On NeutroQuadrupleGroups F.Smarandache A.Rezaei A.A.A.Agboola Y.B.Jun R.A.Borzooei B.Davvaz A.BroumandSaeid M.Akram M.Hamidi S.Mirvakilii February 16-19, 2021,Kashan F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii1/49 SectionName NeutroAlgebraicstructuresandAntiAlgebraicstructures As generalizations and alternatives of classical algebraic structures Florentin Smarandache has introduced in 2019 the NeutroAlgebraic structures (or Neu- troAlgebras)andAntiAlgebraicstructures(orAntiAlgebras). Unliketheclas- sicalalgebraicstructures,wherealloperationsarewell-definedandallaxioms are totally true, in NeutroAlgebras and AntiAlgebras the operations may be partiallywell-definedandtheaxiomspartiallytrueorrespectivelytotallyouter- definedandtheaxiomstotallyfalse. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii2/49 SectionName NeutroAlgebraicstructuresandAntiAlgebraicstructures These NeutroAlgebras and AntiAlgebras form a new field of research, which is inspired from our real world. In this talk, we study neutrosophic quadruple algebraicstructuresandNeutroQuadrupleAlgebraicStructures. NeutroQuadru- pleGroupisstudiedinparticularandseveralexamplesareprovided. Itisshown that(NQ(Z),÷)isaNeutroQuadrupleGroup. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii3/49 SectionName Operation,NeutroOperation,AntiOperation When we define an operation on a given set, it does not automatically mean thattheoperationiswell-defined. Therearethreepossibilities: Theoperationiswell-defined(orinner-defined)forallset’selements(as inclassicalalgebraicstructuresthisisclassicalOperation). Theoperationifwell-definedforsomeelements,indeterminateforother elements,andouter-definedforotherselements(thisis NeutroOperation). Theoperationisouter-definedforallset’selements(thisis AntiOperation). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii4/49 SectionName Axiom,NeutroAxiom,AntiAxiom Similarly for an axiom, defined on a given set, endowed with some opera- tion(s). When we define an axiom on a given set, it does not automatically mean that the axiom is true for all set’s elements. We have three possibilities again: Theaxiomistrueforallset’selements(totallytrue)(asinclassical algebraicstructures;thisisaclassicalAxiom). Theaxiomiftrueforsomeelements,indeterminateforotherelements, andfalseforotherelements(thisisNeutroAxiom). Theaxiomisfalseforallset’selements(thisisAntiAxiom). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii5/49 SectionName Algebra,NeutroAlgebra,AntiAlgebra Analgebraicstructurewho’salloperationsarewell-definedandall axiomsaretotallytrueiscalledClassicalAlgebraicStructure(or Algebra). AnalgebraicstructurethathasatleastoneNeutroOperationorone NeutroAxiom(andnoAntiOperationandnoAntiAxiom)iscalled NeutroAlgebraicStructure(orNeutroAlgebra). AnalgebraicstructurethathasatleastoneAntiOperationorAntiAxiom iscalledAntiAlgebraicStructure(orAntiAlgebra). < Algebra,NeutroAlgebra,AntiAlgebra >. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii6/49 SectionName The Neutrosophic Quadruple Numbers and the Absorbance Law were intro- ducedbySmarandachein2015[1];theyhavethegeneralform: N = a+bT +cI +dF,wherea,b,c,dmaybenumbersofanytype(natural, integer, rational, irrational, real, complex, etc.), where “a" is the known part of the neutrosophic quadruple number N, while “bT + cI + dF" is the un- known part of the neutrosophic quadruple number N; then the unknown part issplitintothreesubparts: degreeofconfidence(T), degreeofindeterminacy of confidence-nonconfidence (I), and degree of nonconfidence (F). N is a four-dimensionalvectorthatcanalsobewrittenas: N = (a,b,c,d). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii7/49 SectionName Therearetranscendental,irrationaletc. numbersthatarenotwellknown,they areonlypartiallyknownandpartiallyunknown,theymayhaveinfinitelymany decimals. Not even the most modern supercomputers can compute more than a few thousands decimals, but the infinitely many left decimals still remain unknown. Therefore,suchnumbersareverylittleknown(becauseonlyafinite number of decimals are known), and infinitely unknown (because an infinite √ numberofdecimalsareunknown). Takeforexample: 2 = 1.4142.... F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii8/49 SectionName Definition AneutrosophicsetofquadruplenumbersdenotedbyNQ(X)isasetdefined by NQ(X) = {(a,bT,cI,dF) : a,b,c,d ∈ RorC} whereT,I,F havetheirusualneutrosophiclogicmeanings. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii9/49 SectionName Multiplicationoftwoneutrosophicquadruplenumbers Multiplication of two neutrosophic quadruple numbers cannot be carried out like multiplication of two real or complex numbers. In order to multiply two neutrosophicquadruplenumberstheprevalenceorderof{T,I,F}isrequired. Consider the following prevalence orders: Suppose in an optimistic way we considertheprevalenceorderT (cid:31) I (cid:31) F. Thenwehave: TI = IT = max{T,I} = T, TF = FT = max{T,F} = T, IF = FI = max{I,F} = I, TT = T2 = T, II = I2 = I, FF = F2 = F. OrweconsidertheprevalenceorderT ≺ I ≺ F. Thenwehave: TI = IT = max{T,I} = I, TF = FT = max{T,F} = F, IF = FI = max{I,F} = F, TT = T2 = T, II = I2 = I, FF = F2 = F. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,FMeb.rAuakrryam1,6,,-1M9.,H2a0m21id,iK,aSs.hManirvakil1ii0/49