ebook img

On Kac's Jordan superalgebra PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Kac's Jordan superalgebra

ON KAC’S JORDAN SUPERALGEBRA ALEJANDRAS.CO´RDOVA-MART´INEZ⋆,ABBASDAREHGAZANI⋄, ANDALBERTOELDUQUE⋆ Abstract. The group-scheme of automorphisms of the ten-dimensional ex- 7 ceptionalKac’sJordansuperalgebraisshowntobeisomorphictothesemidi- 1 rectproductofthedirectproductoftwocopiesofSL2 bytheconstantgroup 0 schemeC2. 2 This is usedto revisit, extend, andsimplify,known results onthe classifi- cationofthetwistedformsofthissuperalgebraandofitsgradings. n a J 4 Kac’s ten-dimensional superalgebra K10 is an exceptional Jordan superalgebra 2 whichappearedforthe firsttimeinKac’sclassification[Kac77]ofthe finite dimen- sionalsimpleJordansuperalgebrasoveranalgebraicallyclosedfieldofcharacteristic ] A 0. It was constructed by Lie theoretical terms from a 3-grading of the exceptional simple Lie superalgebra F(4). R A more conceptual definition was given in [BE02] over an arbitrary field F of . h characteristicnottwo(theseassumptionson thegroundfieldwill bekept throughout at the paper), using thethree-dimensionalKaplanskysuperalgebraK3. Theevenpart m (K3)¯0 is a copy of the ground field F: (K3)¯0 = Fa, with a2 = a; while the odd partis a two-dimensionalvectorspaceW endowedwith anonzeroskew-symmetric [ bilinear form (|). The multiplication is determined as follows: 1 v 1 a2 =a, av = v =va, vw =(v|w)a, 8 2 9 7 for any v,w ∈W. We extend (|) to a supersymmetric bilinear form on K3: (K3)¯0 .06 andTh(Ken3)K¯11a0re=oFrt1h⊕ogoKn3a⊗l,FwKit3h,(wa|iath)=(K2110.)¯0 =F1⊕ K3⊗FK3 ¯0 =F1⊕F(a⊗a)⊕ 01 (gWive⊗nbWy)i,mapnodsi(nKg1t0h)(cid:0)¯1at=1iKst3h⊗e(cid:1)FuKni3ty¯1, a=nd(Wfor⊗hao)m⊕og((cid:0)ean⊗eoWus)e.leT(cid:1)mheenmtsuxlt,iyp,lizc,att∈ionKis, 7 (cid:0) (cid:1) 3 1 3 : (x⊗y)(z⊗t)=(−1)yz xz⊗yt− (x|z)(y |t)1 . (0.1) v 4 i (cid:16) (cid:17) X Ifthecharacteristicis3,thenK9 :=K3⊗FK3 isasimpleidealinK10. Otherwise r K10 is simple. a It must be remarked that an ‘octonionic’ construction of K has been given in 10 [RZ15]. Date:January23,2017. 2010 Mathematics Subject Classification. Primary17C40; Secondary17C70,17C30. Keywords and phrases. Kac’sJordansuperalgebra;group-schemeofautomorphisms,twisted forms,gradings. ⋆SupportedbytheSpanishMinisteriodeEconom´ıayCompetitividad—FondoEuropeodeDe- sarrolloRegional(FEDER)MTM2013-45588-C3-2-P,andbytheDiputaci´onGeneraldeArago´n— FondoSocialEuropeo(GrupodeInvestigacio´ndeA´lgebra). A.S.Co´rdova-Mart´ınezalsoacknowl- edgessupportfromConsejoNacionaldeCienciayTecnolog´ıa(CONACyT,M´exico)throughgrant 420842/262964. ⋄ This research was in part supported by a grant from IPM (No. 94160221) and partially carriedoutinIPM-IsfahanBranch. 1 2 A.S.CO´RDOVA-MART´INEZ,A.DAREHGAZANI,ANDA.ELDUQUE Usingthe constructionaboveofK intermsofK ,the groupofautomorphisms 10 3 Aut K wascomputedin[ELS07]. Thiswasusedin[CDM10]toclassifygradings 10 on K over algebraically closed fields of characteristic zero. 10 (cid:0) (cid:1) Our goal here is to compute the group-scheme of automorphisms of K , and 10 to use it to revisit, extend, and simplify drastically, the known results on twisted forms and on gradings on K . 10 Here we follow the functorial approach (see, for instance, [Wat79]). An affine group-schemeoverFisarepresentablegroup-valuedfunctordefinedonthecategory of unital, commutative, associative algebras over F: AlgF. Thus the group-scheme Aut K10 is the functor AlgF →Grp that takes any object R in AlgF to the group AutR(cid:0)K10(cid:1)⊗FR)(the groupofautomorphismsofthe R-superalgebraK10⊗FR, i.e., the groupofR-linearisomorphismspreservingthe multiplicationandthe grading), (cid:0) with the natural definition on morphisms. ItturnsoutthatAut K isisomorphictoasemidirectproduct SL ×SL ⋊ 10 2 2 C (Theorem 1.1), where C is the constant group scheme attached to the cyclic 2 2 group of two elements (a(cid:0)lso d(cid:1)enoted by C ). This extends the result(cid:0)in [ELS07](cid:1). 2 Moreover,the canonical projection π :Aut K →C induces an isomorphism 10 2 of pointed sets H1 F,Aut K → H1(F,C ) (Theorem 2.1). This associates 10 (cid:0)2 (cid:1) to the isomorphism class of any twisted form of K , the isomorphism class of a 10 quadratic´etalealgeb(cid:0)raover(cid:0)F,w(cid:1)h(cid:1)ichallowstogeteasilytheclassificationoftwisted forms of K (Corollary 2.2). Twisted forms of K were classified, in a completely 10 10 differentway,in[RZ03]and[EO00]. We believethatourapproachismorenatural. A simple observation shows that SL ×SL ⋊C is also the automorphism 2 2 2 group-schemeofK ×K ,orofJ(W)×J(W),whereJ(W)istheJordansuperalgebra 3 3 of the ‘superform’ (|) on W = W¯1 a(cid:0)bove. That i(cid:1)s, J(W)¯0 = F1, J(W)¯1 = W and the multiplication is given by 1x=x1=x, vw =(v |w)1, for any x ∈ J(W), v,w ∈ W. This observation will be used in the proof of the bijection H1 F,Aut K ≃H1(F,C ). 10 2 Finally,givenanabeliangroupG, aG-gradingona superalgebraA corresponds (cid:0) (cid:0) (cid:1)(cid:1) to a homomorphism of group schemes GD −→Aut(A), whereGD istheCartierdualtotheconstantgroupschemegivenbyG. (See[EK13] for the basic definitions and facts on gradings.) TheclassificationofG-gradingsuptoisomorphismonK ×K (orJ(W)×J(W)) 3 3 is an easy exercise (Proposition3.2), and it follows at once fromthis the classifica- tion of G-gradings, up to isomorphism, on K (Theorem 3.5), thus extending and 10 simplifying widely the results in [CDM10]. 1. The group-scheme of automorphisms Consider the two-dimensional vector space W = (K3)¯1, which is endowed with the nonzero skew-symmetric bilinear form (|) : W ×W → F. The special linear group-scheme SL(W) coincides with the symplectic group scheme Sp(W), which is, up to isomorphism, the group-scheme of automorphisms of K (or of J(W)). 3 The constant group scheme C acts on SL(W)×SL(W) by swapping the argu- 2 ments,andhencewegetanaturalsemidirectproduct SL(W)×SL(W) ⋊C . The 2 groupisomorphismΦ in [ELS07, p. 3809]extends naturallyto a homomorphismof (cid:0) (cid:1) ON KAC’S JORDAN SUPERALGEBRA 3 affine group-schemes: Φ: SL(W)×SL(W) ⋊C −→Aut K 2 10 (cid:0) (cid:1) (cid:0) (cid:1) 1 7→ 1, a⊗a7→a⊗a, (f,g) 7→ Φ(f,g) :va⊗⊗av 7→7→fa(⊗v)g⊗(va),, (1.1) v⊗w7→f(v)⊗g(w), generator of C 7→ τ : 17→ 1, 2 (x⊗y 7→(−1)xyy⊗x, for any R in AlgF, f,g ∈ SL(W)(R) (i.e., f,g ∈ EndR(W ⊗F R) ≃ M2(R) of determinant 1), v,w ∈ WR := W ⊗FR, x,y ∈ (K3)R. (Note that a representation of a constant group scheme ρ : G → GL(V) is determined by its behavior over F: ρF :G→GL(V).) Theorem 1.1. Φ is an isomorphism of affine group-schemes. Proof. If F denotes an algebraic closure of F, then Φ is a group isomorphism F [ELS07, Theorem 3.3]. Since SL(W) × SL(W) ⋊ C ≃ SL × SL ⋊ C is 2 2 2 2 smooth, it is enough to prove that the differential dΦ is bijective (see, for instance [EK13, Theorem A.50]). The L(cid:0)ie algebra of SL((cid:1)W)×SL((cid:0)W) ⋊C is(cid:1)sl(W)× 2 sl(W),whiletheLiealgebraofAut K isthe evenpartofitsLiesuperalgebraof 10 (cid:0) (cid:1) derivations, which is again, up to isomorphism, sl(W)×sl(W) identified naturally with a subalgebra of EndF K10 (se(cid:0)e [B(cid:1)E02, Theorem 2.8]). Moreover, with the natural identifications, dΦ is the identity map. (cid:3) (cid:0) (cid:1) Thelastresultinthissectionisthesimpleobservationthat SL(W)×SL(W) ⋊ C is also the group-scheme of automorphisms of the Jordansuperalgebra K ×K 2 3 3 and J(W) × J(W). This will be instrumental in the next s(cid:0)ection. Its proof(cid:1)is straightforward. Proposition 1.2. The natural transformations defined by: Ψ1 : SL(W)×SL(W) ⋊C −→Aut K ×K 2 3 3 (cid:0) (cid:1) (cid:0) (a,(cid:1)0)7→(a,0), (f,g) 7→ Ψ1 : (0,a)7→(0,a), (f,g)  (v,w)7→ f(v),g(w) , generator of C2 7→ τ :(x,y)7→(y,x), (cid:0) (cid:1) for v,w∈W and x,y ∈K , and 3 Ψ2 : SL(W)×SL(W) ⋊C −→Aut J(W)×J(W) 2 (cid:0) (cid:1) (cid:0) (1,0)7→(cid:1)(1,0), (f,g) 7→ Ψ2 : (0,1)7→(0,1), (f,g)  (v,w)7→ f(v),g(w) , generator of C2 7→ τ :(x,y)7→(y,x), (cid:0) (cid:1) for v,w∈W and x,y ∈J(W), are isomorphisms of group-schemes. 4 A.S.CO´RDOVA-MART´INEZ,A.DAREHGAZANI,ANDA.ELDUQUE 2. Twisted forms The set of the isomorphism classes of twisted forms of K is identified with 10 the pointed set H1 F,Aut K . (This is H1 F/F,Aut(K in the notation of 10 10 [Wat79].) The key to the c(cid:0)lassifica(cid:0)tion(cid:1)o(cid:1)f twisted forms(cid:0)of K is the f(cid:1)o(cid:1)llowing result: 10 Theorem 2.1. The canonical projection π : SL(W)×SL(W) ⋊C →C induces 2 2 a bijection of pointed spaces π∗ :H1 F,Aut((cid:0)K10 →H1(F,C2(cid:1)). Proof. First,thenaturalsectionι:C(cid:0) → SL(W(cid:1))(cid:1)×SL(W) ⋊C satisfiesπ◦ι=id, 2 2 so π∗◦ι∗ =id, and π∗ is surjective. (cid:0) (cid:1) Second, the short exact sequence 1−→SL(W)×SL(W)−→ SL(W)×SL(W) ⋊C −→C −→1 2 2 induces an exact sequence (see [Wat(cid:0)79, §18.1]) in cohom(cid:1) ology: 1→SL(W)×SL(W)→ SL(W)×SL(W) ⋊C →C 2 2 →H1(F,SL(W)×SL(W(cid:0)))→H1 F, SL((cid:1)W)×SL(W) ⋊C2 →H1(F,C2). Since H1(F,SL ) is trivial, this gives(cid:0)an(cid:0)exact sequence (cid:1) (cid:1) 2 1−→H1 F, SL(W)×SL(W) ⋊C →H1(F,C ), 2 2 but, in principle, this do(cid:0)es(cid:0)not prove that π∗(cid:1)is a b(cid:1)ijection. It just says that the only element in H1 F, SL(W)×SL(W) ⋊C2 that is sent by π∗ to the trivial element in H1(F,C ) is the trivial element. 2(cid:0) (cid:0) (cid:1) (cid:1) Through the isomorphisms in the previous section, it is enough to prove that π induces a bijection of pointed sets π∗ :H1 F,Aut J(W)×J(W) →H1(F,C2). Write J = J(W) × J(W) and identify SL(W) × SL(W) ⋊ C with Aut(J) (cid:0) (cid:0) (cid:1)(cid:1) 2 by means of Ψ2 in Proposition 1.2. The(cid:0)n J¯0 = F × F, an(cid:1)d π corresponds to the restriction map Aut(J) → Aut(J¯0), and the induced map in cohomology π∗ : H1(F,Aut(J)) → H1(F,Aut(J¯0)) corresponds to the map that takes the isomorphism class of a twisted form H of J to the isomorphism class of H¯0. If H¯0 is trivial (H¯0 ≃F×F) then, by the above, H is isomorphic to J. Otherwise, H¯0 is a quadratic separable field extension of F, so that H¯1 is a two-dimensional vector space over H¯0, and the multiplication H¯1×H¯1 →H¯0 is H¯0-bilinear and anticom- mutative, and hence uniquely determined. It turns out that H is isomorphic to J(W)⊗FH¯0. This proves the injectivity of π∗. (cid:3) Corollary 2.2. Any twisted form of K splits after a quadratic separable field 10 extension, and for any such field extension K of F, there is a unique (up to isomor- phism) nontrivial twisted form of K which splits over K. 10 If K is a quadratic separable field extension of F, the unique nontrivial twisted formofK thatsplitsoverKcorrespondstothenontrivialelementinH1(K/F,C ), 10 2 and hence if the Galois group Gal(K/F) is generated by σ (σ2 = id), this twisted form is given by K10,K ={X ∈K10⊗FK:(τ ⊗id)(X)=(id⊗σ)(X)} (2.1) ={X ∈K10⊗FK:(τ ⊗σ)(X)=X}, where τ is given in (1.1). ON KAC’S JORDAN SUPERALGEBRA 5 Hence, with K = F(α), α2 ∈ F, σ(α) = −α, so if {u,v} is a symplectic basis of W =(K3)¯1, K10,K ¯0 =F-span 1⊗1,(a⊗a)⊗1,(u⊗u)⊗α,(v⊗v)⊗α, (cid:0) (cid:1) D (u⊗v−v⊗u)⊗1,(u⊗v+v⊗u)⊗α , (2.2) E K10,K ¯1 =F-span (a⊗x+x⊗a)⊗1,(a⊗x+x⊗a)⊗α:x∈{u,v} . (cid:0) (cid:1) D E Remark 2.3. • BothK andJ(W)arerigid: anytwistedformofanyofthesesuperalgebras 3 is isomorphic to it. This is because Aut(K ) ≃ Aut(J(W)) ≃ SL(W) ≃ 3 SL . 2 • The proofofTheorem2.1showsthatthe twistedformsofK ×K (respec- 3 3 tively J(W)×J(W)) are, up to isomorphism, the superalgebras K3 ⊗F K (resp. J(W)⊗F K), where K is quadratic ´etale algebra over F, and any two such forms are isomorphic if and only if so are the corresponding´etale algebras. 3. Gradings Given an abelian group G, a G-grading on a superalgebra A = A¯0 ⊕A¯1 is a decomposition into a direct sum of subspaces: A = A , such that A A ⊆ g∈G g g h A foranyg,h∈G,andeachhomogeneouscomponentisasubspaceinthe‘super’ gh L senseofA: Ag =(Ag∩A¯0)⊕(Ag∩A¯1). Wewillwritedeg(x)=gincase06=x∈Ag. Two G-gradings Γ : A = A and Γ′ = A′, are isomorphic if there is g∈G g g∈G g an automorphism ϕ∈Aut(A) such that ϕ(A )=A′ for any g ∈G. L gL g AgradingbyGisequivalenttoahomomorphismofaffinegroupschemesGD → Aut(A)(see[EK13]),andthisshowsthattwosuperalgebraswithisomorphicgroup- schemes of automorphisms have equivalent classifications of G-gradings up to iso- morphism. Therefore, in order to classify gradings on K it is enough to classify 10 gradings on K ×K (or J(W)×J(W)), and this is straightforward. 3 3 Actually, fix a symplectic basis {u,v} of W =(K3)¯1. Definition 3.1. Given an abelian group G, consider the following gradings (e denotes the neutral element of G): • For g ,g ∈G, denote by Γ1(G;g ,g ) the G-grading given by: 1 2 1 2 deg(x)=e for any x∈ K3×K3)¯0, deg(u,0)=g1 =deg(v,(cid:0)0)−1, deg(0,u)=g2 =deg(0,v)−1. • For g,h ∈ G with h2 = e 6= h, denote by Γ2(G;g,h) the G-grading given by: deg(a,a)=e, deg(a,−a)=h, deg(u,u)=g =deg(v,v)−1, deg(u,−u)=gh=deg(v,−v)−1. Proposition 3.2. Any grading on K ×K by the abelian group G is isomorphic 3 3 to either Γ1(G;g ,g ) or to Γ2(G;g,h) (for some g ,g or g,h in G). 1 2 1 2 Moreover, no grading of the first type (Γ1(G;g ,g )) is isomorphic to a grading 1 2 of the second type (Γ2(G;g,h)), and • Γ1(G,g ,g ) is isomorphic to Γ1(G;g′,g′) if and only if the sets 1 2 1 2 {g ,g−1,g ,g−1} and {g′,(g′)−1,g′,(g′)−1} coincide. 1 1 2 2 1 1 2 2 6 A.S.CO´RDOVA-MART´INEZ,A.DAREHGAZANI,ANDA.ELDUQUE • Γ2(G;g,h) is isomorphic to Γ2(G;g′,h′) if and only if h′ = h and g′ ∈ {g,gh,g−1,g−1h}. Proof. Any G-gradingonJ:=K3×K3 inducesa G-gradingonJ¯0,whichis isomor- phic to F×F, and hence we are left with two cases: (1) ThegradingonJ¯0istrivial,i.e.,J¯0iscontainedinthehomogeneouscompo- nentJe. Then,withW =(K3)¯1,bothW×0=(a,0)J¯1and0×W =(0,a)J¯1 aregradedsubspacesofJ¯1. Hencewecantakebases{ui,vi}ofW,i=1,2, such that {(u1,0),(v1,0),(0,u2),(0,v2)} is a basis of J¯1 consisting of ho- mogeneous elements. We can adjust v , i = 1,2, so that (u | v ) = 1. If i i i deg(u ,0)=g , i=1,2, the grading is isomorphic to Γ1(G;g ,g ). i i 1 2 (2) The grading on J¯0 is not trivial. Then there is an element h ∈ G of order 2 such that deg(a,a) = e and deg(a,−a) = h. (Note that (a,a) is the unity element of J¯0(≃ F×F), so it is always homogeneous of degree e.) As J¯0 = (J¯1)2, there are homogeneous elements (u1,u2),(v1,v2) ∈ J¯1 such that (u ,u )(v ,v )=(a,a). If g =deg(u ,u ), this grading is isomorphic 1 2 1 2 1 2 to Γ2(G;g,h). The conditions for isomorphism are clear. (cid:3) Any grading Γ1(G;g ,g ) is a coarsening of the grading Γ1 Z2;(1,0),(0,1) , 1 2 whileanygradingΓ2(G;g,h)isacoarseningofthegradingΓ2 Z×Z ;(1,¯0),(0,¯1) , (cid:0) 2 (cid:1) where Z =Z/2Z. As an immediate consequence, we obtain the next result. 2 (cid:0) (cid:1) Corollary 3.3. Up to equivalence, there are exactly two fine gradings on K ×K : 3 3 Γ1 Z2;(1,0),(0,1) and Γ2 Z×Z ;(1,¯0),(0,¯1) . 2 (cid:0)Proposition3.2a(cid:1)ndCoro(cid:0)llary3.3havecomple(cid:1)telysimilarcounterpartsforJ(W)× J(W). In order to transfer these results to Kac’s superalgebra K , take into account 10 that K10 is generated by its odd part, as (K10)¯1 2 = (K10)¯0, so any grading is determined by its restriction to the odd part, and use the commutativity of the (cid:0) (cid:1) diagram Aut K ×K oo Ψ1 SL(W)×SL(W) ⋊C Φ // Aut K 3(cid:127)_ 3 2 (cid:127)_ 10 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:15)(cid:15) (cid:15)(cid:15) GL(W ×W) ≃ //GL (W ⊗a)⊕(a⊗W) where the vertical arrows are given by the restrictions to(cid:0)the odd parts, and t(cid:1)he bottom isomorphism is given by the natural identification W ×W → (W ⊗a)⊕ (a⊗W), (v,w)7→v⊗a+a⊗w. Thus Definition 3.1 transfers to K as follows: 10 Definition 3.4. Given an abelian group G, consider the following G-gradings on K : 10 • For g ,g ∈G, denote by Γ1 (G;g ,g ) the G-grading determined by: 1 2 K10 1 2 deg(u⊗a)=g =deg(v⊗a)−1, deg(a⊗u)=g =deg(a⊗v)−1. 1 2 • For g,h ∈ G with h2 = e 6= h, denote by Γ2 (G;g,h) the G-grading K10 determined by: deg(u⊗a+a⊗u)=g =deg(v⊗a+a⊗v)−1, deg(u⊗a−a⊗u)=gh=deg(v⊗a−a⊗v)−1. And Proposition 3.2 and Corollary 3.3 are now transferred easily to K : 10 ON KAC’S JORDAN SUPERALGEBRA 7 Theorem 3.5. Any grading on K by the abelian group G is isomorphic to either 10 Γ1 (G;g ,g ) or to Γ2 (G;g,h) (for some g ,g or g,h in G). K10 1 2 K10 1 2 No grading of the first type is isomorphic to a grading of the second type, and • Γ1 (G;g ,g ) is isomorphic to Γ1 (G;g′,g′) if and only if the sets K10 1 2 K10 1 2 {g ,g−1,g ,g−1} and {g′,(g′)−1,g′,(g′)−1} coincide. 1 1 2 2 1 1 2 2 • Γ2 (G;g,h) is isomorphic to Γ2 (G;g′,h′) if and only if h′ =h and g′ ∈ K10 K10 {g,gh,g−1,g−1h}. Moreover, there are exactly two fine gradings on K up to equivalence, namely 10 Γ1 Z2;(1,0),(0,1) and Γ2 Z×Z ;(1,¯0),(0,¯1) . K10 K10 2 (cid:0) (cid:1) (cid:0) (cid:1) Remark 3.6. Any grading on K by an abelian group G extends naturally to a 10 gradingbyeitherZ×GorZ2×GontheexceptionalsimpleLiesuperalgebraF(4), 2 whichisobtainedfromK usingthewell-knownTits-Kantor-Koecherconstruction. 10 However, not all gradings on F(4) are obtained in this way. References [BE02] G.BenkartandA.Elduque,AnewconstructionoftheKacJordansuperalgebra,Proc. Amer.Math.Soc.130(2002), no.11,3209–3217. [CDM10] A.J.Calder´onMart´ın,C.DraperFontanals, andC.Mart´ınGonz´alez, Gradings on the Kac superalgebra, J.Algebra324(2010), no.12,3249–3261. [EK13] A.ElduqueandM.Kochetov, Gradings on simple Lie algebras,MathematicalSurveys andMonographs189,AmericanMathematicalSociety, Providence,RI,2013. [EO00] A. Elduque and S. Okubo, Pseudo-composition superalgebras, J. Algebra 227 (2000), no.1,1–25. [ELS07] A.Elduque,J.Laliena,andS.Sacrist´an,TheKacJordansuperalgebra: automorphisms and maximal subalgebras Proc.Amer.Math.Soc.135(2007), no.12,3805–3813. [Kac77] V.G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan su- peralgebras, Comm.Algebra5(1977), no.13,1375–1400. [RZ03] M.L. Racine and E.I. Zelmanov, Simple Jordan superalgebras with semisimple even part, J.Algebra270(2003), no.2,374–444. [RZ15] M.L. Racine and E.I. Zelmanov, An octonionic construction of the Kac superalgebra K10,Proc.Amer.Math.Soc.143(2015), no.3,1075–1083. [Wat79] W.C.Waterhouse,Introductiontoaffinegroupschemes,GraduateTextsinMathemat- ics66.Springer-Verlag,NewYork-Berlin,1979. Departamento de Matema´ticas e Instituto Universitario de Matema´ticas y Aplica- ciones, Universidadde Zaragoza,50009Zaragoza,Spain E-mail address: [email protected] Department of Mathematics, University of Isfahan, Isfahan, Iran, P.O.Box: 81746- 73441 and School of Mathematics, Institute for Research in Fundamental Sciences (IPM),P.O. Box: 19395-5746 E-mail address: [email protected] Departamento de Matema´ticas e Instituto Universitario de Matema´ticas y Aplica- ciones, Universidadde Zaragoza,50009Zaragoza,Spain E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.