Normaldiffusionincrystal structures andhigher-dimensional billiardmodels withgaps David P. Sanders∗ DepartamentodeF´ısica,FacultaddeCiencias,UniversidadNacionalAuto´nomadeMe´xico,Me´xicoD.F.,04510Mexico (Dated:January26,2009) Weshow,bothheuristicallyandnumerically,thatthree-dimensionalperiodicLorentzgases—cloudsofparti- clesscatteringoffcrystallinearraysofhardspheres—oftenexhibitnormaldiffusion,evenwhentherearegaps throughwhichparticlescantravelwithoutevercolliding,i.e.,whenthesystemhasaninfinitehorizon. Thisis 9 thecaseprovidedthatthesegapsarenot“toobig”,asmeasuredbytheirdimension. Theresultsareillustrated 0 withsimulationsofasimplethree-dimensionalmodelhavingdifferenttypesofdiffusiveregime,andarethen 0 extendedtohigher-dimensionalbilliardmodels,whichincludehard-spherefluids. 2 PACSnumbers:05.60.Cd,05.45.Jn,05.45.Pq,66.10.cg n a J TheLorentzgasisaclassicalmodeloftransportprocesses, to an apparent general belief that the diffusive properties of 6 inwhichacloudofnon-interactingpointparticles(modelling higher-dimensionalsystems should be analogousto those in 2 electrons)undergofreemotionbetweenelasticcollisionswith the2Dcase. HypercubicLorentzgases(withinfinitehorizon) ] fixedhardspheres(atoms)[1]. Ithasbeenmuchstudiedasa ind≤7dimensionswerestudiedin[16],butnostrongcon- h modelsystemforwhichtheprogrammeofstatisticalphysics clusionsaboutdiffusivepropertiescouldbedrawn. c e canbe carriedoutin detail: to relatethe knownmicroscopic Inparticular,itwasbelievedthatafinitehorizonwasnec- m dynamics to the macroscopic behavior of the system, which essary fora system to show normaldiffusion,with weak su- - inthiscaseisdiffusive[2–4]. perdiffusionoccurringforaninfinitehorizon[12,17]. While t a Whenthescatterersarearrangedinaperiodiccrystalstruc- periodicLorentzgaseswithfinitehorizonanddisjointobsta- t ture, the dynamicsofthisbilliardmodelcan bereducedtoa cles have been proved to exist in any dimension [18], con- s . singleunitcell[2]. Thecurvedshapeofthescatterersimplies structingsuchamodelturnsouttobeadifficulttask—weare t a thatnearbytrajectoriesseparateexponentiallyfast,sothatthe not aware of any known explicit examples, even in three di- m systemishyperbolic(chaotic)andergodic[5]. mensions. Furthermore, crystals of spheres arranged in any - Intwodimensions,ithasbeenshownthatthecloudofpar- Bravais lattice (and in many other crystal structures) always d n ticlesintheperiodicLorentzgasundergoesnormaldiffusion, havesmallgapswhichpreventafinitehorizon[18–20]. o provided that the geometrical finite horizon condition is sat- InthisLetter,weshow,usingheuristicargumentsandcare- c isfied: particlescannottravelarbitrarilyfarwithoutcolliding fulnumericalsimulations,thatinfactperiodicLorentzgases [ with a scatterer [5, 6]. By normal diffusion, we mean that inthreeandhigherdimensionswithinfinitehorizon—thatis, 2 thedistributionofparticlepositionsbehaveslikesolutionsof withgaps,orholes,inthestructure—canexhibitnormaldif- v the diffusion equation; in particular, the mean-squared dis- fusion. The keyobservationis thatthegapsinconfiguration 5 placement (variance) grows asymptotically linearly in time: space,whicharehigher-dimensionalanalogsofthecorridors 3 hr(t)2i∼2dDt when t →¥ , where r(t) is the displacement in2D,canbeofdifferentdimensions.Structureswithgapsof 2 2 ofaparticleattimet fromitsinitialposition,d isthespatial the highest possible dimension exhibit weak superdiffusion, . dimension,h·idenotesameanoverinitialconditions,andthe asinthe2Dinfinite-horizoncase,whereaslower-dimensional 8 0 diffusioncoefficientDgivestheasymptoticgrowthrate. gapsgivenormaldiffusion. Nonetheless,highermomentsof 8 Whenthehorizonisinfinite,however,particlescanundergo thedisplacementdistributionareaffectedbythesmallpropor- 0 arbitrarily long free flights along corridors in the structure. tionofarbitarilylongtrajectoriesinthestructure. : v It was long argued[7–9] and has recently been proved[10], To test the analytical arguments, we perform careful nu- i thatthereisthenweaksuperdiffusivebehavior,withhr(t)2i∼ mericalsimulationsofa3DperiodicLorentzgasmodelwith X tlogt,sothatthediffusioncoefficientnolongerexists. spheres of two radii, which can be varied to obtain differ- r a Forhigher-dimensionalperiodicLorentzgases,rigorousre- enttypesofdiffusiveregime. Inparticular,aafinite-horizon sults on ergodicproperties[11] and diffusiveproperties[12] regime may be obtained by allowing the spheres to overlap; havebeenobtained;recentprogressintheiranalysishasbeen otherwise, gapsof differentdimensionscan be found. Here, made[13, 14],includinginthelimitofsmallscatterers[15]. resultswillbegivenforrepresentativecasesineachregime;a In particular, higher-dimensionalLorentz gases are believed detailedanalysisofthemodelwillbegivenelsewhere. toexhibitnormaldiffusionwhenthehorizonisfinite[12]. Finally,weextendtheargumentstohigher-dimensionalbil- Nonetheless,thestudyofbilliardmodelsinhigherdimen- liards,includingtheclassofhard-spherefluids[21],thuspro- sions, especially three dimensions, has received surprisingly vidinganapproachtothediffusivebehaviorofsuchsystems little attention from the physics community,despite their in- intermsofthegeometryoftheirconfigurationspace. terestassimplemodelsoftransportinthree-dimensionalcrys- Modelandgapsinconfigurationspace:- Webeginbyin- tals. Thiscanbeattributedtoincreasedsimulationtimesand troducing a simple two-parameter 3D periodic Lorentz gas the difficulty of visualisation in higher dimensions, but also model,withwhichthedifferenttypesofdiffusiveregimecan 2 (a) (b) (c) FIG.1: (Coloronline)Sphericalscatterers(lightcolor;purpleonline)andgaps(darkcolor;greenonline)inthe3DperiodicLorentzmodel discussedinthetext:(a)verticalplanargapsfora=0.25andb=0.15;and(b)verticalcylindricalgapsfora=0.4andb=0.4(abody-centred cubicstructure). Thegapsareshowninasingleunitcell,butinfactextendthroughoutthewholeofspace. (c)Whena=0.55andb=0.4, thescatterersoverlap,leavinganinfinite,connectedavailablespacefortheparticles,whichisdepicted;forclarity,thespheresareomitted.In thiscase,thehorizonisfinite—therearenogapsinthestructure. beexplored. Themodelconsistsofacubiclatticeofspheres tions in a unit cell, which have a free path length T before ofradiusa,withanadditionalsphericalscattererofradiusbat collidingwhichisgreaterthant [7,24,25]. thecentreofeachcubicunitcell,themselvesforminganother Consider straight trajectories which emanate in all direc- (interpenetrating)cubic lattice. The side length of the cubic tionsvfromagiveninitialconditionx lyinginsideagapG. 0 unitcell is taken equalto 1. By varyingthe radii a and b of Since energy is conserved at collisions, all particles can be the spheres, a range of models with different properties can takentohavespeed1. Thepossiblepositionsx ofthetrajec- t beobtained;a“phasediagram”showingthepossibilitiesand toriesattimet thenlieonasphereS ofradiust andsurface t adetailedstudyofitspropertieswillbepresentedelsewhere. areaS(t)=4p t2, centredonx . TheproportionP(T >t)of 0 Thisisa3Dversionofthe2Dmodelstudiedin[22,23]. trajectorieswhichhavenotcollidedduringtimet isgivenby When b=0, we obtaina simple cubiclattice of spherical theratioP(T >t):=A(t)/S(t),whereA(t)istheareaofthe scatterers. Inthiscase,wecaninsertplanesparalleltothelat- intersectionI :=G∩S ofthegapGwiththesphereS. t t t tice directionswhichdonotintersectanyobstacles—wecall IfGisaplanargap,thentheintersectionI isapproximately theseplanargaps. Thisremainsthecaseforsmallenoughb, t theproductofacircleofradiust withanintervalofthesame asshowninfig.1(a). Forb≥ 1−a,however,allofthepla- 2 widthwasthegap. ThusA(t)≃2p wt,givingtheasymptotic nargapsareblocked. Therearestillgapsofinfiniteextentin behaviorP(T >t)∼C/t whent→¥ ,whereCisaconstant. the structure,buttheyare nowcylindricalgaps, as shownin This result was previously found for a simple cubic lattice fig.1(b).Theseareinfinitelylongtubeswhichdonotintersect [7, 12]; a detailed calculation is given in [25]. When G is anyscatterer,givenbytheproductofalinewithanarea;the a cylindricalgap, however,its intersectionI with the sphere latteristheprojectionofthegapalongtheaxisofthecylinder. t S isasymptoticallythecross-sectionalareaAofthecylinder, By tuning a and b appropriately, it is also possible to ob- t givingtheasymptoticsP(T >t)∼C/t2. tain an explicit 3D periodic Lorentz gas with finite horizon. To do so, we allow the scatterers to overlap,since otherwise ThetailP(T >t)ofthefree-pathdistributionisstronglyre- constructingsuchamodelisverydifficult. Alladjacentpairs latedtothesystem’sdiffusiveproperties. Friedman&Martin ofa-spheresoverlapwhena> 1;choosingtheradiusbofthe [7]proposedthattheasymptoticdecayrateofthevelocityau- 2 central sphere large enough then allows us to block all gaps tocorrelationfunctionC(t):=hv(0)·v(t)iisthesameasthat inthestructure,givingafinite-horizonmodel,asshownelse- ofP(T >t),sinceC(t)isdominatedbytrajectorieswhichdo where.Unlikeinthe2Dcase,in3Dthefreespacebetweenthe notcollideup to timet. The finite-timediffusioncoefficient overlapping scatterers forms an infinite connected network. D(t):= ddthr(t)2iisgivenbyD(t)= d1R0tC(s)ds,sothatD(t) Physically,thiscancorrespondtoasphereofnon-zeroradius converges,to the diffusioncoefficientD, only if the velocity collidingwithdisjointscatterers.Notethatrigorousresultson autocorrelationC(t)decaysfasterthan1/t[2]. higher-dimensional Lorentz gases assume disjoint scatterers Thuswe expectthata 3D periodicLorentzgasshouldex- [14],andthusdonotdirectlyapplytoourmodel. hibitnormaldiffusionwhenP(T >t)decaysfasterthan1/t, Distributionoffreepaths:- Severalapproachestothedif- asisthecasewithcylindricalgaps(andwhenthehorizonisfi- fusive properties of infinite horizon systems involve the tail nite),butweaksuperdiffusionwhenitdecayslike1/t.Thisis of the free-path length distribution, that is, the proportion alsoinagreementwithanequivalentconditiononthemoment P(T >t) of trajectories, starting from random initial condi- ofthefreepathdistributionbetweencollisions[9]. 3 7.0 sitionsforwhichthese non-collidingtrajectoriespointin the a=0.4;b=0.0 a=0.4;b=0.21 samedirection(s)agapinconfigurationspace. Notethatitis 6.0 a=0.4;b=0.4 possibleforagivensetofinitialconditionstohavesuchtra- a=0.55;b=0.4 5.0 jectories pointing in different, unconnected directions—this t/ 4.0 is the case, for example, in fig. 1(b), where there are also (cid:11) cylindricalgapsinahorizontaldirection(notshown).Insuch 2 ) t( 3.0 cases, we consider each such set of different directions as a r (cid:10) distinct gap. For a discussion of higher-dimensionalgaps in 2.0 thecontextofspherepackings,seeref.[20]. 1.0 Asshownaboveforthe3Dcase,thekeygeometricalprop- ertydeterminingthediffusivebehaviorofa systemisthedi- 0.0 102 103 104 105 106 mensionofitsgaps.WedefinethedimensionofagapGtobe thedimensiongofthelargestaffinesubspacewhichliescom- t pletelywithinthegap,i.e.,whichdoesnotintersectanyscat- FIG.2: (Coloronline)Linear–logplotofhr(t)2i/t vs.t indifferent terer. In a system with a d-dimensionalconfigurationspace, diffusiveregimes:finitehorizon(a=0.55;b=0.4);cylindricalgaps therecanbegapswithanydimensionbetween1andd−1,or inabody-centredcubiclattice(a=b=0.4);singlelargecylindrical nogapsatall(finitehorizon). gap(a=0.4;b=0.21);andsimplecubiclattice(a=0.4;b=0.0) To calculate the tail P(T >t) of the free-pathdistribution withplanargaps. Meansaretakenoverupto4×107 initialcondi- duetosuchgaps,wetakecoordinatesx:=(x ,...,x )inthe tions; errorbarsareoftheorderofthesymbolsize. Lineargrowth 1 d (weaksuperdiffusion)occursonlywhenthereareplanargaps. d-dimensionalconfigurationspace,withtheinitialpositionat theorigin. ThesphereS isthengivenby(cid:229) d x2=t2. Con- t i=1 i sideragapG,ofdimensiong.Insidethegap,thereisalargest Numericalresults:- Totesttheabovehypotheses,weper- subspace,alsoofdimensiong,i.e.,ithasgfreely-varyingco- formcarefulnumericalsimulationsofourmodeltocalculate ordinates. By a rotation of the coordinate system, this sub- the time-evolutionof the mean-squareddisplacementhr(t)2i space can thus be written as x =x =···=x =0, where 1 2 c ineachregime. We useastringenttesttodistinguishnormal c:=d−g is the codimension of the gap, giving the number from weakly anomalous diffusion: hr(t)2i/t is plotted as a ofcoordinatesinthesubspacewhicharefixed. Theintersec- function of logt [22, 26, 27]. Normal diffusioncorresponds tion I =G∩S of the gap with the sphere is thus given by t t to an asymptoticallyflat graph,since the logarithmiccorrec- (cid:229) d v2 =t2. Thisis a g-dimensionalsphere, with surface i=c+1 i tion is absent, and the diffusion coefficient is then propor- area K tg−1, where K is a dimension-dependent constant. g g tionalto the asymptoticheightof the graph. Weak superdif- The tail of the free-path distribution is given by the ratio of fusivetlogt behaviorforthemean-squareddisplacement,on the area of intersectionI to the area of the sphereS, giving t t theotherhand,givesasymptoticlineargrowth[26]. theasymptotics Numericalresultsareshowninfig.2. Weseethattheargu- mentsgiven in the previoussection are confirmed: diffusion P(T >t)∼Z Kgtg−1 =Kt−(d−g)=Kt−c, (1) isnormal,with hr(t)2i∼t, whenthehorizonisfinite, andis cK td−1 d weakly superdiffusive, with hr(t)2i∼tlogt, when there is a planargap. Furthermore,thenumericsclearlyshow thatdif- whereZc isthec-dimensionalcross-sectionalareaofthegap fusionis normalalso in thecase thatthereare onlycylindri- inthedirectionsorthogonaltotheaffinesubspace,andKisan calgaps. Thisisthecaseevenwhenthecylindricalgapsare overallconstant. “large”, for example when a=0.4 and b=0.21, when the We thus see that the decay is faster for gaps of smaller gapsdepictedin1(b)mergetoformasinglecylindricalgap, dimension (larger codimension), but it is always eventually still without any planar gaps in the structure. Thus we con- dominatedby the contributionof trajectorieslying along the cludethattheheuristicargumentscorrectlypredictthetypeof gaps. The dominant contribution to the tail of the free-path diffusionwhichoccursinthesesystems. distribution,andhencetothediffusiveproperties,thuscomes Gaps in higher-dimensional billiards:- Fluids of hard fromthegapoflargestdimension. spheres are isomorphic to higher-dimensional chaotic bil- Wethusconjecturethatd-dimensionalchaotic,periodicbil- liard models, although with cylindrical instead of spherical liard models can generically be expected to exhibit normal scatterers [21]. By extending the above arguments, we can diffusion,atthelevelofthemean-squareddisplacement,pro- hopetoobtaininformationoncorrelationdecayanddiffusive vided that the largest-dimensional gap is of dimension less propertiesforgeneralhigher-dimensionalchaoticbilliardsby thand−1,thatis,ifitscodimensionislargerthan1. analysingthegapsintheirconfigurationspace. Higher moments:- A more sensitive probe of diffusive To define these higher-dimensionalgaps, we consider ini- properties is given by the growth rates g (q) of the qth mo- tial positions in a configuration space of dimension d, from ments of the displacement distribution, hrq(t)i∼tg(q), as a whichinfinitelylongnon-collidingtrajectoriesemanatealong functionoftherealparameterq[24,28,29]. IfP(T >t)de- certaindirections. Wecallaconnectedsetofsuchinitialpo- caysliket−c,thenlongtrajectoriesdominatehrq(t)iforlarge 4 8 a=0.4;b=0.0 manuscript critically. Supercomputing facilities were pro- a=0.4;b=0.21 vided by DGSCA-UNAM, and financial support from the a=0.55;b=0.4 DGAPA-UNAM PROFIP programmeis also acknowledged. 6 Theauthorisgratefultotheanonymousrefereesforinterest- ingcomments. ) q ( 4 g 2 ∗ Electronicaddress:[email protected] [1] H.A.Lorentz,Proc.Roy.Acad.Amst.7,438,585,684(1905). 0 [2] P.Gaspard,Chaos,ScatteringandStatisticalMechanics(Cam- 0 2 4 6 8 bridgeUniversityPress,Cambridge,1998). q [3] D.Sza´sz,ed.,HardBallSystemsandtheLorentzGas(Springer- Verlag,Berlin,2000). FIG.3: Growthrateg(q)ofhighermomentshrq(t)iasafunctionof [4] R. Klages, Microscopic Chaos, Fractals and Transport in q; geometriesareasinfig.2. Fora=0.4andb=0.21,themeans NonequilibriumStatisticalMechanics(WorldScientific,Singa- were calculated over 2.4×108 initial conditions, up to a timet = pore,2007). 10000,tocapturetheweakeffectofthecylindricalgaps.Thestraight [5] N. Chernov and R. Markarian, Chaotic Billiards (American lines show the expected Gaussian behavior (q/2) and behavior for MathematicalSociety,Providence,RI,2006). largeqwithplanar(q−1)andcylindrical(q−2)gaps. [6] L.A.BunimovichandY.G.Sinai,Comm.Math.Phys.78,479 (1981). [7] B.FriedmanandR.F.Martin,Phys.Lett.A105,23(1984). q, giving g (q)=q−c, while the low moments show diffu- [8] A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, sive Gaussian behavior, with g (q)=q/2 [24]. A crossover Phys.Lett.A114,317(1986). [9] P.M.Bleher,J.Stat.Phys.66,315(1992). betweenthetwobehaviorsthusoccursatq=2c. Ifthehori- [10] D.Sza´szandT.Varju´,J.Stat.Phys.129,59(2007). zonisfinite,thentherearenolongfreeflights,andGaussian [11] Y.G.SinaiandN.I.Chernov,Russ.Math.Surv.42,181(1987). behaviorisexpectedforallq. Highermomentsforthefinite- [12] N.I.Chernov,J.Stat.Phys.74,11(1994). horizonLorentzgaswerestudiedin[30]. [13] P. Ba´lint, N. Chernov, D. Sza´sz, and I. P. To´th, Ann. Henri The numerical calculation of higher moments is difficult, Poincare´3,451(2002). due to the weak effect of free flights [26]. Nonetheless, by [14] P. Ba´lint and I. P. To´th, Exponential decay of correlations in multi-dimensionaldispersingbilliards,submitted,URLhttp: taking means over a very large number of initial conditions, //www.math.bme.hu/∼pet/pub.html. it is possible to see the effect of the different types of gaps [15] J.MarklofandA.Stro¨mbergsson,Thedistributionoffreepath forour3DLorentzgasmodel: asshowninfig.3,theyarein lengths in the periodic Lorentz gas and related lattice point agreement with the above argument. Thus, higher moments problems(2007),arXiv:0706.4395.ToappearinAnn.Math. candistinguishthesubtleeffectsofdifferenttypesofgaps. [16] J.-P.BouchaudandP.LeDoussal,J.Stat.Phys.41,225(1985). Inconclusion,wehaveshownthatthediffusiveproperties [17] C. P. Dettmann, in Hard Ball Systems and the Lorentz Gas, ofperiodicthree-dimensionalLorentzgases,andbyextension editedbyD.Sza´sz(Springer,2000),pp.315–365. [18] M.HenkandC.Zong,Mathematika47,31(2000). ofhigher-dimensionalperiodicbilliardmodels,dependonthe [19] A.Heppes,Ann.Univ.Sci.Budapest.Eo¨tvo¨sSect.Math.3–4, highest dimension of gap in the configurationspace. By in- 89(1960/1961). troducingasimple3Dmodelinwhicheachtypeofdiffusive [20] C.Zong,Bull.Amer.Math.Soc.39,533(2002). regime occurs, we showed that if there is a finite horizon or [21] D.Sza´sz,PhysicaA194,86(1993). cylindricalgaps,thenthediffusionisnormal,whereasplanar [22] P.L.GarridoandG.Gallavotti,J.Stat.Phys.76,549(1994). gapsgiveweaksuperdiffusion.Nonetheless,highermoments [23] D.P.Sanders,Phys.Rev.E71,016220(2005). distinguishbetweendifferenttypesofgaps.Theconceptofin- [24] D. N. Armstead, B. R. Hunt, and E. Ott, Phys. Rev. E 67, 021110(2003). finitehorizonisthusnolongersufficientlypreciseforhigher- [25] F.GolseandB.Wennberg,M2ANMath.Model.Numer.Anal. dimensionalsystems, and must be replaced by maximal gap 34,1151(2000). dimension. In future work we will extend our numericalin- [26] D.P.SandersandH.Larralde,Phys.Rev.E73,026205(2006). vestigationstohigher-dimensionalmodels. [27] T.GeiselandS.Thomae,Phys.Rev.Lett.52,1936(1984). This work was initiated in the author’s Ph.D. thesis [31]. [28] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and He thanks P. Gaspard and R. MacKay for helpful com- A.Vulpiani,PhysicaD134,75(1999). ments and M. Henk for usefulcorrespondence,and is grate- [29] M.Courbage,M.Edelman,S.M.S.Fathi,andG.M.Zaslavsky, Phys.Rev.E77,036203(2008). ful to the Erwin Schro¨dingerInstitute and the Universite´ Li- [30] N.ChernovandC.P.Dettmann,PhysicaA279,37(2000). bredeBruxellesforfinancialsupport,whichenableddiscus- [31] D. P.Sanders, Ph.D.thesis, Mathematics Institute, University sions with N. Chernov, I. Melbourne, D. Sza´sz, I.P. To´th ofWarwick(2005),arXiv:0808.2252. and T. Varju´, and especially T. Gilbert, who also read the