JLowTempPhysmanuscriptNo. (willbeinsertedbytheeditor) 9 A.S.Vasenko F.W.J.Hekking · 0 0 Nonequilibrium Electron Cooling by NIS 2 Tunnel Junctions n a J 4 1 ] n Received:date/Accepted:date o c - r Abstract We discuss the theoretical framework to describe quasiparticle elec- p tric and heat currents in NIS tunnel junctions in the dirty limit.The approach is u based on quasiclassical Keldysh-Usadel equations. We apply this theory to dif- s . fusive NISS tunnel junctions. Here N and Sare respectivelya normal and a su- t ′ a perconductingreservoirs,IisaninsulatorlayerandS isanonequilibriumsuper- ′ m conductinglead.Wecalculatethequasiparticleelectricandheatcurrentsinsuch - structures and consider the effect of inelastic relaxation in the S′ lead. We find d thatintheabsenceofstrongrelaxationtheelectriccurrentandthecoolingpower n for voltages eV < D are suppressed. The value of this suppression scales with o thediffusivetransparencyparameter.Weascribethissuppressiontotheeffectof c [ backtunnelingofnonequilibriumquasiparticlesintothenormalmetal. 2 Keywords Electroncooling NIStunneljunctions v · 1 PACS 74.50.+r 74.45.+c 74.40.+k 74.25.Fy · · · 4 7 5 1 Introduction . 0 1 It is well known that inNIS (Normal metal- Insulator - Superconductor) tunnel 8 junctionstheflowofelectriccurrentcarriedbyquasiparticlesisaccompaniedby 0 aheattransferfromthenormalmetalintothesuperconductor[1,2].Thishappens : v duetothepresenceofthesuperconductingenergygapD ,whichinducesselective i X tunneling of high-energy quasiparticles out of the normal metal. In the tunnel- ing event only quasiparticles with energy E >D (compared to the Fermi level) r a cantunneloutofthenormalmetal.Theygeneratethesingleparticlecurrentand A.S.Vasenko F.W.J.Hekking LPMMC,Univ·ersite´JosephFourierandCNRS,25AvenuedesMartyrs, BP166,38042Grenoble,France E-mail:[email protected] E-mail:[email protected] 2 associatedheatcurrent.AtlowerenergiesE<D chargetransferoccursviamech- anism of Andreev reflection[3, 4]. Andreev current I generatesa Joule heating A I V thatisdepositedinthenormalmetalelectrodebutthiseffectdominatesover A single particle cooling only at very low temperatures [5]. For the temperatures consideredinthispaperAndreevJouleheatingisnegligible. Ithasbeenshownthatforvoltage-biasedNIStunneljunctionsheatcurrentout ofthenormalmetal(alsoreferredas“coolingpower”)ispositivewheneV .D , i.e., it cools the normal metal [6]. For eV &D the current through the junction increasesstrongly,resultinginJouleheatingIV andmakingtheheatcurrentneg- ative.ThecoolingpowerismaximalneareV D . ≈ This effect enables the refrigeration of electrons in the normal metal. A mi- crorefrigerator,basedonanNIStunneljunction,hasbeenfirstfabricatedbyNa- humetal.[1].TheyhaveusedasingleNIStunneljunctioninordertocoolasmall normal metalstrip. LaterLeivo et al. [6] have noticedthat the cooling power of an NIS junction is an even function of an appliedvoltage, and have fabricateda refrigeratorwithtwoNIStunneljunctionsarrangedinasymmetricconfiguration (SINIS), which gives a reduction of the electronic temperature from 300 mK to about 100 mK. This significant temperature reduction gives a perspective to use NISjunctionsforon-chipcoolingofnano-sizedsystemslikehigh-sensitivityde- tectorsandquantumdevices[7]. To enhance the performance of the NIS refrigerator it is important to under- standtheroleofpossiblefactorsthatmayfacilitateordecreasethecoolingeffect. Oneofsuchfactorsistheinelasticrelaxationofinjectedquasiparticlesinthesu- perconducting lead. In non-reservoir geometries the quasiparticles injected into thesuperconductingleadgenerateanonequilibriumdistribution.Inadiffusivesu- perconductorbackscatteringonimpuritiesandsubsequentbacktunnelingintonor- mal metalmay considerably reduce the net heat current out of the normal metal electrode. The purpose of this work is to investigatethe importance of the nonequilib- rium quasiparticle distribution and consider the effect of inelastic relaxation in the superconductor. Possible mechanisms of inelastic relaxation could be usual processes,suchas electron-electronor electron-phononinteractions,but alsothe presenceofsocalled“quasiparticletraps”,i.e.additionalnormalmetalelectrodes connectedtothesuperconductor,whichremoveexcitednonequilibriumquasipar- ticles from the superconducting lead [8, 9]. In this paper we do not specify the mechanisms of inelastic relaxation and consider the relaxation time approxima- tion approach. Effect of the nonequilibrium quasiparticle injection in NIS junc- tionswas alsodiscussedinRef.[10],where theauthors proposed aphenomeno- logicalmodelofquasiparticlediffusioninthesuperconductinglead. Thepaperisorganizedasfollows.Inthenextsection,weformulatethetheo- reticalmodelandbasicequations.Insections3and4wesolvethekineticequa- tions andapply solutions for thecalculationof theelectricandheatcurrents,re- spectively.InSec.5wecalculatequasiparticledistributionfunctionsinthesuper- conductinglead.FinallywesummarizetheresultsinSec.6. 3 N S’ S 0 L x Fig.1 Geometryoftheconsideredsystem. 2 Modelandbasicequations ThemodeloftheN-I-S-SjunctionunderconsiderationisdepictedinFig.1and ′ consistsofavoltage-biasednormalmetalreservoir(N),aninsulatorlayer(I),asu- perconductinglayer(S)ofthicknessLandasuperconductingreservoir(S)along ′ the x direction. The S and S leads are made from the identicalsuperconducting ′ material.We assume the S-S interface to be fully transparent. We will consider ′ the diffusive limit, in which the elastic scattering length ℓ is much smaller than thecoherencelengthx = D/2D ,whereD isthe diffusioncoefficient(we as- 0 sumeh¯ =k =1).ThelengthLoftheS leadisassumedtobemuchlargerthan B ′ x . The problem of currentpflow through diffusive N-I-S-S structures with short 0 ′ S superconductorleadwassolvedinRef.[11]. ′ Undertheconditionsdescribedabove,thecalculationoftheelectricandheat currentsrequiressolutionoftheone-dimensionalKeldysh-Usadelequations[13] (seealsoreview[14])forthe4 4matrixKeldysh-GreenfunctionGˇ(x,E)inthe × S lead, ′ sˇ E+Dˇ, Gˇ =iD¶ Jˇ, Jˇ=Gˇ¶ Gˇ, Gˇ2=1ˇ, (1) z gˆR GˆK G(cid:2)ˇ = (cid:3) , GˆK =gˆRfˆ fˆgˆA. (2) 0 gˆA − (cid:18) (cid:19) Here s 0 Dˆ 0 sˇz= 0z s z , Dˇ = 0 Dˆ , (cid:18) (cid:19) (cid:18) (cid:19) gˆR,A are the 2 2 Nambu matrix retarded and advanced Green’s functions, fˆ= f +s f isth×ematrixdistributionfunction(weuse“check”for4 4and“hat” + z for2 2−matrices),s y,zarethePaulimatricesintheNambuspace,Dˆ×=eis zc is yD , D and×c are the modulus and the phase of the pair potential, and ¶ ¶ /¶ x. In ≡ Eqs. (1) we neglectthe inelasticcollisionterm which will be takeninto account later.Since we are interestedinsmallvoltages eV .D (when the cooling of the normalmetaloccurs)wecanneglecttheeffectofthesuppressionofthesupercon- ductinggapduetotheheatinginthesuperconductor. The boundary conditions for the function Gˇ and the matrix current Jˇat the leftnormal (x= 0) and the right superconducting (x=+0)sides of the tunnel − barrieraregivenbytherelation[15] (s /g )Jˇ =Jˇ =(W/x ) Gˇ ,Gˇ , (3) N N 0 +0 0 0 +0 − − (cid:2) (cid:3) 4 where s and g are the normal conductivities of the N and S leads per unit N N ′ length,respectively.InEq.(3),thetransparencyparameterW isdefinedas W =R(x )/2R=(3x /4ℓ)G G , (4) 0 0 ≫ whereR(x )=x /g isthenormalresistanceoftheS leadperlengthx andRis 0 0 N ′ 0 thejunctionresistance.IthasbeenshowninRefs.[16,17]thatthisquantityrather thanthebarriertransparencyG plays the role ofa transparencyparameterinthe theory of diffusive tunnel junctions (seealsothe discussioninRef. [18]). In this paper, we will considerthe limitW 1, which corresponds tothe conventional ≪ tunneling concept. At the right transparent S-S interface all functions and their ′ firstderivativesaretobecontinuous.Weneglectpossiblesmallresistanceatthis interface [12] since it is much smaller than the resistance of the S lead in the ′ normalstate. The electric and heat currents are related to the Keldysh component of the matrixcurrentJˇrespectivelyas[13,19,20,21,22], g ¥ I= N Trs JˆKdE, (5) z −4e 0 Zg ¥ P=IV+ N ETrJˆKdE, (6) 4e2 0 Z andthustheycanbeexpressedthroughtheboundaryvalueJˇ inEq.(3), +0 1 ¥ I= Trs Gˇ ,Gˇ KdE, (7) z 0 +0 −8eR 0 − Z P=IV+ 1 ¥ E(cid:2)Tr Gˇ ,G(cid:3)ˇ KdE. (8) 8e2R 0 −0 +0 Z (cid:2) (cid:3) For further consideration it is convenient to write the Green function in the followingstandardway, gˆ=s u+is v. (9) z y HereweneglectthephaseoftheanomalousGreenfunctionsinceitgivescorrec- tions to the next order in diffusive barrier transparency parameterW. The func- tions u and v determine the spectral characteristics of the system. In particular, the quantity N(E)= uR uA /2 is the density of states (DOS) normalized to − its value N in the normal state. In what follows, we will express the advanced F Greenfunctionsthrou(cid:0)ghthere(cid:1)tardedones,(u,v)A= (u,v)R ,usingthegeneral ∗ relationgˆA= s gˆR†s ,andomitthesuperscriptR,c−onsideringretardedGreen’s z z − functionsonly. Inthispaperwewillcalculatethesingleparticlecurrent,thereforeweconsider quasiparticle energy E >D from now on. We neglect the proximity effect since proximity corrections to the spectral functions are of the order ofW. Therefore, weusetheBCSdensityofstatesinbothS andSlayers.Intheleftvoltage-biased ′ normalmetalreservoir(N)wehave, 1 E+eV E eV gˆN =s z, f N = tanh tanh − , (10) ± 2(cid:20) (cid:18) 2TN (cid:19)± (cid:18) 2TN (cid:19)(cid:21) 5 whereT isthetemperatureofthenormalmetalreservoir.Weassumethevoltage N V to be directly applied to the tunnel barrier and neglect a small electric field ( eVW)penetratingtheS superconductinglead. ′ ∼ In the right superconducting reservoir (S) Green’s and distribution functions aregivenbytherelations (E,D ) gˆ =s u +is v , (u ,v )= , (11) S z S y S S S (E+i0)2 D 2 − E f f =tanh , f p=0, (12) +S x>L≡ eq (cid:18)2TS(cid:19) −S x>L (cid:12) (cid:12) whereT isthet(cid:12)emperatureoftheSreservoir. (cid:12) S In the S layer, Green’s function is given by Eq. (11) and distribution func- ′ tions f (x,E)shouldbefoundfromthekineticequations,whichfollowfromthe S Keldys±hcomponentofEqs.(1)andforE>0haveasimpleform¶ 2f =0within S our approximations. These equations have no bound solutions: both±distribution functions f (x,E) grow linearlywith x far from the junction. Such a growth is S limitedinp±racticebyinelasticcollisions,whichprovide thespatialrelaxationof f (x,E) to the equilibrium values at x l x , where l =√Dt are the S 0 in±elasticscatteringlengths and t are the∼in±ela≫sticscattering±times. To±simplify theproblem,insteadofincluding±complicatedinelasticcollisionintegrals,weadd collisiontermsintherelaxationtimeapproximationtothekineticequations, l2¶ 2f =(f f )N(E), (13) + +S +S− eq l2¶ 2f = f /N(E), (14) S S − − − whereN(E)=Re(u )istheBCSDOS. S WeshouldsupplementEqs.(13)-(14)withproperboundaryconditionsonboth leftandrightinterfaces.Onthetunnelbarrier(x=0)theyfollowfromtheKeldysh componentofEq.(3), N(E) ¶ f = (f f ), (15) x +S x=0 g R +S0− +N N (cid:12) 1 ¶ f (cid:12) = (f f ), (16) x −S x=0 gNRN(E) −S0− −N (cid:12) where f (E)aretheboun(cid:12)dary valuesof f (x,E)atx=0.Ontheright trans- S0 S parentin±terfacedistributionfunctionsbecom±eequilibriumfunctionsoftherightS reservoir, f = f , f =0. (17) +S x=L eq −S x=L (cid:12) (cid:12) (cid:12) (cid:12) 3 Singleparticlecurrent The equation for the electric current follows from Eqs. (7), (16) and for single particlecurrentreads, 1 ¥ I= N(E)(f f )dE. (18) N S0 eR D − − − Z 6 e/ R I 1 0 0 1 eV/ 2 Fig.2 (Coloronline)IVcharacteristicoftheNISSjunction.T =T =0.3T ,W =0.01.Solid ′ N S C blacklineiscalculatedbyuseofEq.(22).OtherlinesarecalculatedbyuseofEq.(21),L= 50x0:l =10x0 (redline);l =20x0 (greenline);l =50x0 (blueline);l =100x0 (dashed blackli−ne). − − − Toobtain f we shouldsolvetheboundary problem (14),(16)and(17).Doing S0 thisweget−thefollowingresult, a f−S0= f−Na + N(E)co−th(b / N(E)), (19) − − a =2Wl /x =R(l )/R, b =L/l , (20) 0 p p − − − − − where R(l ) =l /g is the normal resistance of the superconducting lead per N lengthl .−FromE−q.(19)weseethatthenonequilibriumcorrectiontothecurrent isofthe−orderofa W,whichjustifiesourassumptionaboutneglectingterms oftheorderofW in−t≫hekineticequation. SubstitutingEq.(19)intoEq.(18)wefinallyobtain, 1 ¥ coth(b / N(E)) I= eRZD N(E)f−Na / N(E)+−copth(b / N(E))dE. (21) − − For L= 0 or l =0 the boundary vpalue f in Eq. (1p8) is equal to zero and S0 Eq.(21)reduce−stothewell-knownequation−forsingleparticlecurrentbetweenN andSreservoirs,connectedthroughaninsulatinglayer, 1 +¥ I= N(E eV)[n (E eV) n (E)]dE, (22) F F eR ¥ − − − Z− wheren (E)=[1+exp(E/T)] 1isaFermifunction. F − IntheabsenceofinelasticrelaxationintheS lead(b 1)wecanapproxi- ′ mateEq.(21)by −≪ 1 ¥ N2(E) I= f dE, (23) eRZD −NN(E)+a L 7 wherea =2WL/x =R(L)/RandR(L)=L/g istheresistanceoftheS lead L 0 N ′ inthenormalstate.AtzerotemperatureateV D thecurrentgivenbyEq.(23) canbecalculatedtofirstorderinthesmallpara≫meterD /eV 1asfollows, ≪ 1 eV N2(E)dE D eV/D x2dx V I= = +I , (24) eRZD N(E)+a L eRZ1 x√x2−1+a L(x2−1) ≈ Rtot exc whereR =R+R(L)isthenetnormalresistanceofthejunctionandtheS lead tot ′ andI isanexcesscurrentgivenbytherelation, exc D a 2a 2 1 a I = L L arctan − L . (25) exc eR"1−a L2 − 1−a L2 3/2 r1+a L!# ThustheIVcharacteristicEq.(23(cid:0))exhibi(cid:1)tsavoltage-independentexcesscurrent at large voltage, which is the manifestationof the nonequilibrium in the S lead. ′ Hereweshouldmentionthatthetotalexcesscurrentmeasuredintheexperimentis knowntoconsistofthetwocontributions:theonecomingfromthesingleparticle currentatlargevoltagejustcalculatedabove,andtheothercomingfromthetwo particle current (Andreev current). In this paper we do not calculate the latter contributionsinceitisoftheorderofW a . L ≪ InFig.2weplottheIVcharacteristicoftheNISSjunctionfordifferentvalues ′ ofl parameter.I(V)givenbyEqs.(21),(22)isanoddfunctionofvoltageandwe plot−itonlyforpositivevoltages.WefixT =T =0.3T ,whereT isthecritical N S C C temperatureofthesuperconductor.ForAluminumT =T 360mK.Weseethat N S ≈ withthe growth ofthecharge imbalancerelaxationlengthl theelectriccurrent decreases.Whenl >LthelengthoftheS leadLplaysther−oleofacharacteristic ′ relaxationlengtha−ndthecurrentisalmostindependentofl . − 4 Coolingpower TheequationforthecoolingpowerfollowsfromEqs.(8),(15)andreads 1 ¥ P= IV EN(E)(f f )dE, (26) − −e2R D +N− +S0 Z where I is givenby Eq. (21). To obtain f we should solve boundary problem +S0 (13),(15)and(17).Doingthiswegetthefollowingresult, f a N(E)+ f coth(b N(E)) +N + eq + f = , (27) +S0 a N(E)+coth(b N(E)) +p + p a =2Wl /x =R(l )/R W, b =L/l , (28) + + p0 + p + + ≫ where R(l ) =l /g is the normal resistance of the superconducting lead per + + N lengthl . + SubstitutingEq.(27)intoEq.(26)wefinallyobtain, 1 ¥ coth(b N(E))dE + P= IV EN(E)(f f ) . (29) − −e2R D +N− eq a N(E)+coth(b N(E)) Z + p + p p 8 2 2 / e R P 0.0 -0.1 0.0 0.5 1.0 eV/ Fig. 3 (Color online) P(V) dependence of the NISS junction. T = T = 0.3 T ,W = 0.01. ′ N S C SolidblacklineiscalculatedbyuseofEq.(30).OtherlinesarecalculatedbyuseofEq.(29), L=50x0:l =l+=10x0 (redline);l =l+=20x0 (greenline);l =l+=50x0 (blueline); l =l+=1−00x0(dashedblackline). − − − ForL=0orl =0theboundaryvalue f inEq.(26)isequalto f andEq.(29) +S0 eq reduces to the±well-known equation for the heat current between N and S reser- voirs,connectedthroughaninsulatinglayer[6], 1 +¥ P= N(E)(E eV)[n (E eV) n (E)]dE. (30) e2R ¥ − F − − F Z− IntheabsenceofinelasticrelaxationintheS lead(b 1)wecanapproxi- ′ mateEq.(29)by ±≪ 1 ¥ EN(E)dE P= IV (f f ) , (31) − −e2RZD +N− eq 1+a LN(E) where the current I is given by Eq. (23). This equation corresponds to the case whenthelengthoftheS leadLissmallerthantheinelasticrelaxationlengthand ′ allrelaxationoccursonlyintheSreservoir. InFigs.3,4,5weplottheP(V)dependenceoftheNISSjunctionfordifferent ′ valuesofl parameters.P(V)givenbyEqs.(29),(30)isanevenfunctionofvolt- ageandwe±plotitonlyforpositivevoltages.FromFig.3itcanbeseenthatwith thegrowthoftherelaxationlengthsl thecoolingpowerdecreases.Alsothemax- imalcoolingpowershiftstotheregio±nofsmallervoltagesthanintheequilibrium case.Weascribethissuppressiontotheeffectofbackscatteringonimpuritiesand tunnelingofnonequilibriumquasiparticlesbacktothenormalmetalreservoir.We canseethatforlargevaluesofl thecoolingpowerisnegativeforallvoltages. InFig.4weplotP(V)fordi±fferentratiol /l .Forafixedl lengthwevary + + the charge imbalancerelaxationlengthl . It can−be seen that the cooling power increaseswiththegrowthofl .Thishap−pensbecauseofthedecreaseoftheterm IV inEq.(29)duetothesupp−ressionoftheelectriccurrent(seeSec.3). 9 2 2 / e R P 0.0 -0.1 0.0 0.5 1.0 eV/ Fig.4 (Coloronline)P(V)dependenceoftheNISSjunction.T =T =0.3T ,W =0.01.Solid ′ N S C blacklineiscalculatedbyuseofEq.(30).OtherlinesarecalculatedbyuseofEq.(29),L= 50x0,l+=10x0:l =10x0(redline);l =20x0(greenline);l =50x0(blueline);l =100x0 (dashedblackline−). − − − 2 2 / e R P 0.0 -0.1 0.0 0.5 1.0 eV/ Fig.5 (Color online)P(V)dependence oftheNISSjunction.T =T =0.3T ,W = 0.001. ′ N S C SolidblacklineiscalculatedbyuseofEq.(30).OtherlinesarecalculatedbyuseofEq.(29), L=50x0:l =l+=10x0 (redline);l =l+=20x0 (greenline);l =l+=50x0 (blueline); l =l+=1−00x0(dashedblackline). − − − Finally we want to stress here the role of the transparency parameterW. In Fig. 5 we plot the P(V) dependence for a different value of tunneling parameter W =10 3,whichisoneorderofmagnitudesmallerthanW inFigs.3,4.Herewe − againseethedecreaseofthecoolingpowerwiththegrowthofl ,buttheeffectis smallerthaninFig.3.Thisisobvioussincetheamplitudesofth±enonequilibrium 10 fS- fS+ 2 01 0 1 1 1 01,0 030 01,0 030 x/ x/ 1,2 1,5 E/ E/ Fig. 6 (Color online) Distribution functions f S(E,x) (left plot) and d f+S(E,x)= feq f+S (rightplot).HereTN =TS=0.3TC,eV =0.8D ,−L=50x0,l =l+=10x0,W =0.01. − − distribution functions f scale with the W parameter. For very strong tunnel S0 barriersthenonequilibri±umeffectisthereforenegligible. Inordertoestimatethecharacteristicparametersofthejunctionsforthetrans- parencyparametersW =10 2 andW =10 3 usedinournumericalcalculations, − − we will assume the junction area to be 200 200 nm and the thickness of the × leads as wellas the meanfree path tobe 50 nm. For Al leads,this resultsin the sheetresistanceR 0.3W andR(x ) 0.45W atx 300nm.Then,accord- (cid:3) 0 0 ≈ ≈ ≈ ingtoEq. (4), thetunnelingprobabilityandthe junctionresistanceapproach the valuesG 2 10 3,R 22.5W forW =10 2,andG 2 10 4,R 225 W − − − forW =1≈0 3×,respective≈ly. ≈ × ≈ − 5 NonequilibriumquasiparticledistributioninS ′ SolvingEqs.(14),(16)and(17)wecanobtainthefunction f (x,E)intheS lead. S ′ Itreads − f a sinh (b x/l )/ N(E) f−S= a + N(E)c−oNth−b / N(E) shinh−−b /−N(pE) i. (32) − − − p (cid:16) p (cid:17) (cid:16) p (cid:17) Thisequationdescribestherelaxationoftheimbalancebetweentheelectronsand holesintheS lead(branchmixing).FromEq.(32)weseetheexponentialdecay ′ oftheimbalancefunction f atthedistancex l N(E)fromthetunnelbarrier. AtE D thedecaylength−diverges. ∼ − → p SimilarlyfromEqs.(13),(15)and(17)weobtainthefunction f (x,E)inthe +S S lead, ′ (f f )a N(E) sinh (b + x/l+) N(E) eq +N + − f = f − . (33) +S eq−a + N(E)+coth pb + N(E) hsinh b + N(pE) i p (cid:16) p (cid:17) (cid:16) p (cid:17)