Journal of Environmental Sciences Volume 31 2015 www.jesc.ac.cn Highlight articles 203 Mobility of toxic metals in sediments: Assessing methods and controlling factors Yanbin Li and Yong Cai 206 Genotoxic effects of microcystins mediated by nitric oxide and mitochondria QingqingLiuandX.ChrisLe Review articles 61 Remediation effect of compost on soluble mercury transfer in a crop of Phaseolusvulgaris Nora E. Restrepo-Sánchez, Liliana Acevedo-Betancourth, Beatriz Henao-Murillo and Carlos Peláez-Jaramillo 81 Phosphate removal from domestic wastewater using thermally modified steel slag JianYu,WenyanLiang,LiWang,FeizhenLi,YuanlongZouandHaidongWang 104 NewgenerationAmberliteXADresinfortheremovalofmetalions:Areview Akil Ahmad, Jamal Akhter Siddique, Mohammad Asaduddin Laskar, Rajeev Kumar, Siti Hamidah Mohd-Setapar, Asma Khatoon and Rayees Ahmad Shiekh Regular articles 1 Mobilityandsulfidizationofheavymetalsinsedimentsofashalloweutrophiclake,LakeTaihu,China ShouliangHuo,JingtianZhang,KevinM.Yeager,BeidouXi,YanwenQin,ZhuoshiHeandFengchangWu 12 PredictingtheaquaticriskofrealisticpesticidemixturestospeciesassemblagesinPortugueseriver basins Emília Silva, Michiel A. Daam and Maria José Cerejeira 21 Treatmentandresourcerecoveryfrominorganicfluoride-containingwasteproducedbythepesticide industry Yang Li, Hua Zhang, Zhiqi Zhang, Liming Shao and Pinjing He 30 Effectsofwaterregime,cropresidues,andapplicationratesoncontrolofFusariumoxysporum f.sp. cubense Teng Wen, Xinqi Huang, Jinbo Zhang, Tongbin Zhu, Lei Meng and Zucong Cai 38 Microcystis aeruginosa/Pseudomonas pseudoalcaligenes interaction effects on off-flavors in algae/ bacteria co-culture system under different temperatures XiYang,PingXie,YunzhenYu,HongShen,XuweiDeng,ZhimeiMa,PeiliWang,MinTaoandYuanNiu 44 Greenhousegas emission andits potentialmitigation process fromthe wastesector in a large-scale exhibition Ziyang Lou, Bernd Bilitewski, Nanwen Zhu, Xiaoli Chai, Bing Li, Youcai Zhao and Peter Otieno 51 Role of secondary aerosols in haze formation in summer in the Megacity Beijing Tingting Han, Xingang Liu, Yuanhang Zhang, Yu Qu, Limin Zeng, Min Hu and Tong Zhu 68 Enhanced U(VI) bioreduction byalginate-immobilized uranium-reducing bacteria in thepresence of carbon nanotubes and anthraquinone-2,6-disulfonate Weida Wang, Yali Feng, Xinhua Tang, Haoran Li, Zhuwei Du, Aifei Yi and Xu Zhang 74 NH -SCR denitration catalyst performance over vanadium–titanium with the addition of Ce and Sb 3 Chi Xu, Jian Liu, Zhen Zhao, Fei Yu, Kai Cheng, Yuechang Wei, Aijun Duan and Guiyuan Jiang CONTENTS 89 Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide Qifan Liu, Weigang Wang and Maofa Ge 98 IKK inhibition prevents PM -exacerbated cardiac injury in mice with type 2 diabetes 2.5 JinzhuoZhao,CuiqingLiu,YuntaoBai,Tse-yaoWang,HaidongKanandQinghuaSun 124 Effectsofaerationmethodandaerationrateongreenhousegasemissionsduringcompostingofpig feces in pilot scale TaoJiang,GuoxueLi,QiongTang,XuguangMa,GangWangandFrankSchuchardt 133 Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau Weili Lin, Xiaobin Xu, Xiangdong Zheng, Jaxi Dawa, Ciren Baima and Jin Ma 146 Synergistic effects of particulate matter (PM ) and SO on human non-small cell lung cancer A549 10 2 via ROS-mediated NF-κB activation Yang Yun, Rui Gao, Huifeng Yue, Guangke Li, Na Zhu and Nan Sang 154 Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater Weifang Ma, Chao Nie, Bin Chen, Xiang Cheng, Xiaoxiu Lun and Fangang Zeng 164 Co-adsorptionofgaseousbenzene,toluene,ethylbenzene,m-xylene(BTEX)andSO onrecyclable 2 Fe O nanoparticles at 0–101% relative humidities 3 4 Connie Z. Ye and Parisa A. Ariya 175 Weak magnetic field accelerates chromate removal by zero-valent iron Pian Feng, Xiaohong Guan, Yuankui Sun, Wonyong Choi, Hejie Qin, Jianmin Wang, Junlian Qiao and Lina Li 184 Trace metal concentrations in hairs of three bat species from an urbanized area in Germany Lucie Flache, Sezin Czarnecki, Rolf-Alexander Düring, Uwe Kierdorf and Jorge A. Encarnação 194 Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized on Al O /PVDF 2 3 membrane: Parameter optimization and dechlorination of dichloroacetic acid Lijuan Zhang, Zhaohong Meng and Shuying Zang 209 Development of database of real-world diesel vehicle emission factors for China XianbaoShen,ZhiliangYao,QiangZhang,DavidVanceWagner,HongHuo,YingzhiZhang,BoZheng andKebinHe 221 Anoxicdegradationofnitrogenousheterocycliccompoundsbyactivatedsludgeandtheiractivesites Peng Xu, Hongjun Han, Haifeng Zhuang, Baolin Hou, Shengyong Jia, Dexin Wang, Kun Li and Qian Zhao 226 Adsorption of three pharmaceuticals on two magnetic ion-exchange resins Miao Jiang, Weiben Yang, Ziwei Zhang, Zhen Yang and Yuping Wang 235 Rapid and simple spectrophotometric determination of persulfate in water by microwave assisted decolorization of Methylene Blue Lajuan Zhao, Shiying Yang, Leilei Wang, Chao Shi, Meiqing Huo and Yan Li 240 Effect of water vapor on NH –NO/NO SCR performance of fresh and aged MnOx–NbOx–CeO 3 2 2 catalysts Lei Chen, Zhichun Si, Xiaodong Wu, Duan Weng and Zhenwei Wu JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 Available online at www.sciencedirect.com ScienceDirect www.journals.elsevier.com/journal-of-environmental-sciences New generation Amberlite XAD resin for the removal of metal ions: A review Akil Ahmad1,⁎, Jamal Akhter Siddique2, Mohammad Asaduddin Laskar3, Rajeev Kumar4, Siti Hamidah Mohd-Setapar1,⁎, Asma Khatoon1, Rayees Ahmad Shiekh5 1.CentreofLipidsEngineering&AppliedResearch(CLEAR),FacultyofChemicalEngineering,UniversitiTeknologiMalaysia,81310UTMJohor Bahru,Johor,Malaysia.E-mail:[email protected] 2.DepartmentofMaterialsEngineeringandChemistry,FacultyofCivilEngineering,CzechTechnicalUniversity,Prague,Thakurova-716629, CzechRepublic 3.DepartmentofChemistry,JazanUniversity,Jazan,SaudiArabia 4.DepartmentofEnvironmentalSciences,FacultyofMeteorology,EnvironmentandAridLandAgriculture,KingAbdulazizUniversity,Jeddah21589, SaudiArabia 5.DepartmentofChemistry,FacultyofScience,TaibahUniversity,POBox30002,AlMadinahAlMunawarrah,SaudiArabia A R T I C L E I N F O A B S T R A C T Articlehistory: Thedirectdeterminationoftoxicmetalions,inenvironmentalsamples,isdifficultbecauseof Received9July2014 the latter's presence in trace concentration in association with complex matrices, thereby Revised31October2014 leading to insufficient sensitivity and selectivity of the methods used. The simultaneous Accepted1December2014 removalofthematrixandpreconcentrationofthemetalions,throughsolidphaseextraction, Availableonline30March2015 serves as the promising solution. The mechanism involved in solid phase extraction (SPE) depends on the nature of the sorbent and analyte. Thus, SPE is carried out by means of Keywords: adsorption,ionexchange,chelation,ionpairformation,andsoforth.Aspolymericsupports,the AmberliteXAD commerciallyavailableAmberliteresinshavebeenfoundverypromisingfordesigningchelating Toxicmetals matricesduetoitsgoodphysicalandchemicalpropertiessuchasporosity,highsurfacearea, Chelatingresin durability and purity. This review presents an overview of the various works done on the Preconcentration modificationofAmberliteXADresinswiththeobjectiveofmakingitanefficientsorbent.The Sorptioncapacity methods of modifications which are generally based on simple impregnation, sorption as chelates and chemical bonding have been discussed. The reported results, including the preconcentrationlimit,thedetectionlimit,sorptioncapacity,preconcentrationfactorsetc.,have beenreproduced. ©2015TheResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences. PublishedbyElsevierB.V. Introduction cumulative poison and are toxic even at low dose (Hu, 2000; ChowdhuryandChandra,1987).Theindicationoftheirimpor- Heavymetalsareincludedwithinthecategoryofenvironmental tancerelativetootherpotentialhazardsistheirrankingbythe toxins: “Materials which can harm the natural environment U.S. Agency for Toxic Substancesand Disease Registry, which evenatlowconcentration,throughtheirinherenttoxicityand listsallhazardspresentinthetoxicwastesitesaccordingtotheir their tendency to accumulate in the food chain and/or have prevalence and severity of their toxicity (Hu, 2005). The first, particularly low decomposition rates”. Heavy metals are second, third and sixth hazards on the list are heavy metals: n ⁎ Correspondingauthor.E-mail:[email protected](SitiHamidahMohd-Setapar). c . c a . http://dx.doi.org/10.1016/j.jes.2014.12.008 c 1001-0742/©2015TheResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences.PublishedbyElsevierB.Vs. e j JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 105 lead,mercury,arsenicandcadmium,respectively(Hu,2005).The XAD-1, XAD-2, XAD-4, XAD-16, XAD-1180, XAD-2000 and other metal ions that pose potential dangers to human lives XAD-2010andii)polyacrylicacidesterbasedresinsincluding includechromium,copper,zinc,nickel,cobalt,ironandmanga- XAD-7, XAD-8 and XAD-11. Some characteristic physical nese (Friberg et al., 1986; Martin, 2006; Nelson and Cox, 2000; propertiesoftheseresinshavebeenmentionedinTable1. Stoeppler,1980). Itisobviousthatoneofthepotentialsolutionstotheserious 1.1.Nascentpolymericresinsassorbent ecologicalproblems,posedbycontaminationofenvironmental samplesbyheavymetals,isthelatter'scarefulmonitoringand Nascent styrene–DVB resins such as Amberlite XAD-1180 determination.However,thepresenceofthesemetalionsinvery (Tokahogluetal.,1997),XAD-4(Islametal.,2010a),andXAD-16 lowconcentrationnecessitatestheirpriorpreconcentrationto (Elçietal.,2000;SoylakandElçi,2000;TunçeliandTürker,2000a, an appropriate level that exceeds the detection limit of the 2000b;Abdullahetal.,2009)havebeenuseddirectly(withoutany analyzinginstruments.Themostrecenttrendinpreconcentra- modification)fortheenrichmentofinorganicspeciesintheform tion methods has been the use of solid adsorbents, which oftheirhalideorthiocyanatecomplex.Theresultsreflectthat facilitatesrapideliminationoftheinterferingelementsfromthe prominent factors, namely the type and quantity of sorbent, matrixofthesamples(Xuetal.,2013;Wangetal.,2012;Zhuetal., hydrophobicity,ionizabilityoftheanalytes,samplevolumeand 2011; Hajiaghababaei et al., 2012). There has been enormous pH play an interactive role in determining the breakthrough development in separation techniques since it was first intro- volume.Therefore,itmaybeinferredthatthemorehydrophobic ducedin1941,byMartinandSynge,asamethodofchromatog- thecompoundis,thelargerwouldbeitsbreakthroughvolume raphy,whereoneofthetwoimmiscibleliquidswassupportedon and also the larger would be the sample size from which asolidphase.Theproblemofbleedingoftheliquidphasefrom quantitativerecoverycouldbeexpected(Sabarudinetal.,2007; thesolidsupportleadstotheintroductionofcovalentlybonded Çekiçetal.,2004;SharmaandPant,2009;VenkateshandSingh, phases,wheretheliquidphasewasanchoredtothesolidsupport 2007;VenkateshandSingh,2005).Thefactthatstrongerinterac- (MartinandSynge,1941).Sorptiontendencyisdependentonthe tionwouldleadtolargerbreakthroughvolumemayholdgoodfor characteristics of the sorbent, the liquid sample (i.e., solvent) other sorbents as well. Hence, with the objective of acquiring matrix,andtheanalyte.Higherbreakthroughvolumes(Ezoddin strongerinteraction,betweenanalyteandtheadsorbent,further etal.,2010;Huangetal.,2008;Lietal.,2009),forselectedpolar modificationofthesenascentresinshasbeencarriedout.Some analytes,havebeenobservedwhenthehydrophilicfunctional- oftheseresearchworks,pertainingtothemodifications,shallbe ized polymeric resins are used as compared to the classical discussedinthefollowingsection. hydrophobic bonded silicas or nonfunctionalized, apolar poly- mericresins.Inadditiontohavingagreatercapacityforpolar 1.2.Modificationofnascentpolymericresins compounds, functionalized polymeric resins provide better surfacecontactwithaqueoussamples.Usingcovalentbonding Inadditiontothehydrophobicinteractionthatalsooccurswith toincorporatehydrophiliccharacterpermanentlyinthesorbent C18-silica, Amberlite XAD series (macroporous hydrophobic ensuresthatitwouldnotbeleachedfromthesorbentunlikethe resins) allow π–π interactions. The use of surface-modified common hydrophilic solvents (e.g., methanol, acetonitrile, or PS–DVBcopolymerswithdifferentpolarsubstituentovercomes acetone)whichwereusedtoconditionbondedsilicasorbentsor thefollowingdisadvantagessufferedbystandardsilica-based polymericresins(Pereiraetal.,2010;López-Garcíaetal.,2009;Gao materialusedforSPE:lackofpHstabilityunderacidicorbasic etal.,2009).Poroussorbentsaredesignedsoastoallowacces- conditions, low breakthroughfor polar analytesand they are sibilitytoselectedmoleculesofcertainsizeintotheinternalpore not wettable by water alone and always need a conditioning structureofthesorbentsuchthattheywouldberetained.Small stepwithawettingsolvent,suchasmethanol(Kantipulyetal., moleculesareretainedbysorptionprocessesintheporesofthe 1990; Camel, 2003; Ferreira et al., 2000a, 2000b). However, in sorbentwhilethelargemoleculesareexcludedandelutedatthe practice,theresinspreparedbyimpregnationoftheligandare interstitialvolumeofthesorbent.Thisseparationleadstosize- difficult to reuse, due to partial leaching of the ligand (thus selectivedisposalofinterferingmacromolecularmatrixconstit- resultinginpoorrepeatability).Toovercomethisproblem,the uents.Poroussorbentsvaryinporesize,shape,andtortuosity resinmaybechemicallyfunctionalized.Chemicalmodification (Henry, 2000) and are characterized by properties such as of PS–DVB copolymers has been carried out by immobilizing particle diameter, pore diameter, pore volume, surface areas, varyingsubstituentsthroughdifferentbridginggroups. andparticle-sizedistribution.Inthisreview,anoverviewofthe recentdevelopmentmadeinthemodificationofsolid adsor- bent Amberlite XAD resin in context to preconcentration of 2.AmberliteXAD-2 toxicheavymetalshasbeendiscussed. Amberlite XAD 2, with a high surface area and a large pore size,hasbeenextensivelyusedeitherasasorbentorasasolid 1.AmberliteXAD-resin supportinpreconcentration.LargesurfaceareaofAmberlite XAD-2 is appreciably feasible for quantitative sorption of n AmberliteXADadsorbentsareveryporoussphericalpolymers pollutants.Itschemicalstabilityandlowsorptionencouraged c . based on highly crosslinked, macroreticular polystyrene, itsfurthermodificationwithan objectiveof makingit morec aliphatic, or phenol-formaldehyde condensate polymers. On selectiveforthetargetanalyte.Thevariouschelatingageants . thebasisofpolymericmatrix,itmaybedividedintotwomain whichhavebeenusedsofarforthechemicalmodificactionof groups:i)polystyrene-divinylbenzenebasedresinsincluding theresinaresummarizedinTable2. s e j 106 JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 Table1–PropertiesofsomeAmberliteXADresins. Amberlite Matrix Surfacearea(m2/g) Particlesize(mesh) Poresize(Å) XAD-2 Styrene–divinylbenzene 300 20–60 90 XAD-4 Styrene–divinylbenzene 750 20–60 100 XAD-7 Aliphaticester 500 20–60 450 XAD-8 Acrylicester 140 40–60 250 XAD-16 Styrene–divinylbenzene 800 20–60 200 XAD-1180 Styrene–divinylbenzene 500 20–60 400 XAD-2000 Styrene–divinylbenzene 600 20–60 45 XAD-2010 Styrene–divinylbenzene 660 20–60 280 2.1.SurfacemodificationofAmberliteXAD-2 wasusedforthedetermination,whiledetectionlimits(3σ)of chelatingresin(AmberliteXAD-2-2-aminoacetylthiophenol)for One of the most common, easy, simple and even accessible Cd,Hg,Ag,Ni,Co,CuandZnwerefoundtobe0.10,0.23,0.41, routesfor modification of AmberliteXAD-2sorbents istheir 0.13,0.25,0.39and0.58μg/L,respectivelywhendetermination surface impregnation by various chelating agents through was done by inductively coupled plasma-atomic emission physicalpathway.Chelatingresins,namelyAmberliteXAD-2 spectrometry (ICP-AES). Lemos and Baliza synthesized a new loaded with calmagite reagent (Ferreira et al., 2000a, 2000b) sorbent(AmberliteXAD-2-2-aminothiophenol)viaazocoupling and 2-(2-benzothiazolylazo)-2-p-cresol (Ferreira et al., 2001), (–N_N–)(LemosandBaliza,2005).Theenrichmentfactorswere havebeendevelopedinordertodeterminetraceamountsof foundtobe28and14forCd(II)andCu(II),respectivelywhen Cu(II)andNi(II),respectively.Adetectionlimit(3σ)of0.15mg/L preconcentrationtimewas60sec,while74and35forCd(II)and and1.1μg/Lwasachieved,respectively.AmberliteXAD-2resin Cu(II), respectively for preconcentration time of 180sec. The impregnated with Cyanex272 {bis (2,4,4-trimethylpentyl) detectionlimits,correspondingtothepreconcentrationtimeof phosphinic acid} and Cyanex302 {bis (2,4,4-trimethylpentyl) 180sec,forCd(II)andCu(II),werefoundtobe0.14and0.54μg/L, monothiophosphinic acid}, prepared by Karve and Rajgor respectively.Themethodwasappliedforthedeterminationof (2008), demonstrated poor distribution coefficients for La(III) Cd(II) and Cu(II), in natural, drinking and tap water samples. andNd(III)but,however,-U(VI)wasquantitativelysorbedfrom Functionalizedresins,suchasAmberliteXAD-2-Nitroso-Rsalt 1×10−3mol/LHNO followedbyitsrecoverywith1mol/LHCl (Lemos et al., 2003a), Amberlite XAD-2-3,4-dihydroxybenzoic 3 from the solid phase. The proposed method was simple, acid(Lemosetal.,2003b)andAmberliteXAD-2-4,5-dihydroxy- selective and reproducible for U(VI) determination with a 1,3-benzenedisulfonic acid (Lemos et al., 2005) have been relative standard deviation (RSD) of 0.4%. Later, Karve and synthesized. The detection limits were found to be 0.39, 0.27 Pandey(2012)preparedachelatingresin,AmberliteXAD-2resin and2μg/LforCo(II),Cu(II)andNi(II),respectively.Theaccuracy impregnatedwithCyanex272,anddeterminedU(VI)inaqueous of the methods was evaluated by analyzing the certified sampleusingbatchmethod.Themaximumsorptioncapacity referencematerial,andtheirapplicationsweredemonstrated of U(VI) was found to be 0.168mmol/g. Sorption equilibrium withfoodsamplesandnaturalwatersamples.Later,Lemosetal. data for U(VI) removal was well fitted with Langmuir and (2006)developedanewchelatingsorbentusingAmberliteXAD-2 Freundlichisothermmodels. resin anchored with pyrocatechol through –N_C– spacer. The enrichment factors for 60sec preconcentration time were 2.2.ChemicalmodificationofAmberliteXAD-2 foundtobe16,24,15and19forCd(II),Co(II),Cu(II)andNi(II), respectively,while39,69,36and41werefoundforCd(II),Co(II), The commercial availability and high regeneration capacity of Cu(II)andNi(II)at180spreconcentrationtime.Underexperi- AmberliteXAD-2haveresultedinitsextensiveapplicationforthe mentalconditions, the detection limits were reported to be determination of metal ions in environmental and biological 0.31,0.32,0.39and1.64μg/LforCd(II),Co(II),Cu(II)andNi(II) samples.Hence,wide-rangingdevelopmentshavebeencarried respectively. The accuracy of the developed procedure was outinthechemicalmodificationoftheresin.Guoetal.(2004a, confirmed by using certified reference materials, namely NIST 2004b) synthesized a resin by covalently bonding Amberlite 1515appleleavesandNIST1570aspinachleaves.Themethod XAD-2with2-(methylthio)anilineand2-aminoacetylthiophenol wassuccessfullyappliedtotheanalysisoffoodsamples,such througha–N_N–NH–groupandapplieditforthepreconcentra- asspinach,blackteaandriceflour.Anewchelatingresinwas tionofCd,Hg,Ag,Ni,Co,CuandZnions.Variousexperimental developed by coupling Amberlite XAD-2 with pyrocatechol parameters, such as the distribution coefficient and sorption through an azo spacer by Tewari and Singh (2001) for the capacityofthechelatingresin,pHandflowratesofuptakeand monitoringofCd(II),Co(II),Cu(II),Fe(III),Ni(II)andZn(II)byusing stripping, and volume of sample and eluent, were evaluated. FAAS.Thepreconcentrationlimitformetalions,withquanti- Applicability of the developed method was tested on tap tativerecovery,was5,10,20,25,10and10mg/LforCd(II),Co(II), n waterandriverwatersamples.Thedetectionlimitandlimitof Cu(II), Fe(III), Ni(II) and Zn(II), respectively. The proposed c quantification (3σ and 10σ) of the chelating resin (Amberlite methodwasappliedforthedeterminationofallsixmetalionsc. XAD-2-2-(methylthio)aniline)forCd,Hg,Ni,Co,CuandZnwere in tap and river water samples (RSD 53.9% and 7.3%, respeac- foundtobe0.022,0.028,0.033,0.045,0.041,0.064μg/Land0.041, tively).FAASdeterminationofPb(II)ontoAmberliteXAD-2c.with 0.043, 0.052, 0.064, 0.058, 0.083μg/L, respectively, when FAAS chromotropicacid(AXAD-2-CAor1),pyrocatechol(AXsAD-2-PC e j JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 107 Table2–ChelatingagentsusedformodificationofAmberliteXAD-2resin. Reagent Techniques Metals Sorptioncapacity(mg/g) Reference coupled Tiron FAAS Cu2+,Cd2+,Co2+,Ni2+,Pb2+,Zn2+, 14.0,9.5,6.5,12.6,12.6, Kumaretal. Mn2+,Fe3+,UO22+ 11.1,10.0,5.6,7.7 (2000a,2000b) Thiosalicylicacid FAAS Cd2+,Co2+,Cu2+,Fe3+,Ni2+,Zn2+ 22.2,6.3,13.9,3.7,18.2,3.1 TewariandSingh (2000a,2000b) Pyrogallol FAAS Cu2+,Cd2+,Co2+,Ni2+,Pb2+,Zn2+, 4.53,5.22,4.10,4.09,6.71,4.54, Kumaretal.(2001) Mn2+,Fe3+,U4+ 4.51,4.62,4.49 Calmagite FAAS Cu2+ 0.1009 Ferreiraetal. (2000a,2000b) o-Aminophenol FAAS Cu2+,Cd2+,Co2+,Ni2+,Zn2+,Pb2+ 3.37,3.42,3.29,3.24,2.94,3.32 Kumaretal. (2000a,2000b) 2-(Methylthio)aniline FAAS Cd2+,Hg2+,Ni2+,Co2+,Cu2+,Zn2+ 23.67,37.87,14.07,10.35,8.83,8.46 Guoetal.(2004a) 2-Aminoacetylthiophenol ICP-AES Cd2+,Hg2+,Ag2+,Ni2+,Co2+,Cu2+,Zn2+ 21.40,48.70,37.29,17.60,19.19, Guoetal.(2004b) 24.07,19.59 2-Aminothiophenol FAAS Cd2+,Cu2+ 382.16,292.10 LemosandBaliza (2005) NitrosoRsalt FAAS Co2+ Lemosetal. (2003a,2003b) Azocalix[4]pyrroleA FAAS Cu2+,Zn2+,Cd2+ 20.20,11.42,18.86, Jainetal.(2009) Azocalix[4]pyrroleB FAAS Cu2+,Zn2+,Cd2+ 27.25,14.40,19.63 Jainetal.(2009) Pyrocatechol FAAS Cd2+,Co2+,Cu2+,Fe3+,Ni2+,Zn2+ 4.59,1.35,5.87,4.10,3.11,1.85 TewariandSingh (2001) Chromotropicacid FAAS Pb2+ 38.60 TewariandSingh (2002) Pyrocatechol FAAS Pb2+ 21.69 TewariandSingh (2001) Thiosalicylicacid FAAS Pb2+ 18.50 TewariandSingh (2001) Xylenolorange FAAS Pb2+ 3.50 TewariandSingh (2001) Palmitoylquinolin-8-ol Spectrophotometric Mn(II) 1.64 Doğutanetal.(2003) Cyanex272 Spectrophotometric U6+ 39.98 KarveandPandey (2012) Purpurin FAAS Cd2+,Cr3+,Pb2+ 8.43,3.54,17.13 Wongkaewetal.(2008) Calceinblue AAS Cu2+ 27.0 Monirietal.(2011) Pyrocatechol FAAS Cd2+,Co2+,Cu2+,Ni2+ 4.01,1.65,1.99,1.43 Lemosetal.(2006) or2)andthiosalicylicacid(AXAD-2-TSAor3)throughazospacer determinationinseawater.Later,Filiketal.(2004)synthesized wasdonebyTewariandSingh(2002).Thelimitofdetectionand Amberlite XAD-2 copolymer resin with palmitoyl quinolin-8-ol limitofquantificationwerefoundtobeintheranges2.44–7.87 forpreconcentrationandseparationoftraceamountsofvanadi- and2.76–8.64ngm/L,respectively.Pb(II)hasbeendeterminedin umspeciesinsyntheticsolutionsandseawater.BothV(IV)and river(withRSDof2.6%–12.8%)andtap(withRSDof1.8%–7.2%) V(V) species were sorbed and preconcentrated onto modified watersamples.Later,Jainetal.(2009)developedanovelazocalix resin and quantitatively eluted from column using HCl as [4]pyrroleAmberliteXAD-2polymericchelatingresinforextrac- stripping agent and analyzed by both spectrophotometrically tion,preconcentrationandsequentialseparationofmetalions andFAASforspeciationstudies.ThedetectionlimitsofV(V)were suchasCu(II),Zn(II)andCd(II)bycolumnchromatographyprior foundtobe1.6and0.9μg/L,withspectrophotometryandFAAS. totheirdeterminationbyUV/VisspectrophotometryorFAASor Theproposedmethodshowedgoodagreementwiththecertified ICPAES. The proposed method was successfully applied valueofcertifiedreferencematerial(IAEA-405).Badrinezhadetal. for the determination of Cu(II), Zn(II) and Cd(II) in natural (2012)hassynthesizedachelatingresinAmberliteXAD-2resin and ground water samples. Doğutan et al. (2003) synthesized withiminodiaceticacidandappliedforCd(II)determinationby palmitoyol-8-hydroxyquinolinefunctionalizedAmberliteXAD-2 FAAS after preconcentration in natural water samples. High by a modified procedure through chloromethylation. Column recoverywasachievedupto90%atpH7.5andproposedmethod methodwasusedforthepreconcentrationoftraceMn(II)from givesgoodaccuracy,enrichmentfactor,preconcentrationfactor artificial and real seawater. The preconcentration factor was andsimplicity.Anewpolymersupport,AmberliteXAD-2with n foundtobe60withtheresincolumnanddetectionlimits(LOD) purpurin through an azo linkage (N_N) was synthesized by c of spectrophotometry and FAAS for Mn (i.e., 17 and 12μg/L, Wongkaewetal.(2008)andappliedfortheextractionofCd(II)c,. respectively)weresignificantlyreduced.Theproposedmethod Cr(III)andPb(II)bybatchandcolumnmethodsinbothmatricaes; . wasnotadverselyaffectedfromhighionicstrengthmediafor leachatefromcement-basedmaterialandde-ionizedwatcer.The preconcentration of Mn(II) and method is suitable for Mn proposedmethodgaveagoodaccuracyinbatchsystemswiththe e j 108 JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 recoveryof86.5%and89.9%forCd(II)andPb(II)andR.S.D.less modifiedresinfortracemetaldetermination.Herein,awhiterot than 2.3% (n=14). Moniri et al. (2011) synthesized a chelating fungus (Pleurotus ostreatus) was used to immobilize on XAD-4. resinAmberliteXAD-2couplingwithadyecalceinbluethrough MaximumadsorptionofCr(III),Cd(II)andCu(II)ionstookplace anazospacer.Sorptioncapacityofmodifiedresinwas27mg/g inthepHrange4–5.Theyproducedremarkableresultsonthe with 10 regeneration cycles without any significant lose in determination of tracemetals. Afzali and Mohammadi (2011) capacity. The method was applied for Cu(II) assay in environ- reportedaneconomicalmethodforseparationandpreconcen- mentalsamples.Table2showssomeofthesorptioncapacities trationofthetraceamountsofCu(II),Ni(II),Co(II)andMn(II)in reportedintheliterature. watersamplesusingmodifiedXAD-4resins.Selectedelements were determined by FAAS. The detection limits were 9.2, 28.6, 12.3and5.7ng/mLforCu(II),Ni(II),Co(II)andMn(II),respectively. 3.AmberliteXAD-4 Shahtaheri et al. (2007) did remarkable work in determining trace toxic metal of Pb(II) with FAAS. In this work, mini AmberliteXAD4hasasurfaceareaof750m2/gandaporesize columnsfilledwithXAD-4resinweredevelopedforSPE.The of100Å,therebymakingitapromisingsolidphaseextractant. obtainedrecoveriesofmetalionsweregreaterthan92%.Avery The feasibility that it offers for chemical as well as surface sensitive and selective flow injection online determination modification has led to its wide ranging development as a methodofTh(IV)preconcentrationwasdevelopedbyAliet selectivesorbent.Chelatingagentswhichhavebeenusedsofar al. (2011). Minicolumn having XAD-4 resin impregnated inthemodificationofAmberliteXAD4havebeenreproduced with N-benzoylphenylhydroxylamine was described. The brieflyinTable3. preconcentrationfactorsobtainedwere 32and162,detection limitsof0.76and0.150μg/L.Themethodwasalsoappliedon certified reference material IAEA-SL1 (Lake Sediment) for the 3.1.SurfacemodificationofAmberliteXAD-4 determinationofTh(IV)andtheresultswereingoodagreement withthereportedvalues.Aflowinjectionon-linedetermination SurfacemodificationofAmberliteXADresinisaneasyand of U(VI), after preconcentration in a minicolumn filled with economical choice for the separation and preconcentration Amberlite XAD-4 resin impregnated with dibenzoylmethane of heavy metal ions from aqueous samples. Liu et al. (DBM), was described by Shahida et al. (2011). The detection developed methods, based on determination by FAAS, by limits were 0.9 and 0.232μg/L. The proposed method was immobilizingcomplexingligands,namelyacetylmercaptophe- appliedonwater(spikedtap,wellandseawater)andbiological nyldiazoaminoazobenzene(Liuetal.,2005)andDHDAA(Liuet samplesandgoodrecoverywasobtained.AnAmberliteXAD-4 al.,2007),ontoAmberliteXAD-4.Theformerresinexhibiteda resincolumnwasdevelopedbyRajeshetal.(2008)fortheSPEof detectionlimitof0.028,0.064,0.042,0.023and0.16mg/Landthe chromium(VI), whose concentration was subsequently deter- quantificationlimitof0.043,0.11,0.099,0.044and0.29mg/Lfor minedbyusingvisiblespectrophotometry.Adetectionlimitof Cd(II),Co(II),Cu(II),Ni(II)andZn(II),respectively,whilethelatter 6μg/Lwasreported. resin offered detection limits of 0.1, 0.5, 0.3, and 0.2mg/L, respectively for Cd(II), Co(II), Cu(II), and Zn(II). A standard 3.2.ChemicalmodificationofAmberliteXAD-4 reference material (GBW 08301) was analyzed as a part of validationinboththemethods.AsurfacemodifiedAmberlite Themainfocusofextensiveresearchonchelatingresinsisthe XAD-4resinwasintroducedbyRameshetal.(2002)wherein, preparationoffunctionalizedpolymers,whichcanprovidemore ammoniumpyrrolidinedithiocarbamate(APDC)andpiperidine flexibleworkingconditionstogetherwithgoodstability,selectiv- dithiocarbamate(pipDTC)wereappliedascoating.Thedetec- ity,highconcentratingability,highcapacityofmetalionsand tionlimitsforCd(II),Cu(II),Mn(II),Ni(II),Pb(II),Zn(II)are0.1,0.4, simpleoperation(Kantipulyetal.,1990;KantipulyandWestland, 0.3,0.4,0.6,0.5μg/L, respectively,forresincoated withAPDC 1988;Myasoedovaetal.,1986;Warshawsky,1982;Warshawsky, and0.7,1.0,0.8,0.9,1.7and1.2μg/Lforresincoatedwithpip 1998).Metildaetal.(2005)synthesizedachelatingresinAmberlite DTC.The method was appliedfor the determination oftrace XAD-4 with succinic acid through acetylation. Quantitative metalionsinartificialseawaterandnaturalwatersamplewith sorption of U(VI) was done in both batch and column modes. extractionAASmethod.Asurfacemodificationmethodforthe Spectrophotometerhasbeenusedforpreconcentrativesepara- on-linepreconcentrationofCd(II),basedonitscomplexforma- tionofU(VI)fromhostofotherinorganicspecies.Thedetection tion with the ammonium salt of O,O-diethylditiophosphate limit,correspondingtothreetimesthestandarddeviationofthe (DDTP),wasdevelopedbydosSantosetal.(2005)usingAmberlite blank,wasfoundtobe2μg/Lwhentheprocedurewastestedby XAD-4resinasthesolidsupport.Cd(II)wasdetectedbyFAAS.The analyzingreferencematerial,suchasmarinesediment(MESS-3) method was validated by analyzing five biological certified andsoil(IAEAsoil-7).Azotizationwasusedforimmobilizationof samples.Therelativestandarddeviationwasaround3%,which o-vanillinsemicarbazone onto a nonionic polymeric adsorbent reflectsagoodprecisionmethod.Auniqueseparationmethod, styrene divinylbenzene Amberlite XAD-4 resin (Jain et al., fordeterminingU(VI),wasdevelopedbySinghandMaiti(2006) 2001) and this chelating resin were utilized for selective wherein, Amberlite XAD-4 resin was modified with 8-hydroxy columnseparation,pre-concentrationandtracedetermina- n quinoline (Oxine) by equilibrating the former with methanol tionoflanthanum(III)(La(III)),cerium(III)(Ce(III)),thorium(IV) c . solutionofthereagent.TheU(VI)retainedinthecolumncouldbe (Th(III)) and uranium(VI) (U(VI)) by spectrophotometry andc eluted with methanol–HCl mixture and subsequently deter- theirsimultaneousconfirmationoftheresultsbyinductivealy minedspectrophotometricallyusingarsenazo(III)asthechromo- coupledplasma-atomicemissionspectrometry(ICP-AESc).and genicreagent.KocaobaandArısoy(2011)introducedabiologically graphite furnace-atomic absorption spectrometry (GsF-AAS). e j JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 109 Table3–ChelatingagentsusedformodificationofAmberliteXAD-4resin. Reagent Techniques Metals Sorptioncapacity Reference coupled (mg/g) 8-Hydroxyquinoline(Oxine) Spectrophotometry UO22+ – SinghandMaiti (2006) o-Aminobenzoicacid FAAS Pb2+,Cd2+,Co2+,Ni2+, 12.22,8.99,5.36,7.10,7.58 Çekiçetal.(2004) Zn2+ 2,3-Dihydroxy-naphthalene ICP-AES Cu2+,Ni2+,Co2+,Cd2+ Hemasundaram etal.(2009) Ammoniumpyrrolidine-Dithiocarbamate ICP-AES Cd2+,Cu2+,Mn2+,Ni2+,Pb2+, 9.47,11.08,8.62,7.21, Rameshetal. Zn2+ 10.25,10.62 (2002) Piperidinedithiocarbamate(pipDTC) ICP-AES Cd2+,Cu2+,Mn2+,Ni2+,Pb2+, 9.18,10.76,8.17,7.46,9.86, Rameshetal. Zn2+ 10.28 (2002) 2-Acetylmercapto-Phenyldiazoaminoazobenzene FAAS Cd2+,Co2+,Cu2+,Ni2+,Zn2+ 20.23,5.89,6.03,9.97,3.92 Liuetal.(2005) 2,6-Dihydroxyphenyl-Diazoaminoazobenzene FAAS Cd2+,Co2+,Cu2+,Zn2+ 20.23,9.42,12.38,10.46 Liuetal.(2007) Diethyldithiocarbamates FAAS Cu2+,Fe2+,Pb2+,Ni2+, Uzunetal.(2001) Cd2+,Bi2+ 1-Hydrazinophthalazine AAS Cu2+,Ni2+,Co2+,Zn2+, 78.74,48.12,50.09,48.38, Lemosetal. Cd2+,Pb2+,Fe3+,Cr3+ 107.90,178.10,73.70, (2008a,2008b) 32.23 1-(2-Pyridylazo)-2-naphthol FI-FAAS Cu2+ Yebraetal. (2001) 1-(2-Pyridylazo)-2-naphthol AAS Cd2+,Cu2+,Ni2+,Pb2+, Tuzenetal. Cr3+,Mn2+ (2005) Salen AAS Cu2+,Pb2+,Bi2+ 17.3,26.9,39.5 Kimetal.(2005) Succinicacid Spectrophotometry U6+ 12.3 Metildaetal. (2005) Schiffbases FI–FAAS Cd2+,Co2+,Cu2+,Ni2+, Karaetal.(2009) Pb2+ O,O-diethyldi-thiophosphate FI-FAAS Cd2+ – dosSantosetal. (2005) m-Phenylendi-amine ICP-AES Rh3+ 26.34 Panahietal. (2009) 2,3-Diamino-naphtalene Se6+ 3.4 Depeckeretal. (2009) 2-Aminothiophenol FAAS Cd2+,Ni2+ 3.20,1.39 Lemosetal. (2008a,2008b) Maleicacid AAS Cr3+ 3.90 Yalçinand Apak(2004) Bacillussubtilis FAAS Cu2+,Cd2+ 1.88,3.93 Dogruetal. (2007) Diphenylcarbazidecomplex UV–vis Cr3+ 0.85 Rajeshetal. spectrophotometer (2008) Aliquat-336 spectrophotometer La3+,Gd3+ 4.73,4.44 El-Sofany(2008) Salicylicacid FAAS Pb2+,Cu2+,Ni2+,Co2+, 78.12,74.04,72.99,73.20, Khazaelietal. Zn2+ 74.07 (2013) Catechol ICP-AES Cd2+,Cu2+,Ni2+,Pb2+ 2.89,5.69,2.87,6.25 Bernardetal. (2008) Monoazadibenzo18-crown-6-ether ICP-AES La3+,Nd3+,Sm3+ 9.17,9.05,8.08 Daveetal.(2010) A.tumefacients FAAS Mn2+,Co2+ 1.20,1.70 Baytakand Türker(2005) Allylphenol FAAS Cu2+ 106.38 Nezhatietal. (2010) N,N-bis(salicylidene)cyclohexanediamine FAAS Cu2+,Pb2+,Ni2+ 22.74,28.77,11.93 Topuzand Macit(2011) 1-(2-Thiazolylazo)-2-naphthol NAA Cu2+ 8.0 Goodwinetal. (2013) Geobacillusthermoleovoranssubsp.stromboliensis FAAS Cd2+,Ni2+ 4.19,3.26 Özdemiretal. (2010a,2010b) Bacillussp. UV–vis Th 17.24 Özdemiretal. spectrophotometry (2010a,2010b) n c . c The detection limit of these metal ions was 100ng/cm3 with standardgeologicalmaterials.Çekiçetal.(2004)functionalizaed recovery of up to 96%–98%. This method was successfully AmberliteXAD-4resinwitho-aminobenzoicacid(ABA)cv.iaazo applied for their determination in monazite sand and some spacer and employed it for the preconcentration osf various e j 110 JOURNAL OF ENVIRONMENTAL SCIENCES 31 (2015) 104–123 heavymetalsPb(II),Cd(II),Ni(II),Co(II)andZn(II)fromweakly Amberlite-XAD-4resinbeadsviaadiazobridge(Depeckeretal., acidic or neutral aqueous sample. The retained metals were 2009).Thissynthesiswasfirstcarriedoutatamolecularlevelto elutedwith1.0molHNO fromtheresincolumnfollowedby optimizeexperimentalconditionsandtofacilitatecharacteri- 3 thedeterminationofconcentrationwithFAAS.Thedeveloped zationofsolidsorbentbyFTIR.SPEforcationicelementsisa methodwassuccessfullyappliedtotheanalysisofasynthetic promising approach for water treatment or for analysis metalmixturesolution,acertifiedreferencematerial(CRM)of applications.However,supportsthatallowtheselectiveextrac- coal sample, and brackish lake water. Lemos et al. (2008b) tionand/orpreconcentrationofmetalloidspeciesarestillnot reporteda2-aminothiophenolfunctionalizedAmberliteXAD-4 widespread.AmethodwasproposedbyUzunetal.(2001)for (AT-XAD) resin that was synthesized by covalent coupling of thepreconcentrationofCu(II),Fe,Pb(II),Ni(II),Cd(II)andBias the ligand with the copolymer through a methylene group. theirdiethyldithiocarbamatechelatesbyusingacolumnfilled Here,inthisworkSPEmethodcombinedwithflowinjection(FI) withAmberliteXAD-4resin.Therelativestandarddeviationsof on-lineFAASwasusedforthedeterminationofCd(II)andNi(II) the determinations were below 95%. The limits of detection intobaccosamples.Withtheconsumptionof21.0mLofsample (3sec, n=20) for analytes were found to be between 4 and solution,thedetectionlimits(3sec)of0.3and0.8μg/LforCd(II) 23mg/L.Thisproposedmethodwasappliedtotheanalysisof andNi(II)wereachievedatasamplethroughputof18hr−1.The some waste waters from the organized industrial region. amount of Cd(II) and Ni(II) in the certified reference material Nezhati et al. (2010) were prepared a new chelating resin by (NIST1570a,spinachleaves)determinedbythepresentmethod couplingAmberliteXAD-4withphenolthroughanazospacer, wasingoodagreementwiththecertifiedvalue.Karaetal.(2009) then modified by allyl bromide for preconcentration of Cu(II) usedAmberliteXADcopolymerresinsfunctionalizedthrough using FAAS for metal monitoring. The chelating resincan be Schiffbasereactions.Theseresinswereusedtopreconcentrate reusedfor15cyclesofsorption–desorptionwithoutanysignif- transitionandothertraceheavymetalanalytesfromsoiland icantchangeinsorptioncapacity.Themethodwasappliedfor sediment samples after digestion in nitric acid. Three theCu(II)determinationfromindustrialwastewatersample.A different Amberlite XAD resins were modified with 4- maleicacid-functionalizedXADsorbentwasusedbyYalçinand phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and Apak(2004),forthepreconcentrationofChromium,thatmay 2-thiophenecarboxaldehyde. The analytes Cd (II), Co(II), exist in environmental waters as Cr(III) and Cr(IV) and was Cu(II), Ni(II) and Pb(II) were preconcentrated from acid coupledtoAASordiphenylcarbazide(DPC)spectrophotometry extracts of certified soil/sediment samples and then eluted fordetermination.Karadaşetal. (2011)introducedanoff-line with0.1mol/LHNO directlytothedetectionsystem.FAAS column preconcentration technique using a micro-column, 3 was used as a means of detection during the studies. The packed with 2,6 diacetylpyridine functionalized Amberlite efficiency of the chelating resin and the accuracy of the XAD-4 resin, automated to an ICP-MS. In this method, they proposed method were evaluated by the analysis of soil evaluatedsea watertodeterminerare earth elements(REEs), (SO-2) and sediment (LGC 6157 and MESS-3) certified refer- namelyLa,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,YbandLu. ence materials. Recently, Amberlite XAD-4 was used by The sorption capacities for the resin were found to range Khazaelietal.(2013)toanchorsalicylicacidthroughanazo between47.3μmol/g(forLu)and136.7μmol/g(forGd).Limitsof linkage (–N_N–) for the preconcentration of Pb (II), Cu(II), detection(3б),withoutanypreconcentration,rangedfrom2to Ni(II),Co(II),andZn(II)inwatersamples.Thedetermination 10.3ng/L(forTmandLurespectively).LemosandGama(2010) of the metal ions was carried out on FAAS. Developed new introducedtheβ-nitroso-α-naphtholfunctionalisedAmberlite method,gaveagoodaccuracyinbatchsystemasindicatedby XAD-4 resin for the preconcentration and determination of therecoveryof≥93%fortheextractionofallmetalionsand uranium.Thelimitofdetectionandthepreconcentrationfactor R.S.D.Kimetal.(2005)usedchemicallymodifiedXAD-4for were 1.8μg/L and 10, respectively. The eluate was measured separationofmetalionfromaqueoussolution.Thedistribution spectrophotometrically at 650nm using Arsenazo III as a coefficientatvariouspHvaluesandadsorptioncapacitieswas colorimetric reagent. A chemically modifiedAmberliteXAD-4 obtainedwithrespecttoCu(II),Pb(II)andBi(III).Traceelements wasintroducedbyTopuzandMacit(2011)whichwasusedfor were pre-concentrated on the synthesized XAD-4-salen by theselectiveseparation,preconcentration,anddetermination batch method for AAS determination. XAD-4-salen was syn- ofCu(II),Pb(II),andNi(II)ionsinwatersamplesusingFAAS.This thesized by diazonium coupling reaction of salen [N,N′-bis Amberlite XAD-4 loaded N,N-bis(salicylidene)cyclohexanedi- (salicylidene) ethylenediamine] and Amberlite XAD-4 resin. amine (SCHD) resin, demonstrated a sorption capacity of ThismaterialwasappliedforthedeterminationofCu(II),Pb(II) 1.38×10−1and3.58×10−1mmol/g.Thedetectionlimitsofthe andBi(III)inrealsamplesoffivekindsofriverwater,usinga method were found to be 0.11, 1.91, and 0.43μg/L for Cu(II), standardcalibrationcurvemethod.Panahietal.(2009)devel- Pb(II),andNi(II),respectively.Inyear2011,Islametal.developed opedanewchelatingresinbycouplingAmberliteXAD-4with a chemicallymodified AmberliteXAD-4 resin forthe precon- metaphenylenediaminethroughanazospacerandstudiedfor centrationofalkaliandalkalineearthmetals,presentinvarying preconcentrationRh(III) usingICP-AESforRh(III)monitoring. concentrations, from different matrices. 1-(2-Pyridylazo)-2- The optimumpHvalue for sorption ofthemetalion was 6.5 naphtholloadedAmberliteXAD-4resinshowedhighprecon- (recovery100%).Thesorptioncapacitywasfound0.256mmol/g centrationfactorof160–400andalowpreconcentrationlimitof n ofresinforRh(III).Thepositivevalueoftheenthalpychange 10μg/L was achieved for almost all the metals. Chromato- c . (2.48kJ/mol)indicatesthattheadsorptionwasanendother- graphicseparation of metal ionsinbinary mixtures wasalsoc micprocess.ThemethodwasappliedforRh(III)iondetermi- accomplished.Anewchelatingresinwaspreparedbycouplinag . nationfromtapwatersample.Anewchelatingsorbenthas Amberlite XAD-4 with alizarin red-s through an azo scpacer beenpreparedbygrafting2,3-diaminonaphthalene(DAN)on (Kalaletal.,2012).Inthiswork,preconcentrationofRh(IsII),using e j
Description: