappings on the unit disk

1 ON RIESZ TYPE INEQUALITIES FOR HARMONIC MAPPINGS ON THE UNIT DISK 7 DAVIDKALAJ 1 0 2 ABSTRACT. Weprovesomesharpinequalitiesforcomplexharmonicfunctions ontheunitdisk. TheresultsextendaM.Rieszconjugatefunctiontheoremand n somewell-knownestimatesforholomorphicfunctions.Weapplysomeofresults a totheisoperimetricinequalityforharmonicmappings. J 9 1 V] CONTENTS C 1. Introduction 1 . 2. Mainresults 3 h t 2.1. ApplicationtoHilberttransform 4 a 2.2. Applicationtotheisoperimetric inequality 8 m 3. Strategyoftheproofs 10 [ 4. ProofofTheorem2.1 11 2 5. ProofofTheorem2.3 27 v 6. Appendix 36 5 8 Acknowledgement 37 7 References 37 4 0 . 1 0 1. INTRODUCTION 7 1 LetUdenotetheunitdiskandTtheunitcircleinthecomplexplane. Forp > 1, v: wedefinetheHardyclasshp astheclassofharmonicmappingsf = g+h¯,where i g andhareholomorphic mappingsdefinedontheunitdiskU C,sothat X ⊂ ar kfkp = kfkhp = sup Mp(f,r)< ∞, 0<r<1 where 1/p M (f,r) = f(rζ)pdσ(ζ) . p T| | (cid:18)Z (cid:19) Here σ is probability measure on T. The subclass of holomorphic mappings that belongstotheclasshp isdenotedbyHp. Iff hp,thenby[1,Theorem6.13],thereexists ∈ f(eit) = limf(reit),a.e. r→1 File: isoperimetric2017.tex, printed: 2017-1-20, 5.35 12010MathematicsSubjectClassification:Primary47B35 Keywordsandphrases. Subharmonicfunctions,Harmonicmappings. 1 ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 2 andf Lp(T).Thentherehold ∈ 2π dt 2π dt (1.1) f p = lim f(reit)p = f(eit)p . k khp r→1Z0 | | 2π Z0 | | 2π SimilarlywedefinetheHardyspaceHp ofholomorphic functions. Let 1 < p < and let p = max p,p/(p 1) . Verbitsky in [16] proved the ∞ { − } followingresult. Iff = u+iv Hp andv(0) = 0,then ∈ (1.2) sec(π/(2p)) v f csc(π/(2p)) u , p p p k k ≤ k k ≤ k k andbothestimatesaresharp. Thisresultimprovesthesharpinequality (1.3) v cot(π/(2p)) u p p k k ≤ k k foundbyS.K.Pichorides([14]). Forthesameproblemforreallinesettingwerefer tothepapers byL.Grafacos ([9])andB.Hollenbeck, N.J.Kalton, I.E.Verbitsky ([6]). WealsorefertothepaperbyEssen[3]forsomerelatedresults. WeextendthoseresultsfortheharmonicfunctionsinHardyclasshpontheunit disk U. For a harmonic mapping f = g +h hp , (hg)(0) = 0, we define the ∈ norm = asfollows |||·|||p |||·|||hp 1/p f = sup (g(rz)2 + h(rz)2)p/2dσ(z) . ||| |||p 0<r<1(cid:18)ZT | | | | (cid:19) Thus,inviewof(1.1),wehavethat 1/p f = (g(z)2 + h(z)2)p/2dσ(z) . ||| |||p T | | | | (cid:18)Z (cid:19) Thenwefindthebestconstants A andB intheinequalities p p (1.4) f A f ||| |||p ≤ pk kp (1.5) f B f . k kp ≤ p||| |||p Namelyweshowinourmainresultsthat 1 A = (Theorem2.1) p 1/2 1 cos π −| p| and (cid:16) (cid:17) π B = √2cos (Theorem 2.3). p 2p Bytakingg = hin(1.4)and(1.5)(seeCorollary 2.2andCorollary 2.5below)we deduce (1.2). One of application of our result is the exact calculation of the norm of complex Hilbert transform on the unit disk (and on the unit circle) and on the upperhalf-plane (andontherealline). Namelyweshowthatthenormofthecomplex(periodicandnon-peridic)Hilbert transforms : Lp(T,C) Lp(T,C)and : Lp(R,C) Lp(R,C),is H → H → π (1.6) = cot (Theorem 2.6, Corollary2.8). p kHk 2p¯ ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 3 Asanotherapplicationofourmainresults,weproveanisoperimetrictypeinequal- ity for harmonic mappings h defined on the Bergman space bp on the unit disk, wherepisanevenintegerlargerthan2. Namelyforn Nandn 2weobtain ∈ ≥ 1 π (1.7) f b2n csc f hn (Theorem 2.11). k k ≤ 2 4n k k h i 2. MAIN RESULTS Thefirstmainresultisthefollowingtheorem Theorem 2.1. Let 1 < p < . Assume that f = g + h¯ hp is a harmonic ∞ ∈ mapping on the unit disk with (g(0)h(0)) = 0 . Then we have the following ℜ sharpinequality 1/p 1/p 1 (2.1) (g 2 + h2)p/2 g+h¯ p . (cid:18)ZT | | | | (cid:19) ≤ 1 cos π 1/2 (cid:18)ZT| | (cid:19) −| p| (cid:16) (cid:17) The proof given below works under the weaker condition: (g(0)h(0)) 0 for ℜ ≥ 1 < p 3. The sharpness of the constant follows from the sharpness of the ≤ corollary below. Hereandinthesequelthroughout thewholepaper, weusethenotation f := f(z)dσ(z). T T Z Z Corollary 2.2. [16] Let g = u+iv be a holomorphic function so that v(0) = 0, thenthesharpinequality 1 (2.2) kgkHp ≤ cos π kukhp 2p holds. ProofofCorollary1.2. Let1< p 2. Sincev(0) = 0,itfollowsthatg(0)g(0) = ≤ u2(0) 0,andsotheinequality(2.2)followsbyapplyingtheprevioustheoremto ≥ realharmonicfunctionf = g+g¯andbyusingtheformula −1/2 π 1 √2 1 cos = . −| p| cos π (cid:18) (cid:19) 2p If p > 2, then we make use of inequality (2.4) below. We have by using Jensen inequality (asin[16]),thefollowing 1/2 π kgkHp = k u2+v2kLp(T) ≤ kuk2hp +kvk2hp 1/2 ≤ kuk2hp +sin2 2pkgk2Hp . (cid:18) (cid:19) p (cid:0) (cid:1) Therefore π g 2 (1 sin2 ) u 2 k kHp − 2p ≤ k khp andthisimpliesthecorollary. (cid:3) ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 4 Tomotivatethefollowingtheoremnoticethefollowingsimplesharpinequality z+w¯ √2(z 2+ w 2)1/2. | |≤ | | | | Thuswehave f hp √2 g 2+ h2 Lp(T). k k ≤ k | | | | k However the last inequality is not shaprp, and the sharp inequality has been given bythefollowingtheorem. Theorem 2.3. Let 1 < p < and assume that f = g +¯h hp is a harmonic ∞ ∈ mapping on the unit disk with (g(0) h(0)) 0. Then we have the following ℜ · ≤ sharpinequality 1/p π π (2.3) f hp √2max sin ,cos (g 2 + h2)p/2 . k k ≤ { 2p 2p} T | | | | (cid:18)Z (cid:19) Remark2.4. Ifp = 2, then inequalities (2.1)and (2.3)areopposite toeach other because 1 π π = 1 = √2max sin ,cos . 1/2 { 2p 2p} 1 cos π −| p| (cid:16) (cid:17) Thisisnotasurprisingfact,becausethegivenintegralscoincideif (h(0)g(0)) = 0. Inotherwordsforeveryf h2, h h2 = h h2. ℜ ∈ k k ||| ||| Corollary2.5. [16]Ifv isarealharmonicfunctionwithv(0) = 0andg = u+iv isananalyticfunction, thenforeveryp > 1wehavetheinequality π (2.4) v hp sin g Hp. k k ≤ 2p¯k k ProofofCorollary2.5. Byapplying Theorem2.3totherealharmonicfunction g g¯ 1 v = f = − = (ig+ig), 2i −2 inviewofthefact i2g(0)g(0) = g2(0) 0, − ≤ andbyusingthesimpleformula π π π max sin ,cos = sin { 2p 2p} 2p weobtain(2.4). (cid:3) 2.1. ApplicationtoHilberttransform. ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 5 2.1.1. Hilbert transform on the unit disk and unit circle. If f = u+iv is a har- monicfunction definedintheunitdiskU,thenaharmonicfunctionf˜= u˜+iv˜is calledtheharmonicconjugateoff ifu+iu˜andv+iv˜areanalyticfunctions. Notice thatf˜isuniquely determined uptoanadditive constant. Letf = g+h¯ = u+iv be a harmonic mapping, where h and g are holomorphic and h(0) = 0. Then f˜:= (ig+ih) = u˜+iv˜isaharmonicconjugateoff whichwedealwithinthis paper.−Namelyu= (g+h),v = (g+h). Furtheru˜ = ( i(g h¯)) = (g h¯) andv˜= ( i(g h¯ℜ)) = (h¯ g)ℑ. Thusu+iu˜= (g+ℜh−)+i−(g h¯)ℑ= g−+h andv+iℑv˜=− (g−+h)+ℜi (h¯− g) =i(h g). ℜ ℑ − ℑ ℜ − − Further if f is real valued, i.e. if f(z) = h(z) + h(z), then f(z) = h(z) + h(0)+h(z) h(0) = g (z)+h (z). Hereh (0) = 0. Ifh(0) = 0,then f˜(z) = 1 1 1 − 6 i(g (z) h (z))isnotrealvaluedfunction,butfˆ(z) := f˜(z) f˜(0)isrealvalued 1 1 − − withfˆ(0) = 0. Thenfˆistheharmonicconjugatewithrespecttostandardmeaning. Furthermoreforeveryz (2.5) fˆ(z)2 = f˜(z)2 f˜(0)2. | | | | −| | Letχbetheboundary valueoff andassumethatχ˜istheboundary valueoff˜. Thenχ˜iscalledtheHilberttransformofχandwedenoteitbyχ˜ = H[χ]. Assume thatχ˜ L1(T). The∈(periodic) Hilbert transform of a function χ L1(T) is also given by the ∈ formulas 1 π χ(τ +t) χ(τ t) (2.6) χ˜(τ) = − − dt. −π 2tan(t/2) Z0+ and (2.7) χ˜(τ) = i sign(k)χ(k)eikτ, − k∈Z X where b 1 χ(k) = χ(eit)e−iktdt 2π T Z π π and sign(0) = 1. Here Φ(t)dt := lim Φ(t)dt.Theintegral in (2.6)is 0+b ǫ→0+ ǫ improper andconverges fora.e. τ [0,2π]. IfP denote thePoisson extension on R ∈ R ^ theunitdisk,thenwehaveP[χ](z) = P[χ˜](z). 2.1.2. Hilbert transform on the real line and half-plan. Let p > 1 and let f Lp(R,C). Thenthe(nonperiodic) Hilberttransform off isdefinedby ∈ 1 ∞ φ(t) 1 ∞ φ(x+t) φ(x t) [φ](x) = φ˜(x) = dt = lim − − dt. H π Z−∞ x−t −π ǫ↓0 Zǫ t Further, themapping φinduces aharmonic mapping defined onthe upper half- plane H := z C : z > 0 , by the formula f(z) = P[φ](z), where P is the { ∈ ℑ } Poissonintegralontheupperhalf-plane. ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 6 Now let hp(H) be the Hardy space on the upper half-plane, i.e. the class of harmonicmappingsf definedonHsothat f hp(H) := sup f(x+iy) Lp(R) < . k k k k ∞ y>0 If f = P[χ](z), then we have f hp(H) = χ Lp(R) ([1, Theorem 7.17]). Fur- k k k k thermoretheharmonicmappingw˜ = P[φ˜]isharmonicconjugate ofw. The following theorem, in view of (2.5) extends the main result of S. K. Pi- chorides([14]) Theorem 2.6. Assume that p > 1 and f is a complex harmonic mapping so that f = g +h¯ hp(U) and h(0) = 0. Then f˜= i(g h¯) hp, and we have the ∈ − ∈ sharpinequality π (2.8) f˜ hp cot f hp. k k ≤ 2p¯k k Inotherwordsthenormoftheoperator :hp(U,C) hp(U,C) ( :Lp(T,C) Lp(T,C)) H → H → isequalto tan π , ifp 2; = 2p ≤ kHkp cot π , ifp > 2. (cid:26) 2p Proof. Letf = g+h¯ = u+iv beaharmonic mappingsthatbelongstohp. Then f˜ = i(g ¯h) = u˜ + iv˜. From Theorem 2.1 and Theorem 2.3, in view of the − − fact that f = f˜ and (( ig(0))( ih(0))) = (g(0)h(0)) = 0, we hp ||| ||| hp ℜ − − −ℜ obtainthat (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12)f˜ hp Ap f hp ApBp f hp. k k ≤ ||| ||| ≤ k k Thetheoremfollowsfromtheequation √2cos π π 2p A B = = cot . p p 1/2 2p¯ 1 cos π −| p| (cid:16) (cid:17) (cid:3) Remark 2.7. The condition h(0) = 0 of Theorem 2.6 is not essential. Indeed, if h(0) = 0,then 6 f(z) =g(z)+h(0)+h(z) h(0) = g (z)+h (z), 1 1 − whereh (0) = 0. Inthiscase 1 f˜(z) = i(g (z) h (z))= i g(z)+h(0) h(z) h(0) . 1 1 − − − − − (cid:16) (cid:17) Corollary 2.8. Letp > 1andletχ Lp(R,C)andf = P[φ]. Thenwehavethe ∈ sharpinequalities π (2.9) χ˜ cot χ , Lp Lp k k ≤ 2p¯k k ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 7 and π (2.10) f˜ hp cot f hp. k k ≤ 2p¯k k Inotherwords π :Lp(R,C) Lp(R,C) = cot kH → k 2p¯ and π : hp(H,C) hp(H,C) = cot . kH → k 2p¯ ProofofCorollary2.8. The relation (2.10) follows from Theorem 2.6 and the ap- proach in the proof of a result of Zygmund in [17, Chapter XVI, Theorem 3.8], whereitisprovedthattheconstantthatappearinthecaseofperiodicHilberttrans- form could be taken in non-periodic Hilbert transform case as well. Moreover, as itisshownbyPichoridesin[14,Theorem4.1],theconstantcot π issharpforreal 2p¯ valuedfunctions, andsoitissharpforourcomplexfunctions aswell. (cid:3) LetbpdenotetheBergmanclassofharmonicmappingsdefinedontheunitdisk, satisfying thecondition 1/p dxdy f bp := f(z)p < . k k U| | π ∞ (cid:18)Z (cid:19) Forcompressive studyofthisclasswerefertothebook[5]. By integrating the functions U (z) = r f(zr)p and V (z) = r(g(zr)2 + r r | | | | h(zr)2)p/2 overtheunitcircleT,usingtheinequalities (2.1)and(2.3),andinte- g|rating|forr [0,1]weobtainthefollowingresultfortheBergmanspacebp. ∈ Corollary 2.9. Let 1 < p < . Assume that f = g + h¯ bp is a harmonic ∞ ∈ mapping on the unit disk with (g(0)h(0)) = 0 . Then we have the following ℜ inequalities 1/p 1/p 1 (2.11) (g 2 + h2)p/2 g+h¯ p (cid:18)ZU | | | | (cid:19) ≤ 1 cos π 1/2 (cid:18)ZU| | (cid:19) −| p| (cid:16) (cid:17) and 1/p 1/p π (2.12) (g+h¯ )p √2sin (g 2 + h2)p/2 . U | | ≤ 2p¯ U | | | | (cid:18)Z (cid:19) (cid:18)Z (cid:19) The inequality (2.12) does hold under weaker condition (g(0)h(0)) 0, and ℜ ≤ (2.11)for (g(0)h(0)) 0andp < 3. ℜ ≥ Remark 2.10. We were not able to check if the inequalities (2.11)and (2.12)are sharpornotforp = 2. Wewanttoemphasisthefollowingfact. Somewell-known 6 extremal functions that works for Hardy space, are not suitable for the Bergman space. The following example suggested by A. Calderon (see [14]) shows that 2γ/π (2.2) and (2.4) are sharp. Namely if g(z) = 1+z , arg 1+z π, and 1−z | 1−z| ≤ 2 γ < π , then g = u + iv hp. Further u =(cid:16) tan(cid:17)γ v almost everywhere on 2p ∈ | | | | ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 8 T, but u tanγ v > 0 everywhere on U. This is why this example works for | |− | | HardyspacebutnotforBergmanspace. 2.2. Application to theisoperimetric inequality. Thestarting point of this sub- sectionisthewellknownisoperimetric inequality forJordandomainsandisoperi- metric inequality for minimal surfaces due to Carleman [2]. In that paper Carle- man,amongtheotherresultsprovedthatifuisharmonicandsmoothinUthen 1 2π e2udxdy ( eudt)2. ZU ≤ 4π Z0 By using a similar approach as Carleman, Strebel ([15]) proved the isoperimetric inequality forholomorphic functions; thatisiff H1(U)then ∈ 1 (2.13) f(z)2dxdy ( f(eit)dt)2. U| | ≤ 4π T| | Z Z ByusingthenormalizedmeasuresonTandU,respectively, thepreviousinequal- itycanbewrittenintheform 2 (2.14) f(z)2 f(z) . U| | ≤ T| | Z (cid:18)Z (cid:19) Thisinequality has been proved independently by Mateljevic´ and Pavlovic´ ([13]). In[4],F.Hang,X.Wang,X.Yanhavemadeacertaingeneralizations forthespace. Nowweprovethefollowingtheorem Theorem2.11. Letf beacomplexharmonicmappingdefinedontheunitdiskand assumethatn 2isapositiveinteger. Assumethatf hn,thenf b2n andwe ≥ ∈ ∈ havetheinequality 1 π (2.15) f b2n csc f hn. k k ≤ 2 4n k k h i Remark2.12. Theproofsofthesamestatementforn = 2andn = 4canbefound in [12] and in [10] respectively (where different approaches used, but applicable onlyforthosetwospecificcases). The proof here works only for positive integers n 2, but probably the same ≥ estimateistrueforeverypositivenumbern > 2. Ontheotherhand,wewherenot abletocheckiftheinequality (2.15)issharp. A positive real function u is called log-subharmonic, if logu is subharmonic. First we formulate a lemma whose proof can be also deduced from [8, Corol- lary1.6.8]. Lemma 2.13. The function a 2 + b 2 is log-subharmonic, provided that a and b | | | | areanalytic. Proof. Weneed toshowthat f(z) = log(a 2 + b 2)issubharmonic. Bycalcula- | | | | tionwefind a′a¯+b′¯b f = z a 2+ b 2 | | | | ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 9 andso a′a¯′+b′¯b′ a′a¯+b′¯b aa¯′+b¯b′ f = zz¯ a 2 + b 2 − a 2+ b 2 a 2+ b 2 | | | | | | | | | | | | (a′ 2+ b′ 2)(a 2 + b 2) a¯a′+¯bb′ 2 = | | | | | | | | −| | , (a 2+ b 2)2 | | | | whichisclearlypositive. (cid:3) Nowtheisoperimetricinequalityforlog-subharmonicfunctions(e.g. [11,Lemma2.2]), statesthat,ifuispositivelog-subharmonic function, then 2 u2 u . U ≤ T Z (cid:18)Z (cid:19) Hereasbefore, 1 f := f(z)dxdy, z = x+iy, U π U Z Z and 1 f := f(z)dz , z = x+iy. T 2π T | | Z Z Thusweinferthat Lemma2.14. Foreverypositive number pand analytic functions aand bdefined ontheunitdiskU wehavethat 2 (a 2 + b 2)2p (a 2 + b 2)p . U | | | | ≤ T | | | | Z (cid:18)Z (cid:19) ProofofTheorem2.11. Without loos of generality assume that f(z) = g(z) + h(z),whereh(0) = 0,andg andhareholomorphic ontheunitdisk. Let L = (g+h¯ 2)n = (g 2 + h2+2 (gh))n. U | | U | | | | ℜ Z Z Then n n L = (g 2 + h2)k(2 (gh))n−k k U | | | | ℜ k=0(cid:18) (cid:19)Z X n n ((g 2 + h2)n)k/n( 2 (gh)n)(n−k)/n. ≤ k U | | | | U| ℜ | k=0(cid:18) (cid:19)Z Z X Letp 2andletE = cos π . ≥ p 2p ONRIESZTYPEINEQUALITIESFORHARMONICMAPPINGSONTHEUNITDISK 10 FromLemma2.14andCorollary2.9andTheorem2.3(Corollary2.5)wehave n n L En−k( (g 2 + h2)n)k/n( (2gh)n)(n−k)/n ≤ k n U | | | | U | | k=0(cid:18) (cid:19) Z Z X n n En−k( (g 2 + h2)n/2)2k/n( (2gh)n/2)2(n−k)/n ≤ k n T | | | | T | | k=0(cid:18) (cid:19) Z Z X n n En−k( (g 2 + h2)n/2)2k/n( (g 2 + h2)n/2)2(n−k)/n ≤ k n T | | | | T | | | | k=0(cid:18) (cid:19) Z Z X n n = En−k( (g 2 + h2)n/2)2 k n T | | | | k=0(cid:18) (cid:19) Z X n n 1 = En−k ( g+h¯ n)2 Xk=0(cid:18)k(cid:19) n 1−|cos πp| n ZT| | (1+E )n (cid:16) (cid:17) = n ( (g+h¯ n))2 1 cos π n T | | − n Z (1+cos π )n = (cid:0) 2n(cid:1) ( g+h¯ n)2. 1 cos π n T| | − n Z Thus (cid:0) (cid:1) (1+cos π )n (g+h¯ 2)n 2n ( g+¯hn)2. U | | ≤ 1 cos π n T| | Z − n Z Further (cid:0) (cid:1) 1+cos π cos2 π 1 2n = 4n = . 1 cos π sin2 π 2sin2 π − n 2n 4n Thisfinishestheproof. (cid:3) 3. STRATEGY OF THE PROOFS Astheauthorsofthepaperdidin[7],weuse”pluri-subharmonic minorant”. Definition3.1. Aupper semi-continuous real function uiscalled subharmonic in anopensetΩofcomplexplane, ifforeverycompactsubset K ofΩandforevery harmonicfunctionf definedonK,theinequalityu(z) f(z)forz ∂K implies ≤ ∈ thatu(z) f(z)onK. ≤ A property which characterizes the subharmonic mappings is the sub-mean value property which states that. If u is a subharmonic function defined on a do- mainΩ,thenforeverycloseddiskD(z ,r) Ω,wehavetheinequality 0 ⊂ 1 u(z ) u(z)dz . 0 ≤ 2πr | | Z|z−z0|=r Definition 3.2. A function u defined in an open set Ω Cn with values in ⊂ [ ,+ )iscalledplurisubharmonic if −∞ ∞

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.