ebook img

On NeutroQuadrupleGroups PDF

2021·0.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On NeutroQuadrupleGroups

On NeutroQuadrupleGroups F.Smarandache A.Rezaei A.A.A.Agboola Y.B.Jun R.A.Borzooei B.Davvaz A.BroumandSaeid M.Akram M.Hamidi S.Mirvakilii February 16-19, 2021,Kashan F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii1/49 SectionName NeutroAlgebraicstructuresandAntiAlgebraicstructures As generalizations and alternatives of classical algebraic structures Florentin Smarandache has introduced in 2019 the NeutroAlgebraic structures (or Neu- troAlgebras)andAntiAlgebraicstructures(orAntiAlgebras). Unliketheclas- sicalalgebraicstructures,wherealloperationsarewell-definedandallaxioms are totally true, in NeutroAlgebras and AntiAlgebras the operations may be partiallywell-definedandtheaxiomspartiallytrueorrespectivelytotallyouter- definedandtheaxiomstotallyfalse. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii2/49 SectionName NeutroAlgebraicstructuresandAntiAlgebraicstructures These NeutroAlgebras and AntiAlgebras form a new field of research, which is inspired from our real world. In this talk, we study neutrosophic quadruple algebraicstructuresandNeutroQuadrupleAlgebraicStructures. NeutroQuadru- pleGroupisstudiedinparticularandseveralexamplesareprovided. Itisshown that(NQ(Z),÷)isaNeutroQuadrupleGroup. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii3/49 SectionName Operation,NeutroOperation,AntiOperation When we define an operation on a given set, it does not automatically mean thattheoperationiswell-defined. Therearethreepossibilities: Theoperationiswell-defined(orinner-defined)forallset’selements(as inclassicalalgebraicstructuresthisisclassicalOperation). Theoperationifwell-definedforsomeelements,indeterminateforother elements,andouter-definedforotherselements(thisis NeutroOperation). Theoperationisouter-definedforallset’selements(thisis AntiOperation). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii4/49 SectionName Axiom,NeutroAxiom,AntiAxiom Similarly for an axiom, defined on a given set, endowed with some opera- tion(s). When we define an axiom on a given set, it does not automatically mean that the axiom is true for all set’s elements. We have three possibilities again: Theaxiomistrueforallset’selements(totallytrue)(asinclassical algebraicstructures;thisisaclassicalAxiom). Theaxiomiftrueforsomeelements,indeterminateforotherelements, andfalseforotherelements(thisisNeutroAxiom). Theaxiomisfalseforallset’selements(thisisAntiAxiom). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii5/49 SectionName Algebra,NeutroAlgebra,AntiAlgebra Analgebraicstructurewho’salloperationsarewell-definedandall axiomsaretotallytrueiscalledClassicalAlgebraicStructure(or Algebra). AnalgebraicstructurethathasatleastoneNeutroOperationorone NeutroAxiom(andnoAntiOperationandnoAntiAxiom)iscalled NeutroAlgebraicStructure(orNeutroAlgebra). AnalgebraicstructurethathasatleastoneAntiOperationorAntiAxiom iscalledAntiAlgebraicStructure(orAntiAlgebra). < Algebra,NeutroAlgebra,AntiAlgebra >. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii6/49 SectionName The Neutrosophic Quadruple Numbers and the Absorbance Law were intro- ducedbySmarandachein2015[1];theyhavethegeneralform: N = a+bT +cI +dF,wherea,b,c,dmaybenumbersofanytype(natural, integer, rational, irrational, real, complex, etc.), where “a" is the known part of the neutrosophic quadruple number N, while “bT + cI + dF" is the un- known part of the neutrosophic quadruple number N; then the unknown part issplitintothreesubparts: degreeofconfidence(T), degreeofindeterminacy of confidence-nonconfidence (I), and degree of nonconfidence (F). N is a four-dimensionalvectorthatcanalsobewrittenas: N = (a,b,c,d). F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii7/49 SectionName Therearetranscendental,irrationaletc. numbersthatarenotwellknown,they areonlypartiallyknownandpartiallyunknown,theymayhaveinfinitelymany decimals. Not even the most modern supercomputers can compute more than a few thousands decimals, but the infinitely many left decimals still remain unknown. Therefore,suchnumbersareverylittleknown(becauseonlyafinite number of decimals are known), and infinitely unknown (because an infinite √ numberofdecimalsareunknown). Takeforexample: 2 = 1.4142.... F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii8/49 SectionName Definition AneutrosophicsetofquadruplenumbersdenotedbyNQ(X)isasetdefined by NQ(X) = {(a,bT,cI,dF) : a,b,c,d ∈ RorC} whereT,I,F havetheirusualneutrosophiclogicmeanings. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,MFe.bArukarraym,1,,6M-1.9H,a2m02id1i,,KSa.sMhairnvakilii9/49 SectionName Multiplicationoftwoneutrosophicquadruplenumbers Multiplication of two neutrosophic quadruple numbers cannot be carried out like multiplication of two real or complex numbers. In order to multiply two neutrosophicquadruplenumberstheprevalenceorderof{T,I,F}isrequired. Consider the following prevalence orders: Suppose in an optimistic way we considertheprevalenceorderT (cid:31) I (cid:31) F. Thenwehave: TI = IT = max{T,I} = T, TF = FT = max{T,F} = T, IF = FI = max{I,F} = I, TT = T2 = T, II = I2 = I, FF = F2 = F. OrweconsidertheprevalenceorderT ≺ I ≺ F. Thenwehave: TI = IT = max{T,I} = I, TF = FT = max{T,F} = F, IF = FI = max{I,F} = F, TT = T2 = T, II = I2 = I, FF = F2 = F. F.Smarandache,A.Rezaei,A.A.A.Agboola,Y.B.Jun,,,,R.AO.BnoNrzeouotreoi,QBu.aDdrauvpvlaezG,rAou.pBsroumandSaeid,FMeb.rAuakrryam1,6,,-1M9.,H2a0m21id,iK,aSs.hManirvakil1ii0/49

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.