ebook img

Nonequilibrium random-field Ising model on a diluted triangular lattice PDF

1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nonequilibrium random-field Ising model on a diluted triangular lattice

Nonequilibrium random-field Ising model on a diluted triangular lattice Lobisor Kurbah, Diana Thongjaomayum, and Prabodh Shukla Physics Department North Eastern Hill University Shillong-793 022, India Westudycriticalhysteresisintherandom-fieldIsingmodel(RFIM)onatwo-dimensionalperiodic latticewithavariablecoordination numberz intherange3≤z ≤6. Wefindthatthemodel eff eff 5 supports critical behavior in the range 4<z ≤6, but the critical exponents are independent of eff 1 z . Theresultisdiscussedinthecontextoftheuniversalityofnonequilibriumcriticalphenomena eff 0 and extant results in thefield. 2 n a I. INTRODUCTION J 6 Disorderedsystemshavebeenstudiedextensivelyoverthelastfewdecades. Apointofspecialinterestistheeffectof quencheddisorderinthe system. The quencheddisorderendowsthe systemwithalargenumberofmetastable states ] h that are surrounded by high energy barriers. This alters how the system relaxes and how it responds to an external c driving force. The response becomes sporadic and jerky even if the driving force increases slowly and smoothly. The e reasonis thatthe systemis unable tomovefromonemetastable stateto anotherunless the appliedforcehasreached m the necessarylevelfor crossingthe barrierbetweenthe two metastable states. The passagefromone state to another - involves an avalanche (a quick succession of restructuring events) in the internal structure of the system. A large t a varietyofsystemsexhibitthisavalanchedynamics. Examplesincludemartensitictransformationsinmanymetalsand st alloys as they are cooled from a bcc structure to a closed packed structure [1], earthquakes caused by the movement . of tectonic plates [2], re-arrangement of domains in a ferromagnet, and motion in granular materials [3]. The size t a of an avalanche may vary over a wide range; it may be microscopic, large, or critical in the sense of a diverging size. m We are particularly interested in this paper in nonequilibrium critical phenomena which are caused by a diverging - avalanche. This is akin to critical phenomena in systems in equilibrium that are caused by a diverging correlation d length. There is a good deal of experimental support largely from Barkhausennoise experiments with a wide variety n of materials [4, 5] that nonequilibrium critical phenomena have much in common with their equilibrium counterpart o c such as power laws spanning many decades and universal critical exponents. [ Apparently there is a significant difference between universality of equilibrium critical phenomena and its coun- terpart in the avalanche-driven behavior. In equilibrium, the dimensionality d of the system is a key player that 1 determines the universality class of critical behavior. Short-range structure of the system is irrelevant for this pur- v 5 pose. Therationaleisthatthecriticalbehavioriscausedbyspontaneousfluctuationsinthesystemwhosesizediverges 6 at the critical point. It should not be influenced by short-range details of the system. Thus the critical phenomena 1 on a sc, bcc, or fcc structure should be the same. This idea is well tested theoretically as well as experimentally in 1 the equilibrium case and it may be expected to hold in the nonequilibrium case as well. However we shall see in the 0 followingthatitisnotthecase. Extensivestudyofnonequilibriumcriticalbehaviorhasbeencarriedoutintheframe- . 1 workofhysteresisintherandom-fieldIsingmodel(RFIM)onasclatticewithon-sitequenchedrandom-fieldhavinga 0 Gaussiandistributionwithmeanvaluezeroandstandarddeviationσ [6,7]. Thebasicquantitystudiedism(h,σ),the 5 magnetizationper site in the systemat zerotemperature, asthe applied fieldh is rampedup slowly fromh=−∞to 1 h=∞. Extensive numerical studies on the sc lattice [7–10] reveala critical value of σ =σ ≈2.16 such that m(h,σ) : c v is macroscopically continuous if σ > σ but has a jump discontinuity if σ < σ . The size of the jump discontinuity c c i reduces as σ → σ and the jump occurs at larger values of the applied field h. The point (σ = 2.16,h = 1.435) is X c c c a nonequilibrium critical point marked by scale invariant phenomena similar to the equilibrium critical phenomena. r a The modelhas been studied on a squarelattice as well [11–13]. Initial results on the squarelattice were inconclusive butthe mostrecentstudies [13]showtheexistenceofacriticalpoint. Theseresultssuggestthat2dmaybe thelower critical dimension for the nonequilibrium critical behavior. The problem of hysteresis in the nonequilibrium random-field Ising model at zero temperature can be solved analyticallyonaBethe lattice ofanarbitrarycoordinationnumber z [14]. The exactsolutionbringsouta surprising factthat the nonequilibriumcriticalpoint(σ ,h ) does notexistif z <4. Numericalstudies of the modelonperiodic c c lattices suggest a similar result i.e. the absence of avalanche-driven criticality if z < 4, irrespective of the spatial dimensionalitydofthe lattice [15]. Forexample,considertwodifferent2dperiodiclattices,(i)thehoneycomblattice with z = 3, and (ii) the triangular lattice with z = 6. A nonequilibrium critical point is absent on the honeycomb lattice [15] but present on the triangular lattice [16]. The pattern of extant results suggests that a lower critical coordination number (z = 4) has greater significance than the idea of a lower critical dimension for nonequilibrium c critical phenomena. In order to examine this point further, we study the problem on a randomly diluted triangular 2 lattice. The triangular lattice comprises three equivalent inter-penetrating sublattices A, B, and C. We randomly decimate the sites on one of these sublattices, say the sublattice C. If c is the concentration, i.e. the fraction of sites presentonthe sublatticeC,thenthelimitc=0correspondstothe twosub-latticesAandBmakingupahoneycomb lattice with coordinationnumber equalto 3. For other values of the dilution parameterc, sites onthe lattices A orB haveanaveragecoordinationnumberz (c)=3(1+c). We lookforthepresenceofacriticalpointinthehysterestic eff response of the system for various values of c and find that the critical point disappears if c≤0.33,or equivalently if theeffectivecoordinationnumberz (c)islessthan4. Wealsoexaminethedependence oncofthecriticalexponent eff ν that characterizes the divergence of the largest avalanche on the lattice. We conclude that ν is independent of c in the range (0.33<c<1) within numerical errors. The paper is organized as follows. In section-II we describe the RFIM and its dynamics very briefly for the sake of completeness and to set up our notation. Section III presents numericalresults for the magnetizationcurve on the lower branch of the hysteresis loop for a selected value of dilution (c =0.90), and selected values of σ characterizing the random-field distribution (σ = 0.95, 1.01, and 1.05). This section emphasizes the key idea for determination of the critical point. Section IV contains the body of our numericalresults for a systematically diluted lattice and finite size analysis. Section V contains a brief discussion of the main results of our study. II. THE MODEL AND QUALITATIVE BEHAVIOR The RFIM with nearest neighbor ferromagnetic interaction J is characterized by the Hamiltonian, H =−J c c s s − h c s −h c s (1) i j i j i i i i i Xi,j Xi Xi Here c is a quenchedbinary variable; c =1 if site i ofa L×L triangularlattice shownin figure (1) is occupiedby i i anIsingspins =±1,andc =0otherwise. Eachsitehasaquenchedrandom-fieldh withaGaussiandistributionof i i i mean value zero and standard deviation σ. The system is placed in a uniform external field h which is varied slowly from h=−∞ to h=∞. The discrete time, single spin flip serialdynamics ofthe zero-temperaturenonequilibrium RFIM is specified by the equation [17], s (t+1)=sign l (t);l =J c s +h +h (2) i i i j j i Xj Figure (1) shows three inter-penetrating sub-lattices A, B and C that comprise a triangular lattice. We randomly dilute the sub-lattice C.Thus only afractionc ofthe sitesonthe sublattice C areoccupiedby Ising spins. Itis easily seen that in the limit c = 0, the triangular lattice reduces to the honeycomb lattice and the coordination number of the lattice reduces from 6 to 3. For other values of c in the range 0 < c < 1, the lattice is characterized by an inhomogeneous coordination number. An occupied site on the sublattice C always has 6 nearest neighbors; 3 on sublattice A and 3 on sublattice B. A site on sublattice A (B) has 3+3c nearest neighbors; 3 on sublattice B (A) and 3c (on average) on sublattice C. Thus the coordination number for an occupied site on C is 6, and the effective coordination number on A or B is given by z (c) = 3(1+c). The average coordination number when A, B, and C eff areall takentogether is Z =6(1+2c)/(2+c). In the followingwe study the magnetizationandthe characterof the av avalanches on the diluted triangular lattice for different values of dilution c. The magnetization per site m(h,σ,c;t) on the lattice is given by L×L 1 m(h,σ,c;t)= c s (3) i i L×L Xi We keep h fixed and iterate the single spin flip dynamics till it reaches a fixed point i.e. a t-independent magne- tization. We start with m(h = −∞,σ,c) = −(2+c)/3 and raise h till some spin becomes unstable and flips up. It may cause some of its neighbors to flip up as well. The dynamics is iterated till a stable configuration is reached. Themagnetizationofthe stableconfigurationiscalculatedandthe processisrepeatedbyraisinghtothe nexthigher value that makes a new site unstable. The number of spins that flip up in going from one fixed point to the next is the size of the avalanche. 3 Thesizeofanavalanchedependsonthreequantities;thevalueofthedilutionparameterc,thestandarddeviationσ ofthequenchedrandomfield,andtheappliedfieldh. Forc=1 [16]thereisacriticalvalueofσ =σ (1)thatseparates c two different behaviors that are easy to understand qualitatively. For σ >> σ (1), the distribution of random-field c is very wide. Therefore the spins tend to flip up independently of each other and avalanches are relatively small at any applied field h. On the other hand, for σ << σ (1) the distribution of on-site random fields is very narrow. In c this case, a single spin flip that changes the local field at each nearest neighbor by an amount 2|J| causes a spanning avalanche across the system if the applied field is greater than some threshold. This results in a large change in the magnetization of the system, i.e. a first-order jump in the magnetization at some critical value of the applied field. The size of the jump decreases with increasing σ and reduces to zero at the critical point σ = σ (1) and h = h (1). c c We call it a nonequilibrium critical point because the hysteretic susceptibility of the system diverges at this point. We find that a similar critical point is present on the diluted lattice in the restricted range 0.33 < c < 1. The value of σ (c) reduces with decreasing c and drops discontinuously to zero at c=0.33 approximately. As mentioned earlier c c=1/3correspondstoz =4. Thusacriticalpointoccursonthedilutedlatticeonlyifz >4. Thisisinteresting eff eff in the context ofa similar conclusionreachedin the study ofthe Bethe lattice as well as some other periodic lattices. The central object of the present study is the determination of σ (c). It seems nearly impossible to determine it c analytically. This is not surprising given that exact solutions of Ising models, particularly with quenched disorder, are rare. We have to resort to numerical simulations of the model. Simulations too have difficulties of choosing a good algorithm that suits available computing resources. For each c, we first determine a range σ < σ < σ min max that may containσ (c). This is done by locating σ where no avalanche onthe hysteresis loopis macroscopic,and c max a σ where there is clearly a macroscopic jump in the magnetization. The next step is to study the system for min different values of σ in the range [σ ,σ ] at suitably chosen intervals δσ with a view to narrow this range and min max locatethecriticalpointthatseparatesthetwobehaviors. Therearetwodifficulties. Foreachvalueofσ,theavalanche distributionisdeterminedbytakinganaverageoveralargenumberofconfigurations. Itisacpuintensiveexerciseand acompromiseisnecessaryinchoosinganoptimalδσ. Thesizeofthestepδσisonefactorthatcontributestotheerror bars in the results. The other difficulty is that fluctuations increase as we approach the vicinity of the critical point. The avalanches that were microscopic for σ >> σ grow in size and compete with the avalanches associated with a c jump in magnetization even as the jump approaches zero. We need a method to distinguish the infinite avalanche associatedwith a first order jump in magnetizationfrom an infinite avalancheassociatedwith a critical point. These two categories of avalanches are distinguished from each other by looking at their probability distributions. This is again a cpu intensive process. Qualitatively the largest avalanche associated with a magnetization jump scales linearly with the system size L while the largestavalanche associatedwith a criticalpoint scales as L1/2. The shapes of the avalanchedistribution functions for σ <σ and σ ≈σ are different from each other [16, 18]. This difference is c c exploited to pin down σ within error bars as described in the following. c III. SIMULATIONS The shape of magnetization curve m(h,σ,c) in a changing field h depends on the starting state of the system in additionto h, σ, and c. We startfromm(h=−∞,σ,c)=−(2+c)/3,andraise the fieldslowly to h=∞. Figure (2) shows m(h,σ,c) on a 6000×6000lattice for c=0.90,andthree different values ofσ =0.95(blue triangles), σ =1.01 (black circles), and σ = 1.05 (red squares) in the range 1.5 < h < 1.7. It illustrates three categories of behavior: (i) at smaller values of σ (blue triangles) m(h,σ,c) has a jump discontinuity, (ii) at larger values of σ (red squares) m(h,σ,c) looks apparently smooth if we allow for fluctuations due to finite size effects that are naturally present in any numerical simulation, (iii) there is an intermediate region (black circles) where it is relatively difficult to decide if the curve is smooth or has a discontinuity. Somewhere in this regionlies a critical value σ with the corresponding c magnetization curve being theoretically smooth but containing a point of inflexion at h = h . The inflexion point is c the critical point where the fluctuations in the system become anomalously large and consequently the susceptibility of the systemdiverges. The difficulty is that it is not easy to identify the inflexion point in simulations. Fluctuations also increase with increasing size of the system, and simulated trajectories remain qualitatively similar to the ones shown in figure (2). Thus it is unreasonable to expect that simulation with a larger system (which would anyway requireanunreasonablylongcomputertime)wouldmakeitanyeasiertolocatethe inflexionpointbymerelylooking at the curve. Rather it has to be inferred indirectly from the analysis of fluctuations in its vicinity. The fluctuations are anomalously large not only at the critical point (h ,σ ) but also at the discontinuity in m(h,σ,c) at σ <σ and c c c h<h . This presentsanadditionaldifficulty indeterminingthe criticalpoint. Ourapproach [16,18]is basedonthe c ideathatthecharacteroffluctuationsatthecriticalpointisdifferentfromthecharacteroffluctuationsatafirstorder discontinuity. The macroscopicdiscontinuity in magnetizationconstitutes a largeavalanchebut avalancheselsewhere on the magnetization trajectory are exponentially small. Thus on a logarithmic scale, the probability P(s,σ,c) of an avalanche of size s has two parts, a part that decreases linearly with s and another a delta function peak at 4 s≈s ; s is of the order of the system size but decreases as σ approaches σ from below. Also the distribution max max c of avalanches is asymmetric on the two sides of the discontinuity. Avalanches tend to be larger at the onset of the discontinuity. After the discontinuity has occurred, most of the spins in the system have turned up and the number of potential sites that can turn up reduces drastically. Thus avalanches immediately after a jump in magnetization tend to be smaller in comparison to those just before it. In contrast to this, avalanches on both sides of a critical point are similar to each other. The maximum size of a critical avalanche scales as the square root of the system size while it scales linearly with the system size at a discontinuity. However in spite of these distinguishing features between a first-order and a second order transition, the issue still remains difficult to decide because as σ →σ from c below, the size of the first order jump tends to zero and the Delta function peak at s=s tends to vanish. In the max absenceofa moreefficient method, weuse the same(rather laborious)methodto locate criticalpoints onthe diluted triangular lattice as was used on the undiluted lattice (c=1). In the following we discuss the case c=0.90 in detail, and present the results for other values of dilution in the form of a table and graphs. As discussed in reference [16], we count the occurrence of all avalanches of size s as the system is driven from h = −∞ to ∞. Let P(s,σ,c) be the probability of an avalanche of size s anywhere on the m(h,σ,c) curve in an increasing applied field (h = −∞ to h = ∞) on a triangular lattice whose sites on sublattice C are occupied with probability c. As mentioned earlier, logP(s,σ,c) will have a linearly decreasing part in the range 1 < s < s if max m(h,σ,c) has a discontinuity. This is born out by the red (filled circles) curve in figure (3) which shows the raw data for σ = 1.1 on a 240×240 lattice for c = 0.90 and 50000 independent realizations of the random-field distribution. The green (filled squares) curve in the same figure shows the data for σ =1.295 which we estimate to be the critical value. Simulations were performed for several closely spaced values of σ. However we show the data for only three values of σ so as not to crowd figure (3). The data depicted in green is the closest to a linear decrease. The Delta function peak has vanished signifying that the jump in the magnetization has approached zero. Data for σ = 1.5 is shown in blue (filled triangles). We conclude that the value of σ corresponding to the blue must be greater than σ due to two reasons: (i) the largest avalanche s with a non-zero probability of occurrence is far less than the c max system’s size, and (ii) P(s,σ,c) does not approachto zero linearly at s but rather bends down to it. max Figure (4) shows similar data as figure (3) but in a binned form. Binning reduces the scatter of the data and we are able to show the data for a larger set of closely spaced σ values without crowding the figure too much. The raw dataforeachvalue ofσ hasbeenbinnedin50linearbins. Herethe valuesofσ areveryclosetoσ so thatthe largest c avalanche in each case is of the same order of magnitude. What distinguishes different values of σ is that curves that bend up near the largest avalanche indicate a tendency to form a Delta function peak. These indicate that the corresponding σ is smaller than σ . Similarly the curves that bend down near the largest avalancheindicate that the c corresponding values of σ are larger than σ . The curve closest to a straightline (blue circles) belongs to σ =1.295. c c Before closing this section, two comments on the binning procedure may be in order. We have also used logarithmic binning which is normally the preferred binning procedure when the distributions have a fat tail as in our case. This doesnotchangethe results presentedhere. The mainpurposeoffigure(4)isto distinguishbetweencurvesthatbend upneartheendfromthosethatbenddown. Thisiseasierfortheeyeiflinearbinningisusedduetohigherdensityof datapoints inthe region. The secondpointisthatthe lastbinineachcaseshouldbe ignoreddue to lackofsufficient number of data points in this bin. IV. FINITE SIZE EFFECTS AND RESULTS Using the procedure outlined above, we have determined the critical value σ (L,c) on diluted L×L lattices for c variousvaluesofLintherange100to600. Thesearerathersmallsizescomparedwiththeonesusedinthestudyofthe undiluted problem on a square lattice [12, 13]. However,such small sizes were found to be adequate in reference [16] to demonstrate the presence of critical hysteresis on a triangular lattice. In the present study as well, these appear to be adequate to examine the effect of dilution parameter c and the effective coordination number z on critical eff hysteresis in the system. Our results are presented in Table I. According to the scaling hypothesis, the correlation lengthin the vicinity ofthe criticalpointscales as∼[σ (c)−σ]−ν(c) as σ →σ (c)frombelow. The argumentonν(c) c c indicates that we are open to the possibility that the the critical exponent ν may depend on the amount of dilution on the lattice. However, as we shall see in the following, this turns out not to be true within the error bars of our analysis. In the present problem, the correlationlength is measuredby the largest distance that an avalanche travels from its point of origin. On a finite lattice, the farthest distance an avalanche can travel is limited by the size of the lattice. Thus L ∼ [σ (L,c)−σ]−ν(c) where σ (L,c) is a lattice-dependent critical value of σ (c). Allowing for a c c c constant of proportionality, we may write [13] − 1 σc(L,c)−σc(c) 1 σc(L,c) L ν(c) = or − log L=log −1 (4) σ (c) ν(c) 10 10(cid:20) σ (c) (cid:21) c c 5 Here the factor 1/σ (c) appearing immediately after the first equality sign is a constantof proportionality. A more c general constant of proportionality 1/a is considered in equation (5). TABLE I:σc(L,c) L c=1.00 c=0.90 c=0.80 c=0.70 c=0.60 c=0.50 c=0.40 c=0.34 99 1.63 ±0.01 1.47±0.01 1.305±0.005 1.125 ±0.005 0.885±0.005 0.665±0.005 0.51±0.01 0.485±0.005 120 1.59 ±0.01 1.425±0.005 1.255±0.005 1.065 ±0.005 0.83±0.01 0.62±0.01 0.485±0.005 0.46±0.01 141 1.56 ±0.01 1.39±0.01 1.215±0.005 1.02 ±0.01 0.785±0.005 0.585±0.005 0.465±0.005 0.44±0.01 168 1.525 ±0.005 1.355±0.005 1.175±0.005 0.98 ±0.01 0.745±0.005 0.555±0.005 0.445±0.005 0.425±0.005 198 1.50±0.01 1.325±0.005 1.14±0.01 0.94±0.01 0.71±0.01 0.525±0.005 0.425±0.005 0.405±0.005 240 1.47±0.01 1.295 ±0.005 1.105±0.005 0.90±0.01 0.675±0.005 0.495±0.005 0.41±0.01 0.39±0.01 300 1.44±0.01 1.26±0.01 1.065±0.005 0.86±0.01 0.635±0.005 0.465±0.005 0.39±0.01 0.375±0.005 360 1.42±0.01 1.235±0.005 1.04±0.01 0.83±0.01 0.605±0.005 0.445±0.005 0.375±0.005 0.365±0.005 390 1.41±0.01 1.225±0.005 1.03±0.01 0.815±0.005 0.595±0.005 0.435±0.005 0.37±0.01 0.36±0.01 480 1.39±0.01 1.20±0.01 1.00±0.01 0.785±0.005 0.565±0.005 0.415±0.005 0.355±0.005 0.345±0.005 600 1.37±0.01 1.18±0.01 0.975±0.005 0.76±0.01 0.54±0.01 0.395 ±0.005 0.345±0.005 0.335±0.005 For each value of dilution c, the data in Table I is used to plot −log L vs. log [σ (L,c)/σ (c)−1] for different 10 10 c c values of parameter σ (c). The shape of the plot changes from concave up to a straight line, and then to concave c downasσ (c)isincreasedfromzero. Wesearchforthebestvalueoftheσ (c)thatproducesastraightline. However, c c the transitionfromconcaveuptoconcavedownisnotsharpandspreadsoverabroadrange. This createsarelatively large uncertainty in the value of σ (c) that produces the best fit, and also an uncertainty in the slope of the line. For c example, the best fit to a straight line for the data in the second column (c=0.90) is obtained for σ =1.00±0.04. c This is shown in figure (5). The slope of the straight line is equal to 1/ν(c) = 0.54±0.07, or ν(c) = 1.85±0.26. Similarly,wedetermineν(c)forothervaluesofdilutionc. Ourresultsforσ (c)andν(c)fordifferentvaluesofdilution c on the triangular lattice are summarized in the following table. TABLE II:σc(c) and ν(c) for different values of dilution c c=1.00 c=0.90 c=0.80 c=0.70 c=0.60 c=0.50 c=0.40 c=0.34 σc 1.22±0.04 1.00±0.04 0.77±0.05 0.54±0.05 0.33±0.05 0.26±0.04 0.25±0.03 0.25±0.03 ν(c) 1.78±0.29 1.85±0.26 1.87±0.29 1.83±0.26 1.85±0.28 1.64±0.28 1.76±0.35 1.79±0.33 Oursimulationsrevealacriticalvaluec ofthe dilutionparameter;c =0.33approximately. Atc=c , σ (c)drops c c c c to zero abruptly, and remains zero for c < c as shown in Figure (6). There is no first order jump in m(h,σ,c) for c c < c . We have verified this directly from the simulations as well as inferred it from the following. For c < 0.33, c the plot −log L vs. log [σ (L,c)/σ (c)−1] is never concave up for any σ (c)>0. This indicates the absence of a 10 10 c c c disorder driven jump in the magnetization and therefore the disappearance of a critical point if c<0.33. To further validate this point, we also tried as in ref [16], the scaling form − 1 σc(L,c)−σc(c) L ν(c) = , (5) a 6 where a is an arbitrary parameter. The role of a is to shift the curve along the y-axis without changing its shape. If we set σ (c) = 0 in the above equation, we find that the plot is always concave up for any value of c > c . This c c means that for c>c , the system possesses a criticalpoint with σ >0. On the other hand, for c<c , the curve is a c c c straight line indicating the absence of a critical point. The variation of σ (c) vs. c has been plotted in figures (6), and ν(c) vs c in figure (7). We may draw the following c conclusions from these figures. As the lattice is diluted increasingly, it continues to support a critical point but the value of σ (c) decreases. This is intuitively reasonable because the random dilution of the lattice amounts to a c positionaldisorderinthe systemthatsupplementsto the disorderdue tothe random-field. Thus the criticalpointon the diluted lattice corresponds to a narrower distribution of the random-field as compared with the undiluted case. We also note that the critical dilution c =0.33 corresponds to z ≈4. c eff Figure (7) showsthat the exponent ν(c) is independent of c within the errorbars. We may expect this universality to hold for other exponents as well because of the relationship between different exponents. It is unlikely that only one exponent in an equation is universal while others are not. We have tried to extract a bit more information from ournumericaldataregardingotherexponents. Wehavetriedthecollapseoftheintegratedavalanchesizedistribution with the following scaling form [10, 12]: P(S,σ)∼S−(τ+αβδ)P˜(S|r|1/α) (6) Here α is the exponent describing the largest cut-off avalanche i.e. S ∼ |r|−1/α where r = σ−σc, τ is the max σ avalanche size exponent, β gives the scaling of the change in magnetisation due to spanning avalanche, ∆m ∼ |r|β, at the critical field. The exponent δ describes the scaling of the reduced magnetisation with reduced magnetic field, m∼hδ atσ . Thus the productP(S,σ)×S(τ+αβδ) is afunctionofasinglevariableS|r|1/α. Fig(8)showsP˜(S|r|1/α) c vs. S|r|1/α forc=0.80;L=168,240and390;anddifferentvaluesofσ rangingfrom1.15to1.40. Thecurvescollapse on each other reasonably well if we choose τ +αβδ =2.05 and α=0.12. We have also examined how the exponents extracted from the collapsing curves depend on L and |r|. For this purpose, we fix c and L (say c=0.80, and L=390), and choose three closely spaced values of σ (say σ =1.05,1.06, and 1.07). The three values of σ correspond to three closely spaced values of |r|. Let |r| denotes the average of avg the three |r| values. We search for the values of τ +αβδ and α that produce the best collapse of the three curves associatedwith|r| . Nextwechooseseveraldifferenttripletsofcloselyspacedσvaluesanddeterminetheexponents avg over a range of values of |r| . This exercise is repeated for systems of different sizes (L = 168,240,390,600), and avg for a range of values of c in the range c>0.33. The results for c=0.80 are shown in figures (9) and (10) along with the range of variations (error bars) in the values of the exponents. These figures also show the extrapolated values of the exponents in the limit |r| → 0 or L → ∞. Thus we obtain τ +αβδ = 2.05±0.05 and α = 0.11±0.02 for avg c=0.80. We have checked that the values of the exponents for other values of dilution c lie in the same range as for c=0.80. This leads us to conclude that the values of the exponents τ +αβδ and α are independent of c if c>0.33. V. DISCUSSION We have investigated critical hysteresis on a two dimensional lattice with a variable coordination number. We had to study the problem numerically because exact analytical solutions of this problem are not possible. Simulations of the model suggest that the three parameters of the model c, h, and σ are characterized by critical values c , h , and c c σ respectively. If c > c , the critical point (h ,σ ) is marked by a diverging avalanche and a critical exponent ν(c). c c c c Within numerical errors, we find that the exponent ν does not depend on c. The critical value c is approximately c equaltoc =1/3whichcorrespondstoz =4andZ =30/7. WenotethateachsiteonAorBsublatticehasthree c eff av nearest neighbor sites on the C sublattice which are occupied independently with probability c. Therefore if c<1/3, the probability of a spanning path on A+B through occupied sites on C goes to zero. In this case the C sublattice does not contribute to a diverging correlation length. The cooperative behavior of the system is qualitatively the same as on the honeycomb lattice comprising A and B, and the relevant parameter is z rather than Z . eff av We note that c = 1/3 corresponds to an effective coordination number z = 4. Thus our results suggest that eff critical behavior disappears when the coordination number of the lattice drops below four. A similar result holds for theBethelattice[14]andalsosomeperiodiclattices[15]. OntheBethelattice,theproblemcanbesolvedanalytically and therefore the mathematical reason for the absence of critical behavior on Bethe lattice of coordination number lessthanfourisunderstood. Howeverthephysicalreasonforthisbehavioronperiodiclatticesisnotwellunderstood. It is curious that the lower critical coordination number is also equal to four on the diluted triangular lattice. We could not have anticipated this result beforehand. Our numerical results only suggest z to be approximately four eff within errors but the probabilistic argument mentioned above indicates that it may be exactly equal to four. Thus 7 all the extant results indicate that nonequilibrium criticalbehavior occurs only on lattices with coordinationnumber equal to four or more irrespective of the dimensionality of the lattice. Before closing, we wish to comment on the small difference between results presented here for the case c= 1, and thoseinreference(16). Wefindσ =1.22±0.04andν =1.78±0.29(forc=1.00)whilethevaluesreportedinreference c (16) are σ = 1.27 and ν = 1.6±0.2. The results are consistent with each other within error bars. As authors of c reference (16) are also coauthors of the present paper, we can point out the reason for the difference in the two sets ofresults. We estimate σ as the bestvalue ofthis parameterthatresults ina straightline whenthe left-hand-side of c equation (4) is plotted against its right-hand-side. As explained in the previous section, the range of values of σ (c) c that produces an apparent straight line is rather broad. The results in reference (16) rely on a visual scrutiny of the plots and choosing the fit that looks best to the eye. This is of course susceptible to human error. In the present study,wehaveusedthelinearleastsquaresfittingtechnique. Ithastheconvenienceofamechanicalmethodtohandle the data contained in Table I but it also has the disadvantage that outlying points have a disproportionate effect on the fit. This contributes to the uncertainty in σ (c) and ν which is determined by the slope of the straight line. The c uncertaintiesinourresultsarerelativelylargefortheeffortputinthisstudy. Thisseemsunavoidablewiththepresent method. The remark on the closeness of the exponent ν on the triangular lattice [16] and the simple cubic lattice [10] should also be taken in the same vein. At a qualitative level, it does suggest that the avalanche-drivenexponent maydependonthecoordinationnumberratherthanthe dimensionalityofthelattice. However,itisdifficulttoreach a stronger conclusion with the error bars in our analysis. We hope the present study will motivate further studies of the issues raised here with new and improved techniques. [1] Eduard Vives, J Ortin,L Manosa, I Rafols, Ramon, Antoni,PhysRev Lett 72, 1694 (1994). [2] K.L.Babcock, R.M Westervelt,Phys RevLett 64, 2168 (1990); X.che, H.SuhlPhysRev Lett 64, 1670 (1990). [3] M.Bretz, J.B.Cunningham, P.L Karcynskiand F.Nori, Phys RevLett 69, 2431(1992). [4] L.V Meisel, P.J Cote, PhysRev B 46, 10822(1992). [5] J.S Urbach,R.C Madison, J.T Markert, PhysRev Lett 75, 276(1995). [6] J P Sethna,K A Dahmen, S Kartha, J A Krumhansl, B W Roberts, and J D Shore, PhysRev Lett 70, 3347 (1993); [7] O Perkovic, K Dahmen, and J P Sethna,PhysRev Lett 75, 4528 (1995). [8] K Dahmen and J P Sethna, PhysRev Lett 71, 3222(1993) [9] K A Dahmen and J P Sethna,PhysRev B 53, 14872 (1996). [10] O Percovic, K.A Dahmen and J.P Sethna,Phys. Rev.B 59, 6106(1999) [11] C Fronteraand E Vives,Phys RevE59, R1295 (1999); Phys RevE62, 7470 (2000). [12] O Percovic,K A Dahmen and J P Sethna,arXiv:cond-mat/9609072 v1 [13] D.Spasojevic, S.Janicevic and M.Knezevic, Phys. Rev.Lett, 106,175701(2011); PhysRev E84, 051119 (2011). [14] D Dhar, PShukla, and J P Sethna,J PhysA30, 5259 (1997). [15] S Sabhapandit,D Dhar, and P Shukla,Phys RevLett 88, 197202 (2002). [16] D Thongjaomayum and P.Shukla, PhysRev E88, 042138 (2013). [17] R J Glauber, J Math Phys 4, 294 (1963). [18] C. L. Farrow, P. Shukla, and P. M. Duxbury, J. Phys. A: Math. Theor. 40, F581 (2007); P. Shukla, Pramana 71, 319 (2008). 8 (cid:0)(cid:1)(cid:0)(cid:1) A (cid:0)(cid:1) (cid:0)(cid:1) B C (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) FIG. 1: Triangular lattice with sublattices A(black circles), B (shaded circles) and C(white circles). C is randomly diluted. 1 0.5 ) c , σ 0 , h ( m -0.5 -1 1.56 1.59 1.62 h FIG. 2: (color online) Magnetization curves on a 6000×6000 diluted triangular lattice with c=0.90 and for σ = 0.95(blue triangles), σ=1.01(black circles), and σ=1.05(red squares). 9 0 10 -1 10 -2 10 -3 10 ) c σ, -4 10 , s ( P -5 10 -6 10 -7 10 -8 10 0 1 2 3 4 5 10 10 10 10 10 10 s FIG. 3: (color online) Distribution of avalanches P(s,σ,c) on a L×L lattice for L= 240 and c= 0.90; σ = 1.10 (red circles with a peak at s≈L×L), σ =1.295 (green squares, note the peak at s≈L×L has vanished and the plot is almost linear) and σ=1.50 (blue triangles, thebending of thecurveindicates thelargest avalanche is smaller than L×L). 0 10 -1 10 -2 10 -3 10 ) c σ, -4 10 , s ( P -5 10 -6 10 -7 10 -8 10 3 4 5 10 10 10 s FIG.4: (coloronline)P(s,σ,c)forc=0.90andL=240usinglinearbinning;σ=1.25(redsquares),σ=1.27(greentriangles), σ = 1.295(blue circles), σ = 1.31(pink inverted triangles), and σ = 1.35(brown diamonds). Figure shows σc(L,c) ≈ 1.295 because thecorresponding curve is nearly linear; the curvesfor σ <σc(L,c) tend to peak at the largest avalanche while those for σ>σc(L,c) tend to bend down. 10 -0.3 ] 1 - ) -0.45 c ( c σ / ) c , L ( σc -0.6 [ 0 1 g o l -0.75 -2.7 -2.4 -2.1 -log L 10 FIG. 5: (color online) Plot of log [σc(L,c) −1] vs. -log L for c = 0.90. The best fit to a straight line is obtained for 10 σc(c) 10 σc(c)=1.00±0.04. The slope of thestraight line yields ν(c)=1.85±0.26. 1.2 0.8 ) c ( c σ 0.4 0 0.3 0.6 0.9 c FIG. 6: (color online) Variation of σc(c) with c. The figure shows the absence of critical hysteresis if c<0.33.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.