ebook img

Nuclear Photonics PDF

0.37 MB·
by  D. Habs
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nuclear Photonics

NUCLEAR PHOTONICS D. Habs , M.M. Günther†, M. Jentschel and P.G. Thirolf‡ ∗ ∗∗ 2 Ludwig-Maximilians-UniversitätMünchen,D-85748Garching,Germany 1 ∗ MaxPlanckInstitutfürQuantenoptik,D-85748Garching,Germany 0 2 †MaxPlanckInstitutfürQuantenoptik,D-85748Garching,Germany n ∗∗InstitutLaue-Langevin,F-38042Grenoble ‡Ludwig-Maximilians-UniversitätMünchen,D-85748Garching,Germany a J 1 Abstract. With the planned new g -beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at 2 Bucharest(Romania)with1013g /sandabandwidthofD Eg/Eg 10−3,aneweraofg beamswith energiesupto20MeVcomesintooperation,comparedtothepre≈sentworld-leadingHIg Sfacilityat h] DukeUniversity(USA)with108g /sandD Eg/Eg 3 10−2.Inthelongrunevenaseededquantum p FELforg beamsmaybecomepossible,withmuc≈hhi·gherbrillianceandspectralflux.Atthesame - time new excitingpossibilitiesopen upfor focusedg beams. Here we describe a new experiment c at the g beam of the ILL reactor (Grenoble, France), where we observed for the first time that c the index of refraction for g beams is determined by virtual pair creation. Using a combination a . of refractive and reflective optics, efficient monochromators for g beams are being developed. s Thus,wehavetooptimizethetotalsystem:theg -beamfacility,theg -beamopticsandg detectors. c i We can trade g intensity for band width, going down to D Eg/Eg 10−6 and address individual s ≈ nuclear levels. The term “nuclear photonics” stresses the importance of nuclear applications. We y h canaddresswithg -beamsindividualnuclearisotopesandnotjustelementslikewithX-raybeams. p Compared to X rays, g beams can penetrate much deeperinto big samples like radioactive waste [ barrels,motorsorbatteries.Wecanperformtomographyandmicroscopystudiesbyfocusingdown to m m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution 1 and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations v like the scissors mode, two-phononquadrupoleoctupoleexcitations, pygmy dipole excitations or 6 giant dipole excitations under the new facet of applications. We find many new applications in 6 4 biomedicine,greenenergy,radioactivewastemanagementorhomelandsecurity.Alsomorebrilliant 4 secondarybeamsofneutronsandpositronscanbeproduced. 1. Keywords: g beam,g optics,nuclearphotonics 0 PACS: 07.85.Fv,25.20.-x,29.25.Dz 2 1 : v INTRODUCTION i X r Hereweconsidertunableg beamswithtypicalg energiesfrom0.1-20MeVfromhard a X-raysto g beams.Someofthepropertiesofthesebeams,liketheirwavelength,orthe real part d or imaginary part b of the index of refraction n(Eg )=1+d (Eg )+i b (Eg ) · for a typical material like silicon and gold are compiled in Table 1. The refractive part d = l 2r b, where b is the scattering length and r the atomic density. The absorptive − 2p part b = lrs a = ml , where s is the absorption cross section and m the absorption 2p 4p a coefficient. For photons we have the relation between the wavelength l in fm and the photonenergy E in MeV hc 1240 l [fm]= = (1) E E[MeV] The new g optics [1] with small radii of curvature works best for rather brilliant beams with a rather small beam diameter. Thus, we have to compare the properties of planned andexistingbeam facilitiestotherequirementsoftheg optics. TABLE1. Measuredandpredictedpropertiesofg raysinsiliconandgold. energy wavelength d (Si) b (Si) d (Au) b (Au) 10MeV 124fm +2 10 10 6 10 14 3 (10 6 10 7) 5 10 12 − − − − − · · · − · 1MeV 1240fm +1 10 9 2 10 12 10 5 10 6 2 10 10 − − − − − · · − · 0.1MeV 0.124Å 2 10 7 6 10 11 10 5 10 6 1 10 7 − − − − − − · · − · 12.4keV 1.0Å 1 10 6 6 10 8 2 10 5 4 10 6 − − − − − · · · · In Table 2 wehavecompiledtheseproperties. Forthenewlyplanned Comptonback- scattering g -beam facilities like MEGa-ray [2] and ELI-NP [3], we expect to get much morebrilliantand muchmoreintenseg beams,comparedtothepresentworldwidebest valuesoftheHIg Sfacility[4].However,thelargedistanceofabout30mforHIg Sfrom theproductionpointoftheg beamtothefirstaccessofg opticsresultsinalargeg -beam diameterof1cm,toolargeforaneffectiveuseofg lenses.Ontheotherhand,forMEGa- rayandELI-NPfirstbeamdiametersofabout50m mareaccessibleforanenergyspread of10 3, well suited forg optics.Forhard X-ray beams oftheESRF facility(Grenoble) − atthehighenergy beamlineID15 typicalbeamdiameters areless than1000 m m, again suited for X-ray optics [7]. The smaller beam size allows for smaller optical elements with less absorption. Then more elements N can be used behind each other increasing the deflection. On the other hand, we have rather small opening angles of the g beams. Thus, a small angle change makes the divergent g beam convergent. We have to use rather long flight paths (several 10 meters) to reach even smaller g -beam diameters, which then make g optics even more effective. Thus, similarto hard X-ray experiments atlarge synchrotrons,ratherlongbeam linesare required forg -beam experiments. We have to look at the three components: (i) the g beam (ii) the g optics (iii) the g detectors as an integral system and have to tailorthem for each experiment.Frequently, thereisaclearneedtoreducetheaverageg -beamintensityortheinstantaneousintensity on target, but we should not just reduce it by collimators, but we should improve at the same time the band width from an expected value of 10 3 to, e.g., 10 6. It may be − − advantageous to have the possibility to gradually zoom in the g beam resolution, to identifyfirstinterestingspectralstructureswithlowerresolutionandthentoincreasethe beamresolutionaccordingly. g INTEGRATED BEAM FACILITIES g Beams For the two planned Compton back-scattering g facilities ELI-NP and MEGa-ray we expect 1013g /s for all g energies. For Compton back-scattering there is a relation betweeng energyEg andtheangleQ oftheoutgoingphotonwithrespecttotheelectron beamdirection: 4g 2 E Eg = 1+(g Q e)·2+L 4geEL (2) e mec2 E is energy of the primary laser photons, g = Ee is the g factor of the electron L e mec2 beam with energy E and the electron rest mass m . Thus, for Q = 1/g the emitted e e e g photon has about a factor of 2 smaller g energy than a g photon in electron beam direction.ForanglesQ = √BW,thecentralg beamopeningconeshowsnolongerthe BW g e Q dependence of the Compton scattering, but other factors like the band width of the electron beam orthe band widthof thelaser beam determinetheband width BW of the g beam. We will limit the acceptance angle of the g lens or the corresponding g beam radius R at the entrance to the lens to this much smaller angle Q . Thus we make use BW of the very special g energy – angle Q correlation of Compton back-scattered g rays to workwithaverysmallradiusRandtoobtainanaturalmonochromatization.Foraband width BW = 10 3, we thus expect for ELI-NP and MEGa-ray an intensity of 1010g /s. − TheouteranglesQ are nolongerfocusedby thelens. g Optics Refractive Optics. In the last 15 years, X-ray optics became very common at many synchrotronbeamlines[5, 7]. TherefractiveindexofX-ray lensesisdeterminedbythe virtualphotoeffect (Rayleighscattering)and followsthelaw[8]: l 2 r Z 1 d = 2.70 · · 10 6(cid:181) . (3) photo − · A · − Eg2 The g ray wave length l is measured in Å, r in g/cm3, Z is the atomic number and A is the atomic mass in g. Obviously, d photo converges with 1/Eg2 very fast towards zero, whichrepresentsasignificantlimitationfortheconstructionoffocusingopticsathigher energiesviad .Awaytostillobtainareasonablefocallength f istocombinealarge photo numberN oflenseswith TABLE2. Propertiesofg beamfacilities. property HIg S MeGa-ray ELI-NP g QFEL ESRF(ID15) g energy[MeV] 1-160 0.5-2.7 0.5-19.6 0.5-10.0 0.1-0.70 peakbrilliance 1/(mm2mrad2s0.1%BW) 1015 1022 1022 1032 1011 intensity[1/s] 108 1013 1013 1013 109 spect.flux[1/(eVs)] 6 102 1 106 1 106 1011 108 bandwidthD Eg/Eg 3·% 1·0−3 1·0−3 10−6 10−3 openingangleat1MeV 1 10 4 1 10 5 1 10 5 1 10 6 5 10 6 − − − − − closestbeamradius[m m] ·104 ·102 ·102 ·10 ·103 repetitionrate[1/s] 3 108 1.2 104 1.2 104 1.2 104 3 108 · · · · · f =R/(2 d N), (4) · · whereR is theradius attheapex oftheparabolicallyshaped, concavelenses. However,recently [1]weobservedthattheindexofrefractiond forg energies above 700 keV is positive in silicon (Z=14), and no longer negative like for X-rays. For 1- 2 MeV g rays we obtained still rather small values of d +10 9. While for X-rays − the virtual photo effect (Rayleigh scattering) explains d , fo≈r the higher g energies it is the virtual pair creation or Delbrück scattering. Here no longer the electrons, but the electrostatic fields (beyond the Schwinger limit) of the nuclei dominate the scattering amplitude. Since the pair creation (Bethe-Heitler process) scales with Z2, we expect due the the Kramers-Kronig dispersion relation, that also d contains in a power pair series development with Z2 a term proportional to Z2. But Delbrück scattering, which scales with Z4, is for larger angles an absorptive process and we expect from the Kramers-Kronig dispersion integral that d contains also a strong term scaling with pair Z4.Extendingthesameproceduretohigher-orderDelbrückscatteringandpaircreation, d also contains in the expansion higherterms Z2n. Even if thefactors in front of Z2n pair are small, for higher-Z materials these terms may start to dominate. Thus we expect for typical high Z optical materials like gold or platinum, that the index of refraction may reach values d = 10 5 10 6 for 1-2 MeV g rays. This large increase of d with − − Z is essential for all g optics−and has to be verified experimentally. If larger values of d can be reached, smaller numbers of optical elements N are required to obtain the same deflection. Also, the switch-over from negative to positive values of d will occur for higher-Z materials at lower g energy. For energies below, e.g., 100 keV, the large increaseofthephoto effect withZ4 probablymakes highZ optical elementsinefficient. Ontheotherhand,wehaveforgoldabove0.5 MeVan absorptionlengthd of3 mm, 1/2 whichisquitelarge. Thus,weexpectforg -beams thathigh-Zmaterialslikegoldorplatinumwillbecome the ideal material for all optical elements like lenses, prisms etc.. While for X rays due to the negative d concave lenses are used for focusing, for g rays convex lenses like in standard classical optics will be used. The new d shows a very different, much pair more favourable g energy dependence: it is rather constant below 3 MeV and drops off with 1/Eg for larger energies. Thus g optics may be extended up to 10-20 MeV. In contrastd showedthemuchfasterdecreasewith1/E2 .Typicalg lensesatthebeam photo g entrancecouldhavearadiusofcurvatureof500 m m, acentral thicknessof150 m m and anacceptance diameterof250 m m. New Efficient Monochromator: Combination of Refractive and Reflective g Optics. MonochromatizationofelectromagneticradiationviaLaueorBraggdiffractionfollows Braggs law ml =2dsinq (5) B Here l is the wave length of the incoming photon, d the lattice spacing of the diffracting crystal, m is the order of reflection and q the diffraction angle. We have B a typical deflection angle of 10 mrad for 1 MeV g rays. This Bragg diffraction is a well establishedmonochromatizationtechnique[5]. A particularroleintheseconsiderations playsocalledperfectsinglecrystals,whereacoherentpropagationofanincomingwave fieldallthroughthecrystaloccurs.Withindynamicaldiffractiontheory[5,10]itcanbe shown that the angular dependence of the intensity profile I, under which an incoming wavefield is diffracted,has thefollowinganalytical form I(q ) = sin2 A 1+y2 /(1+y2) (6) (cid:16) p (cid:17) y (q q )/l (7) B ∼ − Here A is a crystal specific parameter which linearly depends on the wave length. It canbeeasilydemonstratedfromEq.(6)thatthewidthofI(q )isproportionaltol .This width should be called the acceptance width of the monochromator crystal. In order to obtain the excellent and wave-length independent possible monochromatization of an ideal crystal, it is necessary to create a beam with a divergence not larger than the acceptance width of the monochromator. This can be obtained by the use of a double- crystal monochromator [9, 10]. The beam accepted and diffracted by a first perfect crystal (in that sense the beam behind the first crystal) will have a divergence equal to theacceptanceofthisfirstcrystal.Ifasecondcrystal,identicaltothefirstone,isplaced into this beam, the acceptance and divergenceare perfectly matched and the theoretical possiblemonochromatizationcanbeobtained.Thesecondcrystaloperatesatadifferent order of reflection m for the dispersive mode, while the first crystal produces a narrow widthin angle,which translatesintoanarrow energy widthforthesecond crystal: D Eg /Eg =DQ /tanQ 10nrad/10mrad 10−6 (8) ≈ ≈ This concept of monochromatization is largely used at X-ray synchrotrons, where the angular Darwin width is nicely matched to the natural opening angle 1/g . Since the acceptance of the first crystal quickly gets much smaller with wave length compared to the divergence of the incoming g -beam, for g -ray energies these intensity losses amount to 3-4 orders of magnitude. We want to pursue a new technical solution that allowstoovercometheseenormouslossesinintensityassociatedwiththeuseofperfect single crystals. The main idea consists in the combined use of refractive optics and diffraction monochromators and is illustrated in Fig. 1. We propose to use instead of a single monochromator crystal a sequence of several crystals. To assure that each crystal has the same lattice spacing and the same orientation, we propose to cut them from a single large crystal block. In this sense each crystal sheet will act as a perfect monochromatorcrystal.Betweenthecrystalsheetsweproposetoinsertasystemofone or several refracting prisms. The function of this combined system is illustrated in the right hand part of Fig. 1. The upper graph (A) illustrates the divergent beam profile of the incoming photon beam. The next graph (B) shows the beam profile after the action of the first monochromator crystal sheet. It is indicated that a fraction of intensity is missing due to the diffraction process. In graph (C) we show how the prism system is acting: it is shifting the intensity profile in angular space (rotating it). By this it assures that the next monochromatorcrystal sees again the full intensity.The action of the next (cid:10)(cid:6)(cid:12)(cid:13)(cid:14)(cid:10)(cid:6)(cid:15)(cid:16)(cid:17)(cid:8)(cid:18)(cid:14) (cid:11) (cid:27)(cid:28)(cid:5)(cid:29)(cid:13)(cid:10)(cid:30)(cid:31)(cid:2)(cid:19) (cid:9)(cid:18)(cid:19)(cid:2)(cid:25)(cid:9)(cid:5)!(cid:9)(cid:13)(cid:23)(cid:9)(cid:20)(cid:18)(cid:11) (cid:6)(cid:9)(cid:10)(cid:7) (cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1) (cid:2) (cid:3) (cid:4) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:1)(cid:2)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:11)(cid:6)(cid:10)(cid:2)(cid:12)(cid:7)(cid:13)(cid:10)(cid:14)(cid:5) (cid:5)(cid:6)(cid:7) (cid:1) (cid:18)(cid:6)(cid:15)(cid:22)(cid:8) (cid:18)(cid:19)(cid:7)(cid:8)(cid:20)(cid:16)(cid:21)(cid:20)(cid:9)(cid:7)(cid:16)(cid:12)(cid:20)(cid:11)(cid:9)(cid:7)(cid:18)(cid:22)(cid:16)(cid:23)(cid:10)(cid:24)(cid:20)(cid:18)(cid:12)(cid:7)(cid:10)(cid:13)(cid:6) (cid:7)(cid:8)(cid:13)(cid:1)(cid:10)(cid:15)(cid:15)(cid:14)(cid:11)(cid:5)(cid:14)(cid:3)(cid:12)(cid:10)(cid:8)(cid:7)(cid:16)(cid:14)(cid:11)(cid:12)(cid:1)(cid:14)(cid:17) (cid:6)(cid:9)(cid:10)(cid:7)(cid:11) (cid:8) (cid:5)(cid:6)(cid:7) (cid:2) (cid:18)(cid:6)(cid:15)(cid:22)(cid:8) (cid:27)(cid:27)(cid:28)(cid:5)(cid:12)(cid:2)(cid:19) (cid:9)(cid:18)(cid:19)(cid:2)(cid:25)(cid:9)(cid:5)!(cid:9)(cid:13)(cid:23)(cid:9)(cid:20)(cid:18)(cid:11) (cid:9)(cid:25)(cid:10)(cid:19)(cid:7)(cid:16)(cid:18)(cid:19)(cid:7)(cid:8)(cid:20)(cid:16)(cid:21)(cid:20)(cid:9)(cid:7)(cid:16)(cid:26)(cid:20)(cid:10)(cid:9)(cid:14)(cid:16)(cid:9)(cid:8)(cid:7) (cid:11) (cid:6)(cid:9)(cid:10)(cid:7) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:1)(cid:2)(cid:6)(cid:7)(cid:8)(cid:1)(cid:9)(cid:10)(cid:11)(cid:6)(cid:10)(cid:2)(cid:12)(cid:7)(cid:13)(cid:10)(cid:14)(cid:5) (cid:5)(cid:6)(cid:7)(cid:8) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6) (cid:1) (cid:2) (cid:3) (cid:4) (cid:3) (cid:18)(cid:6)(cid:15)(cid:22)(cid:8) (cid:18)(cid:19)(cid:7)(cid:8)(cid:20)(cid:16)(cid:9)(cid:8)(cid:12)(cid:13)(cid:6)(cid:23)(cid:16)(cid:12)(cid:20)(cid:11)(cid:9)(cid:7)(cid:18)(cid:22)(cid:16)(cid:23)(cid:10)(cid:24)(cid:20)(cid:18)(cid:12)(cid:7)(cid:10)(cid:13)(cid:6) (cid:7)(cid:8)(cid:13)(cid:1)(cid:10)(cid:15)(cid:15)(cid:14)(cid:11)(cid:5)(cid:14)(cid:3)(cid:12)(cid:10)(cid:8)(cid:7)(cid:16)(cid:14)(cid:11)(cid:12)(cid:1)(cid:14)(cid:17) (cid:6)(cid:9)(cid:10)(cid:7)(cid:11) (cid:8) (cid:6)(cid:7) (cid:5) (cid:4) (cid:18)(cid:6)(cid:15)(cid:22)(cid:8) FIGURE 1. Schematic picture showing the successive small angular shifts between the sequence of doublecrystalmonochromators. monochromatorstageisshowninplot(D).Itisimportanttonoticethattheactionofthe refractiveprismshouldshifttheintensityasmuchastheacceptancewidthofeachsingle crystalsheetwouldbe.Asequenceofcrystalsheetsandrefractiveprismsissupposedto replace a single monochromator crystal within a double-crystal monochromator setup. The parallel single crystal slabs require a certain thickness, depending on the photon energybuttypically1-5mm.Duetothenegligibleabsorptioninthecrystalsandwedges, the process can be repeated typically 10 -100 times. Since we will first match the incoming beam with a g lens system to the monochromator system, we expect in the range of 0.1 - 20 MeV a further improvementin the order of 10 -100, getting close to a reductioninintensityjustbythefactorof103 correspondingtotheratioofinitialenergy resolution(10 3)to thefinal energy resolution(10 6). − − APPLICATIONS In the discussion of possible g -beam applications we first consider the cross section of photonuclear reactions and the width G g . The cross section for a compound nucleus resonancepopulatedbyphoto-excitationattheresonanceenergyE intheregionbelow r theneutronseparation energy S is givenbytheBreit-Wignerformula[12] n G G s (Eg )=(l g2/4p )·g·(Eg Er)g2+2 (G )2/4, (9) − where g = 2Ia+1 is a spin factor for the spin of the target and the beam and l g = 2Ib+1 (h c)/Eg represents the wavelength of the g rays with energy Eg . The resonance is · FIGURE2. NuclearM1andE1excitations.SM=ScissorsMode,QOC=Quadrupole-OctupoleMode, PDR=PygmyDipoleResonance,GDR=GiantDipoleResonance. FIGURE3. NuclearresonancefluorescenceM1excitationmodesinactinides. excited with the width G g and decays via the width G 2. The resonance has a total width G =G g +G 2. Fig. 2showsthedominantE1and M1nuclear excitationwidthsG g . The typical maximum E1 width for a level up to the neutron separation energy S is n about 10 milli-Weisskopf units. It corresponds for 2 MeV photons to about 0.1 eV. On theotherhand,theDopplerbroadeningofag transitionatroomtemperaturekT =1/40 eV foranucleuswithmassnumberA=200and ag energy Eg =2MeV is D Eg =Eg q(2kT)/mpc2A 1 eV. (10) ≈ It shows that we find a typical relative line width of 10 6 for a nucleus with a mass − numberA=50or1eVat1MeVand10eVat10MeV,respectively.Thuswithag beam of 10 6 band width we can selectively address individual nuclear levels within their − Doppler width. Since the maximum nuclear cross sections l g2/4p are typically 1 kbarn for 1 MeV and thus much larger than atomic cross sections of 1 -10 barn for Compton scatteringandpaircreation,wecanstronglyreducetheatomicbackground.Atthesame time the deexcitation cascades of individual levels are much less complex than when excitingamultitudeoflevelsat thesametime. Now, let us consider the M1 and E1 excitations of Fig. 2 as strong excitations for potentialapplications.Thelow-lyingM1excitationcanbeemployedviaNuclearReso- nance Fluorescence (NRF) using focusing lenses for tomography and microscopy with m m resolution [11]. In Fig. 3 we show M1 excitations for actinides, which can be used innuclearfuel assayorradioactivewastemonitoring.Based ontheM1transitionin7Li (478 keV) we can, e.g., perform a high resolution tomographyof growing defects in Li batteries or in medical physics we can study the distribution of Li in the brain during treatmentofmanicdepressivealternatinginsanity. Due to their internal structure, the higher QOC E1 excitations frequently decay by quadrupoletransitionstohigher-spinstates.Wewanttousethisfeaturetopopulatehigh- spin isomers like 195mPt to produce medical radioisotopes for diagnostics and therapy [13]. Weenvisagetousethepygmyresonancetopopulateveryweaklyboundneutronstates just below S from the stable ground state by an E1 excitation. These weakly bound n states are isomers, because theneutron tunnelsout very far. With a second laser we can releasethisneutron,generatingaverybrilliantneutronsource[14].Alsoaverybrilliant secondary positron source can be produced from high-Z foils of e.g. platinum with a 1.5-2.0MeV g -beamviatheBethe-Heitlerpaircreation process[15].Wealsoproposed the production of many new medical radioisotopes via the giant dipole resonance [13]. ComparedtoXrays,oneofthemainadvantagesofg raysistheirdeeppenetration.With thenew g opticsmanynew isotopespecifictomographicstudiesbecomepossible. In the future we plan to increase the intensity of very monochromatic, very directed Compton back-scattered g -beams by a factor of about 106, seeding the emission of a g quantum FEL [16, 17, 18]. This would result in the possibility of many large scale industrial applications, but also a new field of coherent g -ray physics [6] with much largercouplingstrengthwouldopen up. REFERENCES 1. D. Habs et al., The Refractive Index of Silicon at g Ray Energies submitted to Phys. Rev. Lett, arXiv:1111.3608v1[physics.atom-ph],(2011). 2. C. Barty (LLNL),http://www.eli-np.ro/documents/meeting-18-19-august-2011/Presentations/Barty- LLNL-Gamma-Source-for-ELI-NP.pdf 3. ELI-NPhttp://www.eli-np.ro/ 4. H.R.Welleretal.,Prog.Part.Nucl.Phys.62,257(2009). 5. J.Als-NielsenandD.McMorrow,ElementsofModernX-RayPhysics,JohnWiley,NewYork,(2001). 6. D.M.Paganin,CoherentX-RayOptics,OxfordUniversityPress,Oxford,(2006). 7. G.B.M.Vaughanetal.,J.Synch.Rad,18,125(2011). 8. B.Lengeleretal.,J.Synch.Rad.6,1153(1999). 9. E.G.Kessleretal.,Nucl.Instr.Meth.A457,187(2001). 10. D.PetrascheckandH.Rauch,Act.Cryst.A40,445(1984). 11. C,G,Schroeretal.,Act.Phys.Pol.A117,357(2010). 12. E.Segre`,NucleiandParticles,W.A.Benjamin,Inc.London(1977). 13. D.Habsetal.,Appl.Phys.B103,501(2011). 14. D.Habsetal.,App.Phys.B103,485(2011). 15. C.Hugenschmidtetal.,Appl.Phys.B,DOI10.1007/s00340-011-4594-0(2011) 16. R.Bonifacioetal.;OpticsComm.284,1004(2011). 17. R.Bonifacioetal.,FortschrittederPhysik,57,1041(2009). 18. M.M. Güntherel.al.,contributiontothisLEI2011conference.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.