ebook img

On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits PDF

2009·0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits

January,2009 PROGRESSINPHYSICS Volume1 On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits VicChristianto andFlorentinSmarandache (cid:3) y Sciprint.org—aFreeScientificElectronicPreprintServer, http://www.sciprint.org (cid:3) E-mail:[email protected] DepartmentofMathematics,UniversityofNewMexico,Gallup,NM87301,USA y E-mail:[email protected] As we know, it has been quite common nowadays for particle physicists to think of siximpossiblethingsbeforebreakfast,justlikewhattheircosmologyfellowsusedto do. In the present paper, we discuss a number of those impossible things, including PT-symmetric periodic potential, its link with condensed matter nuclear science, and possible neat link with Quark confinement theory. In recent years, the PT-symmetry anditsrelatedperiodicpotentialhavegainedconsiderableinterestsamongphysicists. Webeginwithareviewofsomeresultsfromaprecedingpaperdiscussingderivationof PT-symmetricperiodicpotentialfrombiquaternionKlein-Gordonequationandproceed further with the remaining issues. Further observation is of course recommended in ordertorefuteorverifythisproposition. 1 Introduction 2 PT-symmetricperiodicpotential As we know, it has been quite common nowadays for parti- It has been argued elsewhere that it is plausible to derive a clephysiciststothinkofsiximpossiblethingsbeforebreak- newPT-symmetricQuantumMechanics(PT-QM;sometimes fast [1], just like what their cosmology fellows used to do. it is called pseudo-Hermitian Quantum Mechanics [3,9]) In the present paper, we discuss a number of those impossi- whichischaracterizedbyaPT-symmetricpotential[2] blethings,includingPT-symmetricperiodicpotential,itslink V(x)=V( x): (1) withcondensedmatternuclearscience,andpossibleneatlink (cid:0) withQuarkConfinementtheory. One particular example of such PT-symmetric potential Inthisregards,itisworthtoremarkherethattherewere canbefoundinsinusoidal-formpotential some attempts in literature to generalise the notion of sym- V =sin’: (2) metries in Quantum Mechanics, for instance by introducing PT-symmetricharmonicoscillatorcanbewrittenaccord- CPTsymmetry,chiralsymmetryetc. Inrecentyears,thePT- ingly [3]. Znojil has argued too [2] that condition (1) will symmetryanditsrelatedperiodicpotentialhavegainedcon- yieldHulthenpotential siderableinterestsamongphysicists[2,3]. Itisexpectedthat thediscussionspresentedherewouldshedsomelightonthese A B V((cid:24))= + : (3) issues. (1 e2i(cid:24))2 (1 e2i(cid:24)) Webeginwithareviewofresultsfromourprecedingpa- (cid:0) (cid:0) Interestingly,asimilarperiodicpotentialhasbeenknown persdiscussingderivationofPT-symmetricperiodicpotential for quite a long time as Posch-Teller potential [9], although from biquaternion Klein-Gordon equation [4–6]. Thereafter itisnotalwaysrelatedtoPT-Symmetryconsiderations. The wediscusshowthiscanberelatedwithbothGribov’stheory Posch-Tellersystemhasauniquepotentialintheform[9] ofQuarkConfinement,andalsowithEQPET/TSCmodelfor condensed matter nuclear science (aka low-energy reaction U(x)= (cid:21)cosh 2x: (4) (cid:0) (cid:0) or “cold fusion”) [7]. We also highlight its plausible impli- It appears worth to note here that Posch-Teller periodic cationtothecalculationofGamowintegralforthe(periodic) potential can be derived from conformal D’Alembert equa- non-Coulombpotential. tions[10,p.27]. ItisalsoknownasthesecondPosch-Teller In other words, we would like to discuss in this paper, potential whether there is PT symmetric potential which can be ob- (cid:22)((cid:22) 1) ‘(‘+1) served in Nature, in particular in the context of condensed V(cid:22)((cid:24))= sinh(cid:0)2(cid:24) + cosh2(cid:24) : (5) matter nuclear science (CMNS) and Quark confinement ThenextSectionwilldiscussbiquaternionKlein-Gordon theory. equation [4,5] and how its radial version will yield a sinu- Nonetheless,furtherobservationisofcourserecommend- soidal form potential which appears to be related to equa- edinordertorefuteorverifythisproposition. tion(2). V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits 63 Volume1 PROGRESSINPHYSICS January,2009 3 Solution of radial biquaternion Klein-Gordon equa- Using Maxima computer package we find solution of tionandanewsinusoidalformpotential equation(15)asanewpotentialtakingtheformofsinusoidal potential In our preceding paper [4], we argue that it is possible to m r m r write biquaternionic extension of Klein-Gordon equation as y =k1sin j j +k2cos j j ; (16) follows p i 1 p i 1 (cid:18) (cid:0) (cid:0) (cid:19) (cid:18) (cid:0) (cid:0) (cid:19) @2 @2 wherek1 andk2 areparameterstobedetermined. Itappears 2 +i 2 ’(x;t)= veryinterestingtoremarkhere,whenk issetto0,thenequa- @t2 (cid:0)r @t2 (cid:0)r tion(16)canbewrittenintheformofe2quation(2) (cid:20)(cid:18) (cid:19) (cid:18) (cid:19)=(cid:21) m2’(x;t); (6) (cid:0) V =k sin’; (17) 1 orthisequationcanberewrittenas byusingdefinition (cid:22) +m2 ’(x;t)=0 (7) m r }} ’=sin j j : (18) providedweusethisdefinition p i 1 (cid:0) (cid:1) (cid:18) (cid:0) (cid:0) (cid:19) In retrospect, the same procedure which has been tradi- = q+i q = i @ +e @ +e @ +e @ + tionallyusedtoderivetheYukawapotential, byusingradial 1 2 3 } r r (cid:0) @t @x @y @z biquaternionKlein-Gordon potential, yields a PT-symmetric @ (cid:18)@ @ @ (cid:19) periodicpotentialwhichtakestheformofequation(1). +i i +e +e +e ; (8) 1 2 3 (cid:0) @T @X @Y @Z (cid:18) (cid:19) 4 PlausiblelinkwithGribov’stheoryofQuarkConfine- where e , e , e are quaternion imaginary units obeying 1 2 3 ment (withordinaryquaternionsymbolse =i,e =j,e =k): 1 2 3 i2 =j2 =k2 = 1; ij = ji=k; (9) Interestingly, and quite oddly enough, we find the solution (cid:0) (cid:0) (17)mayhavedeeplinkwithGribov’stheoryofQuarkcon- jk= kj =i; ki= ik=j; (10) finement[8,11]. InhisThirdOrsayLectureshedescribeda (cid:0) (cid:0) andquaternionNablaoperatorisdefinedas[4] periodicpotentialintheform[8,p.12] @ @ @ @ (cid:127) 3sin =0: (19) q = i +e1 +e2 +e3 : (11) (cid:0) r (cid:0) @t @x @y @z ByusingMaximapackage,thesolutionofequation(19) Note that equation (11) already included partial time- isgivenby differentiation. 1 dy Thereafter one can expect to find solution of radial bi- x1 =k2 pk1(cid:0)cos(y) quaternionKlein-GordonEquation[5,6]. (cid:0) p6 ; (20) First,thestandardKlein-Gordonequationreads R 1 dy 9 x2 =k2+ pk1p(cid:0)c6os(y) >>= @@t22 (cid:0)r2 ’(x;t)=(cid:0)m2’(x;t): (12) wnohnilleineGarriboosvciallragtuioens twhiatthRadcatumaplliyngth,etheequeaqtui>>;oatniosnha(l1l9b)einlidkie- Atthis(cid:18)pointwecan(cid:19)introducepolarcoordinatebyusing catesclosesimilaritywithequation(2). thefollowingtransformation ThereforeonemaythinkthatPT-symmetricperiodicpo- tential in the form of (2) and also (17) may have neat link 1 @ @ ‘2 with the Quark Confinement processes, at least in the con- = r2 : (13) r r2@r @r (cid:0) r2 text of Gribov’s theory. Nonetheless, further observation is (cid:18) (cid:19) ofcourserecommendedinordertorefuteorverifythispro- Therefore by introducing this transformation (13) into position. (12)onegets(setting‘=0) 1 @ @ 5 Implication to condensed matter nuclear science. r2 +m2 ’(x;t)=0: (14) r2@r @r ComparingtoEQPET/TSCmodel. Gamowintegral (cid:18) (cid:18) (cid:19) (cid:19) By using the same method, and then one gets radial ex- Inaccordancewitharecentpaper[6],weinterpretandcom- pression of BQKGE (6) for 1-dimensional condition as fol- pare this result from the viewpoint of EQPET/TSC model lows[5,6] whichhasbeensuggestedbyProf.Takahashiinordertoex- plain some phenomena related to Condensed matter nuclear 1 @ @ 1 @ @ r2 i r2 +m2 ’(x;t)=0: (15) Science(CMNS). r2@r @r (cid:0) r2@r @r (cid:18) (cid:18) (cid:19) (cid:18) (cid:19) (cid:19) 64 V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits January,2009 PROGRESSINPHYSICS Volume1 Takahashi [7] has discussed key experimental results 6 Concludingremarks in condensed matter nuclear effects in the light of his EQPET/TSCmodel. Weargueherethathispotentialmodel Inrecentyears,thePT-symmetryanditsrelatedperiodicpo- withinversebarrierreversal(STTBA)maybecomparableto tentialhavegainedconsiderableinterestsamongphysicists. theperiodicpotentialdescribedabove(17). Inthepresentpaper, ithasbeenshownthatonecanfind In[7]Takahashireportedsomefindingsfromcondensed a new type of PT-symmetric periodic potential from solu- matter nuclear experiments, including intense production of tion of the radial biquaternion Klein-Gordon Equation. We helium-4,4Heatoms,byelectrolysisandlaserirradiationex- alsohavediscusseditsplausiblelinkwithGribov’stheoryof periments. Furthermore he [7] analyzed those experimental Quark Confinement and also with Takahashi’s EQPET/TSC results using EQPET (Electronic Quasi-Particle Expansion model for condensed matter nuclear science. All of which Theory). Formation of TSC (tetrahedral symmetric conden- seems to suggest that the Gribov’s Quark Confinement the- sate) were modeled with numerical estimations by STTBA orymayindicatesimilarity,orperhapsahiddenlink,withthe (Sudden Tall Thin Barrier Approximation). This STTBA CondensedMatterNuclearScience(CMNS).Itcouldalsobe modelincludesstronginteractionwithnegativepotentialnear expectedthatthoroughunderstandingoftheprocessesbehind thecenter. CMNSmayalsorequirerevisionoftheGamowfactortotake One can think that apparently to understand the physics intoconsiderationtheclusterdeuteriuminteractionsandalso behind Quark Confinement, it requires fusion of different PT-symmetricperiodicpotentialasdiscussedherein. fields in physics, perhaps just like what Langland program Furthertheoreticalandexperimentsarethereforerecom- wantstofusedifferentbranchesinmathematics. mended to verify or refute the proposed new PT symmetric Interestingly, Takahashi also described the Gamow inte- potentialinNature. gralofhisSTTBAmodelasfollows[7] SubmittedonNovember14,2008/AcceptedonNovember20,2008 b (cid:0) =0:218 (cid:22)1=2 (V E )1=2dr: (21) References n b d (cid:0) (cid:16) (cid:17)rZ0 1. http://www-groups.dcs.st-and.ac.uk/ history/Quotations/ Usingb=5:6fmandr =5fm,heobtained[7] Dodgson.html (cid:24) 2. ZnojilM.arXiv:math-ph/0002017. P4D =0:77; (22) 3. ZnojilM.arXiv:math-ph/0104012,math-ph/0501058. and 4. YefremovA.F., SmarandacheF., andChristiantoV. Progress VB =0:257MeV; (23) inPhysics,2007,v.3,42;alsoin: HadronModelsandRelated NewEnergyIssues,InfoLearnQuest,USA,2008. whichgavesignificantunderestimatefor4Dfusionratewhen rigidconstraintofmotionin3Dspaceattained. Nonetheless 5. ChristiantoV.andSmarandacheF. ProgressinPhysics,2008, v.1,40. byintroducingdifferentvaluesfor(cid:21) theestimateresultcan 4D be improved. Therefore we may conclude that Takahashi’s 6. ChristiantoV.EJTP,2006,v.3,no.12. STTBApotentialoffersagoodapproximation(justwhatthe 7. TakahashiA.In: SienaWorkshoponAnomaliesinMetal-D/H nameimplies,STTBA)ofthefusionrateincondensedmatter Systems, Siena, May 2005; also in: J. Condensed Mat. Nucl. nuclearexperiments. Sci.,2007,v.1,129. Itshallbenoted,however,thathisSTTBAlackssufficient 8. GribovV.N.arXiv:hep-ph/9905285. theoretical basis, therefore one can expect that a sinusoidal 9. CorreaF.,JakubskyV.,PlyushckayM.arXiv:0809.2854. periodic potential such as equation (17) may offer better re- 10. DeOliveiraE.C.anddaRochaR.EJTP,2008,v.5,no.18,27. sult. 11. GribovV.N.arXiv:hep-ph/9512352. All of these seem to suggest that the cluster deuterium 12. Fernandez-GarciaN.andRosas-OrtizO.arXiv:0810.5597. mayyieldadifferentinversebarrierreversalwhichcannotbe predictedusingtheD-Dprocessasinstandardfusiontheory. 13. ChugunovA.I.,DeWittH.E.,andYakovlevD.G.arXiv: astro- Inotherwords,thestandardproceduretoderiveGamowfac- ph/0707.3500. tor should also be revised [12]. Nonetheless, it would need furtherresearchtodeterminethepreciseGamowenergyand Gamowfactorfortheclusterdeuteriumwiththeperiodicpo- tentialdefinedbyequation(17);seeforinstance[13]. In turn, one can expect that Takahashi’s EQPET/TSC modelalongwiththeproposedPT-symmetricperiodicpoten- tial (17) may offer new clues to understand both the CMNS processesandalsothephysicsbehindQuarkconfinement. V.ChristiantoandF.Smarandache.OnPT-SymmetricPeriodicPotential,QuarkConfinement,andOtherImpossiblePursuits 65

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.