January,2009 PROGRESSINPHYSICS Volume1 On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits VicChristianto andFlorentinSmarandache (cid:3) y Sciprint.org—aFreeScientificElectronicPreprintServer, http://www.sciprint.org (cid:3) E-mail:[email protected] DepartmentofMathematics,UniversityofNewMexico,Gallup,NM87301,USA y E-mail:[email protected] As we know, it has been quite common nowadays for particle physicists to think of siximpossiblethingsbeforebreakfast,justlikewhattheircosmologyfellowsusedto do. In the present paper, we discuss a number of those impossible things, including PT-symmetric periodic potential, its link with condensed matter nuclear science, and possible neat link with Quark confinement theory. In recent years, the PT-symmetry anditsrelatedperiodicpotentialhavegainedconsiderableinterestsamongphysicists. Webeginwithareviewofsomeresultsfromaprecedingpaperdiscussingderivationof PT-symmetricperiodicpotentialfrombiquaternionKlein-Gordonequationandproceed further with the remaining issues. Further observation is of course recommended in ordertorefuteorverifythisproposition. 1 Introduction 2 PT-symmetricperiodicpotential As we know, it has been quite common nowadays for parti- It has been argued elsewhere that it is plausible to derive a clephysiciststothinkofsiximpossiblethingsbeforebreak- newPT-symmetricQuantumMechanics(PT-QM;sometimes fast [1], just like what their cosmology fellows used to do. it is called pseudo-Hermitian Quantum Mechanics [3,9]) In the present paper, we discuss a number of those impossi- whichischaracterizedbyaPT-symmetricpotential[2] blethings,includingPT-symmetricperiodicpotential,itslink V(x)=V( x): (1) withcondensedmatternuclearscience,andpossibleneatlink (cid:0) withQuarkConfinementtheory. One particular example of such PT-symmetric potential Inthisregards,itisworthtoremarkherethattherewere canbefoundinsinusoidal-formpotential some attempts in literature to generalise the notion of sym- V =sin’: (2) metries in Quantum Mechanics, for instance by introducing PT-symmetricharmonicoscillatorcanbewrittenaccord- CPTsymmetry,chiralsymmetryetc. Inrecentyears,thePT- ingly [3]. Znojil has argued too [2] that condition (1) will symmetryanditsrelatedperiodicpotentialhavegainedcon- yieldHulthenpotential siderableinterestsamongphysicists[2,3]. Itisexpectedthat thediscussionspresentedherewouldshedsomelightonthese A B V((cid:24))= + : (3) issues. (1 e2i(cid:24))2 (1 e2i(cid:24)) Webeginwithareviewofresultsfromourprecedingpa- (cid:0) (cid:0) Interestingly,asimilarperiodicpotentialhasbeenknown persdiscussingderivationofPT-symmetricperiodicpotential for quite a long time as Posch-Teller potential [9], although from biquaternion Klein-Gordon equation [4–6]. Thereafter itisnotalwaysrelatedtoPT-Symmetryconsiderations. The wediscusshowthiscanberelatedwithbothGribov’stheory Posch-Tellersystemhasauniquepotentialintheform[9] ofQuarkConfinement,andalsowithEQPET/TSCmodelfor condensed matter nuclear science (aka low-energy reaction U(x)= (cid:21)cosh 2x: (4) (cid:0) (cid:0) or “cold fusion”) [7]. We also highlight its plausible impli- It appears worth to note here that Posch-Teller periodic cationtothecalculationofGamowintegralforthe(periodic) potential can be derived from conformal D’Alembert equa- non-Coulombpotential. tions[10,p.27]. ItisalsoknownasthesecondPosch-Teller In other words, we would like to discuss in this paper, potential whether there is PT symmetric potential which can be ob- (cid:22)((cid:22) 1) ‘(‘+1) served in Nature, in particular in the context of condensed V(cid:22)((cid:24))= sinh(cid:0)2(cid:24) + cosh2(cid:24) : (5) matter nuclear science (CMNS) and Quark confinement ThenextSectionwilldiscussbiquaternionKlein-Gordon theory. equation [4,5] and how its radial version will yield a sinu- Nonetheless,furtherobservationisofcourserecommend- soidal form potential which appears to be related to equa- edinordertorefuteorverifythisproposition. tion(2). V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits 63 Volume1 PROGRESSINPHYSICS January,2009 3 Solution of radial biquaternion Klein-Gordon equa- Using Maxima computer package we find solution of tionandanewsinusoidalformpotential equation(15)asanewpotentialtakingtheformofsinusoidal potential In our preceding paper [4], we argue that it is possible to m r m r write biquaternionic extension of Klein-Gordon equation as y =k1sin j j +k2cos j j ; (16) follows p i 1 p i 1 (cid:18) (cid:0) (cid:0) (cid:19) (cid:18) (cid:0) (cid:0) (cid:19) @2 @2 wherek1 andk2 areparameterstobedetermined. Itappears 2 +i 2 ’(x;t)= veryinterestingtoremarkhere,whenk issetto0,thenequa- @t2 (cid:0)r @t2 (cid:0)r tion(16)canbewrittenintheformofe2quation(2) (cid:20)(cid:18) (cid:19) (cid:18) (cid:19)=(cid:21) m2’(x;t); (6) (cid:0) V =k sin’; (17) 1 orthisequationcanberewrittenas byusingdefinition (cid:22) +m2 ’(x;t)=0 (7) m r }} ’=sin j j : (18) providedweusethisdefinition p i 1 (cid:0) (cid:1) (cid:18) (cid:0) (cid:0) (cid:19) In retrospect, the same procedure which has been tradi- = q+i q = i @ +e @ +e @ +e @ + tionallyusedtoderivetheYukawapotential, byusingradial 1 2 3 } r r (cid:0) @t @x @y @z biquaternionKlein-Gordon potential, yields a PT-symmetric @ (cid:18)@ @ @ (cid:19) periodicpotentialwhichtakestheformofequation(1). +i i +e +e +e ; (8) 1 2 3 (cid:0) @T @X @Y @Z (cid:18) (cid:19) 4 PlausiblelinkwithGribov’stheoryofQuarkConfine- where e , e , e are quaternion imaginary units obeying 1 2 3 ment (withordinaryquaternionsymbolse =i,e =j,e =k): 1 2 3 i2 =j2 =k2 = 1; ij = ji=k; (9) Interestingly, and quite oddly enough, we find the solution (cid:0) (cid:0) (17)mayhavedeeplinkwithGribov’stheoryofQuarkcon- jk= kj =i; ki= ik=j; (10) finement[8,11]. InhisThirdOrsayLectureshedescribeda (cid:0) (cid:0) andquaternionNablaoperatorisdefinedas[4] periodicpotentialintheform[8,p.12] @ @ @ @ (cid:127) 3sin =0: (19) q = i +e1 +e2 +e3 : (11) (cid:0) r (cid:0) @t @x @y @z ByusingMaximapackage,thesolutionofequation(19) Note that equation (11) already included partial time- isgivenby differentiation. 1 dy Thereafter one can expect to find solution of radial bi- x1 =k2 pk1(cid:0)cos(y) quaternionKlein-GordonEquation[5,6]. (cid:0) p6 ; (20) First,thestandardKlein-Gordonequationreads R 1 dy 9 x2 =k2+ pk1p(cid:0)c6os(y) >>= @@t22 (cid:0)r2 ’(x;t)=(cid:0)m2’(x;t): (12) wnohnilleineGarriboosvciallragtuioens twhiatthRadcatumaplliyngth,etheequeaqtui>>;oatniosnha(l1l9b)einlidkie- Atthis(cid:18)pointwecan(cid:19)introducepolarcoordinatebyusing catesclosesimilaritywithequation(2). thefollowingtransformation ThereforeonemaythinkthatPT-symmetricperiodicpo- tential in the form of (2) and also (17) may have neat link 1 @ @ ‘2 with the Quark Confinement processes, at least in the con- = r2 : (13) r r2@r @r (cid:0) r2 text of Gribov’s theory. Nonetheless, further observation is (cid:18) (cid:19) ofcourserecommendedinordertorefuteorverifythispro- Therefore by introducing this transformation (13) into position. (12)onegets(setting‘=0) 1 @ @ 5 Implication to condensed matter nuclear science. r2 +m2 ’(x;t)=0: (14) r2@r @r ComparingtoEQPET/TSCmodel. Gamowintegral (cid:18) (cid:18) (cid:19) (cid:19) By using the same method, and then one gets radial ex- Inaccordancewitharecentpaper[6],weinterpretandcom- pression of BQKGE (6) for 1-dimensional condition as fol- pare this result from the viewpoint of EQPET/TSC model lows[5,6] whichhasbeensuggestedbyProf.Takahashiinordertoex- plain some phenomena related to Condensed matter nuclear 1 @ @ 1 @ @ r2 i r2 +m2 ’(x;t)=0: (15) Science(CMNS). r2@r @r (cid:0) r2@r @r (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) 64 V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits January,2009 PROGRESSINPHYSICS Volume1 Takahashi [7] has discussed key experimental results 6 Concludingremarks in condensed matter nuclear effects in the light of his EQPET/TSCmodel. Weargueherethathispotentialmodel Inrecentyears,thePT-symmetryanditsrelatedperiodicpo- withinversebarrierreversal(STTBA)maybecomparableto tentialhavegainedconsiderableinterestsamongphysicists. theperiodicpotentialdescribedabove(17). Inthepresentpaper, ithasbeenshownthatonecanfind In[7]Takahashireportedsomefindingsfromcondensed a new type of PT-symmetric periodic potential from solu- matter nuclear experiments, including intense production of tion of the radial biquaternion Klein-Gordon Equation. We helium-4,4Heatoms,byelectrolysisandlaserirradiationex- alsohavediscusseditsplausiblelinkwithGribov’stheoryof periments. Furthermore he [7] analyzed those experimental Quark Confinement and also with Takahashi’s EQPET/TSC results using EQPET (Electronic Quasi-Particle Expansion model for condensed matter nuclear science. All of which Theory). Formation of TSC (tetrahedral symmetric conden- seems to suggest that the Gribov’s Quark Confinement the- sate) were modeled with numerical estimations by STTBA orymayindicatesimilarity,orperhapsahiddenlink,withthe (Sudden Tall Thin Barrier Approximation). This STTBA CondensedMatterNuclearScience(CMNS).Itcouldalsobe modelincludesstronginteractionwithnegativepotentialnear expectedthatthoroughunderstandingoftheprocessesbehind thecenter. CMNSmayalsorequirerevisionoftheGamowfactortotake One can think that apparently to understand the physics intoconsiderationtheclusterdeuteriuminteractionsandalso behind Quark Confinement, it requires fusion of different PT-symmetricperiodicpotentialasdiscussedherein. fields in physics, perhaps just like what Langland program Furthertheoreticalandexperimentsarethereforerecom- wantstofusedifferentbranchesinmathematics. mended to verify or refute the proposed new PT symmetric Interestingly, Takahashi also described the Gamow inte- potentialinNature. gralofhisSTTBAmodelasfollows[7] SubmittedonNovember14,2008/AcceptedonNovember20,2008 b (cid:0) =0:218 (cid:22)1=2 (V E )1=2dr: (21) References n b d (cid:0) (cid:16) (cid:17)rZ0 1. http://www-groups.dcs.st-and.ac.uk/ history/Quotations/ Usingb=5:6fmandr =5fm,heobtained[7] Dodgson.html (cid:24) 2. ZnojilM.arXiv:math-ph/0002017. P4D =0:77; (22) 3. ZnojilM.arXiv:math-ph/0104012,math-ph/0501058. and 4. YefremovA.F., SmarandacheF., andChristiantoV. Progress VB =0:257MeV; (23) inPhysics,2007,v.3,42;alsoin: HadronModelsandRelated NewEnergyIssues,InfoLearnQuest,USA,2008. whichgavesignificantunderestimatefor4Dfusionratewhen rigidconstraintofmotionin3Dspaceattained. Nonetheless 5. ChristiantoV.andSmarandacheF. ProgressinPhysics,2008, v.1,40. byintroducingdifferentvaluesfor(cid:21) theestimateresultcan 4D be improved. Therefore we may conclude that Takahashi’s 6. ChristiantoV.EJTP,2006,v.3,no.12. STTBApotentialoffersagoodapproximation(justwhatthe 7. TakahashiA.In: SienaWorkshoponAnomaliesinMetal-D/H nameimplies,STTBA)ofthefusionrateincondensedmatter Systems, Siena, May 2005; also in: J. Condensed Mat. Nucl. nuclearexperiments. Sci.,2007,v.1,129. Itshallbenoted,however,thathisSTTBAlackssufficient 8. GribovV.N.arXiv:hep-ph/9905285. theoretical basis, therefore one can expect that a sinusoidal 9. CorreaF.,JakubskyV.,PlyushckayM.arXiv:0809.2854. periodic potential such as equation (17) may offer better re- 10. DeOliveiraE.C.anddaRochaR.EJTP,2008,v.5,no.18,27. sult. 11. GribovV.N.arXiv:hep-ph/9512352. All of these seem to suggest that the cluster deuterium 12. Fernandez-GarciaN.andRosas-OrtizO.arXiv:0810.5597. mayyieldadifferentinversebarrierreversalwhichcannotbe predictedusingtheD-Dprocessasinstandardfusiontheory. 13. ChugunovA.I.,DeWittH.E.,andYakovlevD.G.arXiv: astro- Inotherwords,thestandardproceduretoderiveGamowfac- ph/0707.3500. tor should also be revised [12]. Nonetheless, it would need furtherresearchtodeterminethepreciseGamowenergyand Gamowfactorfortheclusterdeuteriumwiththeperiodicpo- tentialdefinedbyequation(17);seeforinstance[13]. In turn, one can expect that Takahashi’s EQPET/TSC modelalongwiththeproposedPT-symmetricperiodicpoten- tial (17) may offer new clues to understand both the CMNS processesandalsothephysicsbehindQuarkconfinement. V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits 65