GlobalJournalofPureandAppliedMathematics. ISSN0973-1768Volume12,Number 4(2016),pp. 2953-2969 ©ResearchIndiaPublications http://www.ripublication.com/gjpam.htm Nested Chain Movement of length 1 of Beta Number in James Abacus Diagram EmanF.Mohomme SchoolofQuantitativeSciences, CollegeofArtsandSciences, UniversitiUtaraMalaysia06010Sintok, Kedah,Malaysia. NazihahAhmad SchoolofQuantitativeSciences, CollegeofArtsandSciences, UniversitiUtaraMalaysia06010Sintok, Kedah,Malaysia. HaslindaIbrahim SchoolofQuantitativeSciences, CollegeofArtsandSciences, UniversitiUtaraMalaysia06010Sintok, Kedah,Malaysia. AmmarSeddiqMahmood DepartmentofMathematicsCollegeofEducation, UniversityofMusul. Abstract Jamesabacusdiagramisagraphicalrepresentationforanypartitionµofapositive integer t. One way of producing the diagram is by using beta number with the special number of even columns e, where e (cid:1) 2. This paper constructs a new methodforpartitionµwithasinglemotionofnestedchainmovementoflength1 inJamesabacusdiagram. First,theestablishmentofanarithmeticsequenceamong the nested chains of the diagram position is considered. Then, for the movement, we select several beta numbers as the initial points in every chain. The location of the rest of the beta numbers in the James abacus diagram would be changed anticlockwise by length 1 accordingly when the positions of initial beta numbers are changed. Using these new nested chains, a new diagram Atc1 that displays a new partition, is constructed. Furthermore, guides, which are finite number of partitions that are obtained from the original partition after adding zeros, are de- veloped. Thenumberofcommonbetanumbersamongthesedevelopedguidesare then determined. We have established rules to obtain new diagram using a single motion of nested chain movement of length 1. The new diagram can be used in areas of number theory and design. Finally, the proposed method is employed as a special type of James abacus diagram where the number of columns is an even integersmallerthanthenumberofrowsinthediagram. AMSsubjectclassification:05A17. Keywords:Jamesabacusdiagram,Betanumber,ArithmeticsequenceandPartition. 1. Introduction James abacus diagram is a graphical representation of a special type of non-increasing (cid:1)b sequenceµ = (µ1,µ2,...,µb)calledpartitionoft if|µ| = µi = t withµ(b+1) = 0 i=1 where b is the number of partition parts and t is any positive integer [6]. James abacus diagramcamefromtheideaoftheabacusdiagram. Foranynumberofcolumn(runner) e, James abacus diagram is seen as an important component in modern algebra which plays a key role in Iwahori−Hecke andq-Schur algebras [11], [1], [2], [9]. The James abacus diagram configuration for beta numbers, β ,β ,β ,...,β can be created by 1 2 3 b rearranging them on the runners, where β = µ + b − i for 1 (cid:2) i (cid:2) b [8]. There i i are infinitely many James abacus diagrams since one or more zeros can be added to the partition. The diagram of b is obtained after adding s − 1 zeros to µ where James s abacus diagram of b have b + s − 1 beta numbers [7]. Furthermore, several types s of movement of beta numbers have been constructed by previous researchers such as movingallofthemashighaspossibleintherunner[3],addingemptyrunner[4],adding full runner [2], removing runner [1], reflecting their positions in leading diagonal [12], scanningmovement[9],usingjustifiedpositionsmovement[10]andmovingsingle-step bead[7]. Guidesormaindiagramsarefinitenumberofpartitionsthatareobtainedafter addingzeros. Astudyhasproventhattherearecommonbetanumbersamongguides[7]. Some studies have applied the properties of James abacus diagram in countless fields and constructed several diagrams by transforming the diagram position that preserves the original structure of the diagram [14], [15], [16], [18]. Among the transformation constructed are reflection in line x and y, rotation by 90o,180o and 270o as well as the composition of both geometric transformations of reflection and rotation by 90o,180o and270o. Asinglechainmovementwasappliedincasee = 2 ofanylength[19]. In this paper, a new diagram will be constructed by applying a single motion of nested chain movement of length 1 and is called diagram Atc1. The idea of nested chain movement is adopted from graph theory [8]. A nested chain comprises one outer NestedChainMovementoflength1ofBetaNumberinJamesAbacusDiagram 3 chainandseveralinnerchains. Thispaperseekstoaddressseveralquestions. CanJames abacusdiagrampositionsbedividedintonestedchains? Howmanypositionsaretherein everychain? Whataretherelationshipsamongthediagrampositions? Isthemovement ofthebetanumberpositionsinthenewmaindiagramsregularornot? Ifitisregular,can the new main diagrams of b that depend on the new main diagram for b be designed? 2 1 In general, is the intersection of the new main diagrams equal to the intersection of the originalmaindiagrams? 2. Preliminaries Thissectionbrieflydiscussessomebasicdefinitionsandtheorems. Thepartitionofeach James abacus diagram can be connected by e runners which are labelled from left to right as 0 to e − 1, where e = 2x, x ∈ Z+. Beta numbers will be referred to as bead positions. ThebeadpositionsontheJamesabacusdiagramwhicharelabelledfromleft torightandcontinuesfromtoptobottomstartingwith0arelocatedacrosstherunners. Thebeadpositionsme,me+1,...,(m+1)e−1arelocatedinrowmofthediagram, ascanbeseeninFigure1aforcasee = 4. Definition 2.1. Let µ = (µ ,µ ,...,µ ) represents the partition of a positive integer 1 2 b (cid:1)b t such that |µ| = µi = t with µ(b+1) = 0 where b is the number of partition parts. i=1 µ µ µ Theβ-sequenceofpartitionµ,β ,β ,...,β ,isdefinedby 1 2 b β(µ,b) = {µ +b−1,µ +b−2,...,µ +b−b} 1 2 b wheretheconstructionisdiscussedin[8]. The abacus configuration for µ is called James abacus diagram of b where each b s s hasb+s −1beadsands isapositiveintegergreaterthanorequaltoone. Example2.2. Letµ = (8,8,6,3,2,1,1,1,1,0,0)beapartitionof31whereb = 9. If s = 3,thenµ = 0,µ = 0andthesetofβ-numbersis{18,17,14,10,8,6,5,4,3,1,0}. 10 11 Every beta number will be represented by (o) for a bead position in the diagram while the empty bead position will be represented by (-). Figure 1 shows a general diagram and final diagram of e = 4 displaying the arrangement of beads representing µ = (8,8,6,3,2,1,1,1,1). Diagramsofb wheres = 1,2,...,earedefinedasmaindiagrams. Theintersection s ofthemaindiagramsisalsoexamined. Theorem2.3. [13] Let (µ ,µ ,...,µ ) = (µτ1,µτ2,...,µτk). 1 2 b 1 2 k The numerical value of the resulting intersection of main James abacus diagrams is 4 EmanF.Mohomme,etal. 0 1 2 3 o o – o 4 5 6 7 o o o – 8 9 10 11 −→ o – o – 12 13 14 15 – – o – 16 17 18 19 – o o – a b Figure1: Thebeadpositionsontheabacuswith4runners(a)Generaldiagram(b)Final diagram. (cid:2)e denoted by # m·d· and it is equal to φ in the case of no existence of common bead s=1 positions. (cid:2)e 1. # m·d· = φ ifτ = 1,k ∈ N. k s=1 2. Let(cid:4)bethenumberofpartsofλwhichsatisfiestheconditionτ ≥ eforsomek, k (cid:2)e (cid:1)(cid:4) then# m·d· = τ −(cid:4)(e−1). k s=1 k=1 3. Method TheconstructionofthenewdiagramisdevelopedbyfirstconvertingtheoriginalJames abacusdiagramtomatrixform. Jamesabacusdiagrampositionsaredividedintoseveral nested chains. Then, a new method is constructed for partitioning µ with a single motion of nested chain movement of length 1. Next, main diagrams are developed and theintersectionpointsofthemaindiagramsareobtained. 3.1. ConvertJamesabacusdiagramtomatrixform In order to formulate this work easily, the James abacus diagram is converted to matrix form. If (β ,β ,...,β ) is a set of beta numbers of a partition µ of a positive integer t 1 2 b andr isthenumberofrowsinJamesabacusdiagramofb then 1 (cid:3) (cid:4) β r = 1 . e ThenumberofrowsinaJamesabacusdiagramofb isr +s −1wheres ∈ N. s Lemma 3.1. Suppose that {β ,β ,··· ,β } a set of beta numbers of a partition µ = 1 2 b (µ ,µ ,··· ,µ )ofapositiveintegert whereb ∈ Z,theneveryJamesabacusdiagram 1 2 b NestedChainMovementoflength1ofBetaNumberinJamesAbacusDiagram 5 positioncanbeconvertedtoamatrixAr×e by me+n ⇒ a(m+1)(n+1) Proof. InJamesabacusdiagram,thebeadpositionsincolumnnandrowmarenumbered as (me +n) for e (cid:1) 2. The row numbers are from 0 to r −1 and column numbers are from0toe−1whileeverymatrix(m×n)consistsofmrowsfrom1tor andncolumns from 1 to e where m and n are positive integers; so any position me + n in the James abacusdiagramisanelementa(m+1)(n+1) inthematrix(r ×e). Then βb = me+n ⇒ a(m+1)(n+1) wherer referstothenumberofrowsinthediagram. (cid:3) 3.2. Nestedchains Nested chains are formed from James abacus diagram position. These chains are num- beredfrom1toi wherei isapositiveintegerandchain1istheouterchain. Thereisno intersection between any two of the chains as shown in Figure 2 where there are three nestedchainsforµ = (35,16,8,8,6,3,2,1,1,1,1)ande = 6. b 1 - o o o o - o - o - - - o - - o o - - - - - - - - o - - - - - - - - - - - - - - - - - - - o - - Figure2: Nestedchaindiagram. FromFigures1band2,wehavethefollowingcases. i. Ife = 2,thediagramhasonlyonechainwhichconsistsofalldiagrampositions. ii. Ife = 4 andr (cid:1) 4,thisimpliesthatthediagramhastwochains. (cid:127) Chain1={a ,a ,a ,a : 1 (cid:2) m (cid:2) 10,1 < n < 4}. m1 m4 1n rn (cid:127) Chain2={a ,a : 2 (cid:2) m (cid:2) 9} m2 m3 1. Ife = 6andr ≥ 6,thisimpliesthatthediagramhasthreechains. (cid:127) Chain1={a ,a ,a ,a : 1 (cid:2) m (cid:2) 7,1 < n < 6}. m1 m6 1n rn 6 EmanF.Mohomme,etal. (cid:127) Chain2={am2,am5,a2n,a((r−1)n) : 2 (cid:2) m (cid:2) 6,2 < n < 5}. (cid:127) Chain3={a ,a : 3 (cid:2) m (cid:2) 5} m3 m4 Finally,wecanmakeageneralizationforanyevennumbere. Definition 3.2. Let e be any even column number and r the number of rows in James abacusdiagramwheree < r. Foranypartitionµofapositiveintegert, chaini = {ami,am(e−i+1),ain,a(r−i+1)n : i (cid:2) m (cid:2) (r −i +1),i < n < e−i +1} where 1. Everychainisderivedfromtwocolumns,i ande−i +1. 2. Thelastchainisderivedfromtwoconsecutivecolumns. Thegeneralizationofourmainresultisstatedinthefollowingtheorem. Theorem3.3. LetebeanyevencolumnnumberandithenumberofchainsintheJames abacus diagram where e2 (cid:2) β . Then, for any partition µ of a positive integer t, then 1 e thenumberofchainsinthediagramis . 2 Proof. By Definition 3.2, every chain is derived from two columns, which are i and e−i +1. Since the last chain is derived from two consecutive columns, the difference betweenthesetwocolumnnumbersis e−i +1−i = 1. Thus, e i = . 2 (cid:3) Hence, for Example 2.2, if e = 4 we have two chains as shown in Figure 1.b. The nexttheoremshowsthatthenumberofpositionsineverychainis2r +2e−4(2i −1). Theorem3.4. Letebeanyevencolumnnumber,r thenumberofrowsandi thenumber of chains in the James abacus diagram where e2 (cid:2) β . Then, for any partition µ of a 1 positiveintegert,thenumberofpositionsineachchainis 2r +2e−4(2i −1). Proof. Sincethechainsformarectanglethenthelengthofchaini is (r −i +1)i = r −2i +1. NestedChainMovementoflength1ofBetaNumberinJamesAbacusDiagram 7 Thewidthofchaini is (e−i +1)−i = e−2i +1. Thentheperimeterofchaini isgivenby 2[(r −2i +1)+(e−2i +1)] = 2r +2e−4(2i −1). (cid:3) Consider Example 2.2 and the partition µ = (8,8,6,3,2,1,1,1,1). If e = 4, the diagramhastwochainsandchain1has14positionswhilechain2has6positions. An arithmetic sequence among the nested chains can be obtained as given in the followingTheorem3.5. Theorem3.5. Letebeanyevencolumnnumber,r thenumberofrowsandi thenumber of chains in the James abacus diagram where e2 (cid:2) β . Then, for any partition µ of a 1 positiveintegert (cid:5) Vi (cid:6)=(cid:5) V1,V2,V3,...,Ve (cid:6) 2 is the arithmetic sequence for the number of positions in the nested chains with −8 as thecommondifferenceofsuccessivetermswhereV isthenumberofpositionsinchain i i. Proof. LetVi+1,Vi representthenumberofpositionsinchaini +1andchaini respec- e−2 tivelywherei = 1,2,..., byTheorem3.3. Thus 2 [2r +2e−4(2(i −1)−1)][2r +2e−4(2i −1)] = −8. (cid:3) Inthenextsection,theapplicationofasinglemotionofthenestedchainmovement onJamesabacusdiagramoflength[1,1,...,1]willbeexamined. 3.3. Nestedchainmovementoflength[1,1,...,1] Thissectiondescribesthenewmethodforpartitioningµwithasinglemotionofnested chainmovementoflength1inJamesabacusdiagramwhereeisanevencolumnnumber and e2 (cid:2) β . First, a beta number on every chain in the James diagram is selected 1 randomly. Thebeadthatrepresentstheselectedbetanumberisdenotedastheinitialpoint ofeverychain. Asalltheinitialbeadpositionsaresimultaneouslymovedanticlockwise by length 1 in a single motion to the next positions in the chains that they belong to, the location of the remaining beads in the diagram will be changed accordingly. A new diagram Atc1 that displays a new partition is constructed. Applying such chain nested movement of length 1 yields the following results where the notation → as in j → k meansthatj representstheoriginallocationandk representsthenewlocation. 8 EmanF.Mohomme,etal. Rule3.6. Lete beanyevencolumnnumber,r thenumberofrowsandi thenumberof chainsintheJamesabacusdiagramwheree2 (cid:2) β . Then 1 a(Amtc−1b11)n if i +1 (cid:2) m (cid:2) (r −i +1),n = e−i +1 aAtc1b1 if i (cid:2) m (cid:2) (r −i),n = i (m+1)n ab1 → mn aAtc1b1 if m = i,i +1 < n (cid:2) e−i +1 m(n−1) aAtc1b1 if m = (r −i +1),i (cid:2) n < e−i m(n+1) Fig.3illustratestheaboveruleforµ = (35,16,8,8,6,3,2,1,1,1,1)ande = 6. - o o o o - o o o o o - o - o - - - - o - - o - o - - o o - o - o - - - - - - - - - o - - - - - - o - - - - - - - - - - - - - - - - - o - - - - - - - - - - - - - - - - - o o o o - - - o o o - a b Figure3: (a)Jamesabacusdiagram(b)DiagramAtc1. 3.4. Developmentofnewmaindiagrams WehaveobtaineddiagramAtc1 ofb fromJamesabacusdiagramusingasinglemotion 1 of nested chain movement of length 1. Next, we can find the diagram of b from the 2 diagramofb afterapplyingthesimilarchainmovementoflength1again. Thefollowing 1 tworulesapplyforthecaseofe = 2 ande = 4x. Rule3.7. Lete = 2beanyevencolumnnumber,r thenumberofrowsandi thenumber NestedChainMovementoflength1ofBetaNumberinJamesAbacusDiagram 9 ofchainsintheJamesabacusdiagramwheree2 (cid:2) β then 1 aAtc1b2 if ≤ m ≤ r,n = 1 (m−2)2 a(Amtc+1b32)1 if m = 1,2,··· ,r −2,n = 2 aAtc1b2 if m = r −1,n = 2 r2 aAtc1b1 → mn aAtc1b2 if m = r,n = 2 (r−1)2 aAtc1b2 if m = 2,n = 1 11 aAtc1b2 if m = 1,n = 1 . 31 where ab1 is any position in the diagram Atc1 of b in column n, rows m and m = mn 1 1,2,...,r −1. Rule 3.8. Let e = 4x where x is any positive integer, r the number of rows and i the numberofchainsintheJamesabacusdiagramwheree2 (cid:2) β . Applyingasinglemotion 1 ofnestedchainmovementoflength1willgivethefollowingresults: e 1. Ifm = i,i (cid:2) n (cid:2) e−i +1andi (cid:8)= then 2 amA(tcn1+b21) if m = i,n+1 < e−i aAtc1b2 if m = i,n = e−i,i (cid:8)= 1 (m−1)(n+2) amAntc1b1 → amA(tcn1+b21) if m = i,n = e−i +1,i (cid:8)= 1 aAtc1b2 if m = 1,n = e−i 31 aAtc1b2 if m = 1,n = e 41 e 2. Ifn = e−i +1,i < m < r −i +1andi (cid:8)= then 2 amA(tcn1+b21) if i < m (cid:2) r −i +1,n = e−i +1,i (cid:8)= 1 aAtc1b1 → a(Amtc+1b32)1 if 1 < m (cid:2) r −2,n = e mn a(Art+c11b)22 if m = r −1,n = e 10 EmanF.Mohomme,etal. e 3. Ifm = r −i +1,i (cid:2) n (cid:2) e−i +1andi (cid:8)= then 2 aAtc1b2 if m = r −i +1,i (cid:2) n < e−i +2 m(n+1) aAtc1b1 → mn aAtc1b2 if m = r −i +1,e−i (cid:2) n (cid:2) e−i +1 (m−1)n e 4. Ifn = i,i (cid:2) m (cid:2) e−i +1andi (cid:8)= then 2 amA(tcn1+b21) if n = i,r −i +1 (cid:2) m−1 (cid:2) i aAtc1b1 → aAtc1b2 if n = i,m = i +1 mn m(n+1) aAtc1b2 if m = r −i +1,n = i (m−1)n e 5. i (cid:2) n (cid:2) i +1,i (cid:2) m (cid:2) r −i +1andi = 2 a(Amtc−1b11)(n+2) if n = 2e,m = 2e a(Amtc−1b11)n if n = 2e,m = e+2 2 e e+4 2r −e+2 aAtc1b1 if n = , ≤ m ≤ aAtc1b1 → (m−2)(n+1) 2 2 2 mn e+2 e 2r −e+2 amA(tcn1+b11) if n = 2 , 2 ≤ m < 2 e+2 2r −e+2 a(Amtc−1b11)n if n = 2 ,m = 2 (cid:9) (cid:10) Atc1 Atc1 6. a b2 ,a b2 |m = r +1,2 < n (cid:2) e arebeadpositions. mn re Figure 4(a) depicts the original James abacus diagram for b ,b ,b and b while 1 2 3 4 Figure4(b)showsallresultsaccordingtoules3.6and3.8forµ = (8,8,6,3,2,1,1,1,1) ande = 4. In general, Rules 3.7 and 3.8 can be further applied to find the guides or the main diagramsAtc1 ofb ,b ,.... 3 4
Description: