ebook img

Normal diffusion in crystal structures and higher-dimensional billiard models with gaps PDF

0.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Normal diffusion in crystal structures and higher-dimensional billiard models with gaps

Normaldiffusionincrystal structures andhigher-dimensional billiardmodels withgaps David P. Sanders∗ DepartamentodeF´ısica,FacultaddeCiencias,UniversidadNacionalAuto´nomadeMe´xico,Me´xicoD.F.,04510Mexico (Dated:January26,2009) Weshow,bothheuristicallyandnumerically,thatthree-dimensionalperiodicLorentzgases—cloudsofparti- clesscatteringoffcrystallinearraysofhardspheres—oftenexhibitnormaldiffusion,evenwhentherearegaps throughwhichparticlescantravelwithoutevercolliding,i.e.,whenthesystemhasaninfinitehorizon. Thisis 9 thecaseprovidedthatthesegapsarenot“toobig”,asmeasuredbytheirdimension. Theresultsareillustrated 0 withsimulationsofasimplethree-dimensionalmodelhavingdifferenttypesofdiffusiveregime,andarethen 0 extendedtohigher-dimensionalbilliardmodels,whichincludehard-spherefluids. 2 PACSnumbers:05.60.Cd,05.45.Jn,05.45.Pq,66.10.cg n a J TheLorentzgasisaclassicalmodeloftransportprocesses, to an apparent general belief that the diffusive properties of 6 inwhichacloudofnon-interactingpointparticles(modelling higher-dimensionalsystems should be analogousto those in 2 electrons)undergofreemotionbetweenelasticcollisionswith the2Dcase. HypercubicLorentzgases(withinfinitehorizon) ] fixedhardspheres(atoms)[1]. Ithasbeenmuchstudiedasa ind≤7dimensionswerestudiedin[16],butnostrongcon- h modelsystemforwhichtheprogrammeofstatisticalphysics clusionsaboutdiffusivepropertiescouldbedrawn. c e canbe carriedoutin detail: to relatethe knownmicroscopic Inparticular,itwasbelievedthatafinitehorizonwasnec- m dynamics to the macroscopic behavior of the system, which essary fora system to show normaldiffusion,with weak su- - inthiscaseisdiffusive[2–4]. perdiffusionoccurringforaninfinitehorizon[12,17]. While t a Whenthescatterersarearrangedinaperiodiccrystalstruc- periodicLorentzgaseswithfinitehorizonanddisjointobsta- t ture, the dynamicsofthisbilliardmodelcan bereducedtoa cles have been proved to exist in any dimension [18], con- s . singleunitcell[2]. Thecurvedshapeofthescatterersimplies structingsuchamodelturnsouttobeadifficulttask—weare t a thatnearbytrajectoriesseparateexponentiallyfast,sothatthe not aware of any known explicit examples, even in three di- m systemishyperbolic(chaotic)andergodic[5]. mensions. Furthermore, crystals of spheres arranged in any - Intwodimensions,ithasbeenshownthatthecloudofpar- Bravais lattice (and in many other crystal structures) always d n ticlesintheperiodicLorentzgasundergoesnormaldiffusion, havesmallgapswhichpreventafinitehorizon[18–20]. o provided that the geometrical finite horizon condition is sat- InthisLetter,weshow,usingheuristicargumentsandcare- c isfied: particlescannottravelarbitrarilyfarwithoutcolliding fulnumericalsimulations,thatinfactperiodicLorentzgases [ with a scatterer [5, 6]. By normal diffusion, we mean that inthreeandhigherdimensionswithinfinitehorizon—thatis, 2 thedistributionofparticlepositionsbehaveslikesolutionsof withgaps,orholes,inthestructure—canexhibitnormaldif- v the diffusion equation; in particular, the mean-squared dis- fusion. The keyobservationis thatthegapsinconfiguration 5 placement (variance) grows asymptotically linearly in time: space,whicharehigher-dimensionalanalogsofthecorridors 3 hr(t)2i∼2dDt when t →¥ , where r(t) is the displacement in2D,canbeofdifferentdimensions.Structureswithgapsof 2 2 ofaparticleattimet fromitsinitialposition,d isthespatial the highest possible dimension exhibit weak superdiffusion, . dimension,h·idenotesameanoverinitialconditions,andthe asinthe2Dinfinite-horizoncase,whereaslower-dimensional 8 0 diffusioncoefficientDgivestheasymptoticgrowthrate. gapsgivenormaldiffusion. Nonetheless,highermomentsof 8 Whenthehorizonisinfinite,however,particlescanundergo thedisplacementdistributionareaffectedbythesmallpropor- 0 arbitrarily long free flights along corridors in the structure. tionofarbitarilylongtrajectoriesinthestructure. : v It was long argued[7–9] and has recently been proved[10], To test the analytical arguments, we perform careful nu- i thatthereisthenweaksuperdiffusivebehavior,withhr(t)2i∼ mericalsimulationsofa3DperiodicLorentzgasmodelwith X tlogt,sothatthediffusioncoefficientnolongerexists. spheres of two radii, which can be varied to obtain differ- r a Forhigher-dimensionalperiodicLorentzgases,rigorousre- enttypesofdiffusiveregime. Inparticular,aafinite-horizon sults on ergodicproperties[11] and diffusiveproperties[12] regime may be obtained by allowing the spheres to overlap; havebeenobtained;recentprogressintheiranalysishasbeen otherwise, gapsof differentdimensionscan be found. Here, made[13, 14],includinginthelimitofsmallscatterers[15]. resultswillbegivenforrepresentativecasesineachregime;a In particular, higher-dimensionalLorentz gases are believed detailedanalysisofthemodelwillbegivenelsewhere. toexhibitnormaldiffusionwhenthehorizonisfinite[12]. Finally,weextendtheargumentstohigher-dimensionalbil- Nonetheless,thestudyofbilliardmodelsinhigherdimen- liards,includingtheclassofhard-spherefluids[21],thuspro- sions, especially three dimensions, has received surprisingly vidinganapproachtothediffusivebehaviorofsuchsystems little attention from the physics community,despite their in- intermsofthegeometryoftheirconfigurationspace. terestassimplemodelsoftransportinthree-dimensionalcrys- Modelandgapsinconfigurationspace:- Webeginbyin- tals. Thiscanbeattributedtoincreasedsimulationtimesand troducing a simple two-parameter 3D periodic Lorentz gas the difficulty of visualisation in higher dimensions, but also model,withwhichthedifferenttypesofdiffusiveregimecan 2 (a) (b) (c) FIG.1: (Coloronline)Sphericalscatterers(lightcolor;purpleonline)andgaps(darkcolor;greenonline)inthe3DperiodicLorentzmodel discussedinthetext:(a)verticalplanargapsfora=0.25andb=0.15;and(b)verticalcylindricalgapsfora=0.4andb=0.4(abody-centred cubicstructure). Thegapsareshowninasingleunitcell,butinfactextendthroughoutthewholeofspace. (c)Whena=0.55andb=0.4, thescatterersoverlap,leavinganinfinite,connectedavailablespacefortheparticles,whichisdepicted;forclarity,thespheresareomitted.In thiscase,thehorizonisfinite—therearenogapsinthestructure. beexplored. Themodelconsistsofacubiclatticeofspheres tions in a unit cell, which have a free path length T before ofradiusa,withanadditionalsphericalscattererofradiusbat collidingwhichisgreaterthant [7,24,25]. thecentreofeachcubicunitcell,themselvesforminganother Consider straight trajectories which emanate in all direc- (interpenetrating)cubic lattice. The side length of the cubic tionsvfromagiveninitialconditionx lyinginsideagapG. 0 unitcell is taken equalto 1. By varyingthe radii a and b of Since energy is conserved at collisions, all particles can be the spheres, a range of models with different properties can takentohavespeed1. Thepossiblepositionsx ofthetrajec- t beobtained;a“phasediagram”showingthepossibilitiesand toriesattimet thenlieonasphereS ofradiust andsurface t adetailedstudyofitspropertieswillbepresentedelsewhere. areaS(t)=4p t2, centredonx . TheproportionP(T >t)of 0 Thisisa3Dversionofthe2Dmodelstudiedin[22,23]. trajectorieswhichhavenotcollidedduringtimet isgivenby When b=0, we obtaina simple cubiclattice of spherical theratioP(T >t):=A(t)/S(t),whereA(t)istheareaofthe scatterers. Inthiscase,wecaninsertplanesparalleltothelat- intersectionI :=G∩S ofthegapGwiththesphereS. t t t tice directionswhichdonotintersectanyobstacles—wecall IfGisaplanargap,thentheintersectionI isapproximately theseplanargaps. Thisremainsthecaseforsmallenoughb, t theproductofacircleofradiust withanintervalofthesame asshowninfig.1(a). Forb≥ 1−a,however,allofthepla- 2 widthwasthegap. ThusA(t)≃2p wt,givingtheasymptotic nargapsareblocked. Therearestillgapsofinfiniteextentin behaviorP(T >t)∼C/t whent→¥ ,whereCisaconstant. the structure,buttheyare nowcylindricalgaps, as shownin This result was previously found for a simple cubic lattice fig.1(b).Theseareinfinitelylongtubeswhichdonotintersect [7, 12]; a detailed calculation is given in [25]. When G is anyscatterer,givenbytheproductofalinewithanarea;the a cylindricalgap, however,its intersectionI with the sphere latteristheprojectionofthegapalongtheaxisofthecylinder. t S isasymptoticallythecross-sectionalareaAofthecylinder, By tuning a and b appropriately, it is also possible to ob- t givingtheasymptoticsP(T >t)∼C/t2. tain an explicit 3D periodic Lorentz gas with finite horizon. To do so, we allow the scatterers to overlap,since otherwise ThetailP(T >t)ofthefree-pathdistributionisstronglyre- constructingsuchamodelisverydifficult. Alladjacentpairs latedtothesystem’sdiffusiveproperties. Friedman&Martin ofa-spheresoverlapwhena> 1;choosingtheradiusbofthe [7]proposedthattheasymptoticdecayrateofthevelocityau- 2 central sphere large enough then allows us to block all gaps tocorrelationfunctionC(t):=hv(0)·v(t)iisthesameasthat inthestructure,givingafinite-horizonmodel,asshownelse- ofP(T >t),sinceC(t)isdominatedbytrajectorieswhichdo where.Unlikeinthe2Dcase,in3Dthefreespacebetweenthe notcollideup to timet. The finite-timediffusioncoefficient overlapping scatterers forms an infinite connected network. D(t):= ddthr(t)2iisgivenbyD(t)= d1R0tC(s)ds,sothatD(t) Physically,thiscancorrespondtoasphereofnon-zeroradius converges,to the diffusioncoefficientD, only if the velocity collidingwithdisjointscatterers.Notethatrigorousresultson autocorrelationC(t)decaysfasterthan1/t[2]. higher-dimensional Lorentz gases assume disjoint scatterers Thuswe expectthata 3D periodicLorentzgasshouldex- [14],andthusdonotdirectlyapplytoourmodel. hibitnormaldiffusionwhenP(T >t)decaysfasterthan1/t, Distributionoffreepaths:- Severalapproachestothedif- asisthecasewithcylindricalgaps(andwhenthehorizonisfi- fusive properties of infinite horizon systems involve the tail nite),butweaksuperdiffusionwhenitdecayslike1/t.Thisis of the free-path length distribution, that is, the proportion alsoinagreementwithanequivalentconditiononthemoment P(T >t) of trajectories, starting from random initial condi- ofthefreepathdistributionbetweencollisions[9]. 3 7.0 sitionsforwhichthese non-collidingtrajectoriespointin the a=0.4;b=0.0 a=0.4;b=0.21 samedirection(s)agapinconfigurationspace. Notethatitis 6.0 a=0.4;b=0.4 possibleforagivensetofinitialconditionstohavesuchtra- a=0.55;b=0.4 5.0 jectories pointing in different, unconnected directions—this t/ 4.0 is the case, for example, in fig. 1(b), where there are also (cid:11) cylindricalgapsinahorizontaldirection(notshown).Insuch 2 ) t( 3.0 cases, we consider each such set of different directions as a r (cid:10) distinct gap. For a discussion of higher-dimensionalgaps in 2.0 thecontextofspherepackings,seeref.[20]. 1.0 Asshownaboveforthe3Dcase,thekeygeometricalprop- ertydeterminingthediffusivebehaviorofa systemisthedi- 0.0 102 103 104 105 106 mensionofitsgaps.WedefinethedimensionofagapGtobe thedimensiongofthelargestaffinesubspacewhichliescom- t pletelywithinthegap,i.e.,whichdoesnotintersectanyscat- FIG.2: (Coloronline)Linear–logplotofhr(t)2i/t vs.t indifferent terer. In a system with a d-dimensionalconfigurationspace, diffusiveregimes:finitehorizon(a=0.55;b=0.4);cylindricalgaps therecanbegapswithanydimensionbetween1andd−1,or inabody-centredcubiclattice(a=b=0.4);singlelargecylindrical nogapsatall(finitehorizon). gap(a=0.4;b=0.21);andsimplecubiclattice(a=0.4;b=0.0) To calculate the tail P(T >t) of the free-pathdistribution withplanargaps. Meansaretakenoverupto4×107 initialcondi- duetosuchgaps,wetakecoordinatesx:=(x ,...,x )inthe tions; errorbarsareoftheorderofthesymbolsize. Lineargrowth 1 d (weaksuperdiffusion)occursonlywhenthereareplanargaps. d-dimensionalconfigurationspace,withtheinitialpositionat theorigin. ThesphereS isthengivenby(cid:229) d x2=t2. Con- t i=1 i sideragapG,ofdimensiong.Insidethegap,thereisalargest Numericalresults:- Totesttheabovehypotheses,weper- subspace,alsoofdimensiong,i.e.,ithasgfreely-varyingco- formcarefulnumericalsimulationsofourmodeltocalculate ordinates. By a rotation of the coordinate system, this sub- the time-evolutionof the mean-squareddisplacementhr(t)2i space can thus be written as x =x =···=x =0, where 1 2 c ineachregime. We useastringenttesttodistinguishnormal c:=d−g is the codimension of the gap, giving the number from weakly anomalous diffusion: hr(t)2i/t is plotted as a ofcoordinatesinthesubspacewhicharefixed. Theintersec- function of logt [22, 26, 27]. Normal diffusioncorresponds tion I =G∩S of the gap with the sphere is thus given by t t to an asymptoticallyflat graph,since the logarithmiccorrec- (cid:229) d v2 =t2. Thisis a g-dimensionalsphere, with surface i=c+1 i tion is absent, and the diffusion coefficient is then propor- area K tg−1, where K is a dimension-dependent constant. g g tionalto the asymptoticheightof the graph. Weak superdif- The tail of the free-path distribution is given by the ratio of fusivetlogt behaviorforthemean-squareddisplacement,on the area of intersectionI to the area of the sphereS, giving t t theotherhand,givesasymptoticlineargrowth[26]. theasymptotics Numericalresultsareshowninfig.2. Weseethattheargu- mentsgiven in the previoussection are confirmed: diffusion P(T >t)∼Z Kgtg−1 =Kt−(d−g)=Kt−c, (1) isnormal,with hr(t)2i∼t, whenthehorizonisfinite, andis cK td−1 d weakly superdiffusive, with hr(t)2i∼tlogt, when there is a planargap. Furthermore,thenumericsclearlyshow thatdif- whereZc isthec-dimensionalcross-sectionalareaofthegap fusionis normalalso in thecase thatthereare onlycylindri- inthedirectionsorthogonaltotheaffinesubspace,andKisan calgaps. Thisisthecaseevenwhenthecylindricalgapsare overallconstant. “large”, for example when a=0.4 and b=0.21, when the We thus see that the decay is faster for gaps of smaller gapsdepictedin1(b)mergetoformasinglecylindricalgap, dimension (larger codimension), but it is always eventually still without any planar gaps in the structure. Thus we con- dominatedby the contributionof trajectorieslying along the cludethattheheuristicargumentscorrectlypredictthetypeof gaps. The dominant contribution to the tail of the free-path diffusionwhichoccursinthesesystems. distribution,andhencetothediffusiveproperties,thuscomes Gaps in higher-dimensional billiards:- Fluids of hard fromthegapoflargestdimension. spheres are isomorphic to higher-dimensional chaotic bil- Wethusconjecturethatd-dimensionalchaotic,periodicbil- liard models, although with cylindrical instead of spherical liard models can generically be expected to exhibit normal scatterers [21]. By extending the above arguments, we can diffusion,atthelevelofthemean-squareddisplacement,pro- hopetoobtaininformationoncorrelationdecayanddiffusive vided that the largest-dimensional gap is of dimension less propertiesforgeneralhigher-dimensionalchaoticbilliardsby thand−1,thatis,ifitscodimensionislargerthan1. analysingthegapsintheirconfigurationspace. Higher moments:- A more sensitive probe of diffusive To define these higher-dimensionalgaps, we consider ini- properties is given by the growth rates g (q) of the qth mo- tial positions in a configuration space of dimension d, from ments of the displacement distribution, hrq(t)i∼tg(q), as a whichinfinitelylongnon-collidingtrajectoriesemanatealong functionoftherealparameterq[24,28,29]. IfP(T >t)de- certaindirections. Wecallaconnectedsetofsuchinitialpo- caysliket−c,thenlongtrajectoriesdominatehrq(t)iforlarge 4 8 a=0.4;b=0.0 manuscript critically. Supercomputing facilities were pro- a=0.4;b=0.21 vided by DGSCA-UNAM, and financial support from the a=0.55;b=0.4 DGAPA-UNAM PROFIP programmeis also acknowledged. 6 Theauthorisgratefultotheanonymousrefereesforinterest- ingcomments. ) q ( 4 g 2 ∗ Electronicaddress:[email protected] [1] H.A.Lorentz,Proc.Roy.Acad.Amst.7,438,585,684(1905). 0 [2] P.Gaspard,Chaos,ScatteringandStatisticalMechanics(Cam- 0 2 4 6 8 bridgeUniversityPress,Cambridge,1998). q [3] D.Sza´sz,ed.,HardBallSystemsandtheLorentzGas(Springer- Verlag,Berlin,2000). FIG.3: Growthrateg(q)ofhighermomentshrq(t)iasafunctionof [4] R. Klages, Microscopic Chaos, Fractals and Transport in q; geometriesareasinfig.2. Fora=0.4andb=0.21,themeans NonequilibriumStatisticalMechanics(WorldScientific,Singa- were calculated over 2.4×108 initial conditions, up to a timet = pore,2007). 10000,tocapturetheweakeffectofthecylindricalgaps.Thestraight [5] N. Chernov and R. Markarian, Chaotic Billiards (American lines show the expected Gaussian behavior (q/2) and behavior for MathematicalSociety,Providence,RI,2006). largeqwithplanar(q−1)andcylindrical(q−2)gaps. [6] L.A.BunimovichandY.G.Sinai,Comm.Math.Phys.78,479 (1981). [7] B.FriedmanandR.F.Martin,Phys.Lett.A105,23(1984). q, giving g (q)=q−c, while the low moments show diffu- [8] A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons, sive Gaussian behavior, with g (q)=q/2 [24]. A crossover Phys.Lett.A114,317(1986). [9] P.M.Bleher,J.Stat.Phys.66,315(1992). betweenthetwobehaviorsthusoccursatq=2c. Ifthehori- [10] D.Sza´szandT.Varju´,J.Stat.Phys.129,59(2007). zonisfinite,thentherearenolongfreeflights,andGaussian [11] Y.G.SinaiandN.I.Chernov,Russ.Math.Surv.42,181(1987). behaviorisexpectedforallq. Highermomentsforthefinite- [12] N.I.Chernov,J.Stat.Phys.74,11(1994). horizonLorentzgaswerestudiedin[30]. [13] P. Ba´lint, N. Chernov, D. Sza´sz, and I. P. To´th, Ann. Henri The numerical calculation of higher moments is difficult, Poincare´3,451(2002). due to the weak effect of free flights [26]. Nonetheless, by [14] P. Ba´lint and I. P. To´th, Exponential decay of correlations in multi-dimensionaldispersingbilliards,submitted,URLhttp: taking means over a very large number of initial conditions, //www.math.bme.hu/∼pet/pub.html. it is possible to see the effect of the different types of gaps [15] J.MarklofandA.Stro¨mbergsson,Thedistributionoffreepath forour3DLorentzgasmodel: asshowninfig.3,theyarein lengths in the periodic Lorentz gas and related lattice point agreement with the above argument. Thus, higher moments problems(2007),arXiv:0706.4395.ToappearinAnn.Math. candistinguishthesubtleeffectsofdifferenttypesofgaps. [16] J.-P.BouchaudandP.LeDoussal,J.Stat.Phys.41,225(1985). Inconclusion,wehaveshownthatthediffusiveproperties [17] C. P. Dettmann, in Hard Ball Systems and the Lorentz Gas, ofperiodicthree-dimensionalLorentzgases,andbyextension editedbyD.Sza´sz(Springer,2000),pp.315–365. [18] M.HenkandC.Zong,Mathematika47,31(2000). ofhigher-dimensionalperiodicbilliardmodels,dependonthe [19] A.Heppes,Ann.Univ.Sci.Budapest.Eo¨tvo¨sSect.Math.3–4, highest dimension of gap in the configurationspace. By in- 89(1960/1961). troducingasimple3Dmodelinwhicheachtypeofdiffusive [20] C.Zong,Bull.Amer.Math.Soc.39,533(2002). regime occurs, we showed that if there is a finite horizon or [21] D.Sza´sz,PhysicaA194,86(1993). cylindricalgaps,thenthediffusionisnormal,whereasplanar [22] P.L.GarridoandG.Gallavotti,J.Stat.Phys.76,549(1994). gapsgiveweaksuperdiffusion.Nonetheless,highermoments [23] D.P.Sanders,Phys.Rev.E71,016220(2005). distinguishbetweendifferenttypesofgaps.Theconceptofin- [24] D. N. Armstead, B. R. Hunt, and E. Ott, Phys. Rev. E 67, 021110(2003). finitehorizonisthusnolongersufficientlypreciseforhigher- [25] F.GolseandB.Wennberg,M2ANMath.Model.Numer.Anal. dimensionalsystems, and must be replaced by maximal gap 34,1151(2000). dimension. In future work we will extend our numericalin- [26] D.P.SandersandH.Larralde,Phys.Rev.E73,026205(2006). vestigationstohigher-dimensionalmodels. [27] T.GeiselandS.Thomae,Phys.Rev.Lett.52,1936(1984). This work was initiated in the author’s Ph.D. thesis [31]. [28] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and He thanks P. Gaspard and R. MacKay for helpful com- A.Vulpiani,PhysicaD134,75(1999). ments and M. Henk for usefulcorrespondence,and is grate- [29] M.Courbage,M.Edelman,S.M.S.Fathi,andG.M.Zaslavsky, Phys.Rev.E77,036203(2008). ful to the Erwin Schro¨dingerInstitute and the Universite´ Li- [30] N.ChernovandC.P.Dettmann,PhysicaA279,37(2000). bredeBruxellesforfinancialsupport,whichenableddiscus- [31] D. P.Sanders, Ph.D.thesis, Mathematics Institute, University sions with N. Chernov, I. Melbourne, D. Sza´sz, I.P. To´th ofWarwick(2005),arXiv:0808.2252. and T. Varju´, and especially T. Gilbert, who also read the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.