ebook img

Navier-Stokes equations and turbulence PDF

363 Pages·2001·1.724 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Navier-Stokes equations and turbulence

This page intentionally left blank Navier–StokesEquationsandTurbulence Thisbookaimstobridgethegapbetweenpracticingmathematiciansandthepractitionersof turbulencetheory. Itpresentsthemathematicaltheoryofturbulencetoengineersandphysi- cistsaswellasthephysicaltheoryofturbulencetomathematicians. Thebookistheresult ofmanyyearsofresearchbytheauthors,whoanalyzeturbulenceusingSobolevspacesand functionalanalysis. Inthiswaytheauthorshaverecoveredpartsoftheconventionaltheory ofturbulence,derivingrigorouslyfromtheNavier–Stokesequationswhathadbeenarrivedat earlierbyphenomenologicalarguments. Themathematicaltechnicalitiesarekepttoaminimumwithinthebook,enablingthedis- cussiontobeunderstoodbyabroadaudience. Eachchapterisaccompaniedbyappendices thatgivefulldetailsofthemathematicalproofsandsubtleties.Thisuniquepresentationshould ensureavolumeofinteresttomathematicians,engineers,andphysicists. CiprianFoiasisanEmeritusProfessorintheDepartmentofMathematicsatIndianaUniversity atBloomingtonandProfessorofMathematicsatTexasA&MUniversityatCollegeStation.He hasheldnumerousvisitingprofessorships,includingthoseatVirjeUniversity(Netherlands), IsraelInstituteofTechnology,UniversityofCaliforniaatSanDiego,UniversitéParis-Sud,and theCollègedeFrance. In1995,hewasawardedtheNorbertWienerprizebytheAmerican MathematicalSociety. OscarP.Manleyworksasaconsultantandindependentresearcheronthefoundationsoftur- bulentflows. HehasactedasheadoftheU.S.DepartmentofEnergy’sEngineeringResearch ProgramandastheProgramManagerfortheDepartmentofEnergy’sresearchonmagnetic fusion theory. Dr. Manley has held visiting professorships at the Université Paris-Sud and IndianaUniversity. RicardoRosaisaProfessorofMathematicsattheUniversidadeFederaldoRiodeJaneiro. He hasalsoheldpositionsasVisitingResearcherattheInstituteforScientificComputingandAp- pliedMathematicsatIndianaUniversityandasVisitingProfessorattheUniversitéParis-Sud inOrsay,France. RogerTemamisaProfessorofMathematicsattheUniversitéParis-SudandSeniorScientistat theInstituteforScientificComputingandAppliedMathematicsatIndianaUniversity. Hehas beenawardedanHonoraryProfessorshipatFudanUniversity(Shanghai),theFrenchAcad- emyofScience’sGrandPrixAlexandreJoannidès,andtheSeymourCrayPrizeinNumerical Simulation. ProfessorTemam has authored or co-authored nine books and published more than260articlesininternationalrefereedjournals. Hiscurrentresearchinterestsinfluidme- chanicsareintheareasofcontrolofturbulence,boundarylayertheory,andgeophysicalfluid dynamics. ENCYCLOPEDIAOFMATHEMATICSANDITSAPPLICATIONS EDITEDBYG.-C.ROTA EditorialBoard R.Doran,P.Flajolet,M.Ismail,T.-Y.Lam,E.Lutwak Volume83 Navier–StokesEquationsandTurbulence 6 H.Minc Permanents 19 G.G.Lorentz,K.Jetter,andS.D.Riemenschneider BirkhoffInterpolation 22 J.R.Bastida FieldExtensionsandGaloisTheory 23 J.R.Cannon TheOne-DimensionalHeatEquation 24 S.Wagon TheBanach–TarskiParadox 25 A.Salomaa ComputationandAutomata 27 N.H.Bingham,C.M.Goldie,andJ.L.Teugels RegularVariation 28 P.P.PetrushevandV.A.Popov RationalApproximationof RealFunctions 29 N.White(Ed.) CombinatorialGeometries 30 M.PohstandH.Zassenhaus AlgorithmicAlgebraicNumberTheory 31 J.AczelandJ.Dhombres FunctionalEquationsinSeveralVariables 32 M.Kuczma,B.Choczewski,andR.Ger IterativeFunctionalEquations 33 R.V.Ambartzumian FactorizationCalculusandGeometricProbability 34 G.Gripenberg,S.-O.Londen,andO.Staffans VolterraIntegralandFunctionalEquations 35 G.GasperandM.Rahman BasicHypergeometricSeries 36 E.Torgersen ComparisonofStatisticalExperiments 38 N.Korneichuk ExactConstantsinApproximationTheory 39 R.BrualdiandH.Ryser CombinatorialMatrixTheory 40 N.White(Ed.) MatroidApplications 41 S.Sakai OperatorAlgebrasinDynamicalSystems 42 W.Hodges BasicModelTheory 43 H.StahlandV.Totik GeneralOrthogonalPolynomials 45 G.DaPratoandJ.Zabczyk StochasticEquationsinInfiniteDimensions 46 A.Björneretal. OrientedMatroids 47 G.EdgarandL.Sucheston StoppingTimesandDirectedProcesses 48 C.Sims ComputationwithFinitelyPresentedGroups 49 T.Palmer BanachAlgebrasandtheGeneralTheoryof*-Algebras 50 F.Borceux HandbookofCategoricalAlgebra1 51 F.Borceux HandbookofCategoricalAlgebra2 52 F.Borceux HandbookofCategoricalAlgebra3 53 V.F.Kolchin RandomGraphs 54 A.KatokandB.Hasselblatt IntroductiontotheModernTheoryofDynamicalSystems 55 V.N.Sachkov CombinatorialMethodsinDiscreteMathematics 56 V.N.Sachkov ProbabilisticMethodsinDiscreteMathematics 57 P.M.Cohn SkewFields 58 R.Gardner GeometricTopography 59 G.A.Baker,Jr.andP.Graves-Morris PadéApproximants 60 J.Krajicek BoundedArithmeticPropositionalLogicandComplexityTheory 61 H.Groemer GeometricApplicationsofFourierSeriesandSphericalHarmonics 62 H.O.Fattorini InfiniteDimensionalOptimizationandControlTheory 63 A.C.Thompson MinkowskiGeometry 64 R.B.BapatandT.E.S.Raghavan NonnegativeMatriceswithApplications 65 K.Engel SpernerTheory 66 D.Cvetkovic,P.Rowlinson,andS.Simic EigenspacesofGraphs 67 F.Bergeron,G.Labelle,andP.Leroux CombinatorialSpeciesandTree-LikeStructures 68 R.GoodmanandN.R.Wallach RepresentationsandInvariantsoftheClassicalGroups 69 T.Beth,D.Jungnickel,andH.Lenz DesignTheory,vol.1 70 A.PietschandJ.Wenzel OrthonormalSystemsforBanachSpaceGeometry 71 G.E.Andrews,R.Askey,andR.Roy SpecialFunctions 72 R.Ticciati QuantumFieldTheoryforMathematicians 73 M.Stern SemimodularLattices 74 I.LasieckaandR.Triggiani ControlTheoryforPartialDifferentialEquationsI 75 I.LasieckaandR.Triggiani ControlTheoryforPartialDifferentialEquationsII 76 A.A.Ivanov GeometryofSporadicGroups1 77 A.Schinzel PolynomialswithSpecialRegardtoReducibility 78 H.Lenz,T.Beth,andD.Jungnickel DesignTheory,vol.2 encyclopedia of mathematics and its applications Navier–Stokes Equations and Turbulence C.FOIAS O.MANLEY R.ROSA R.TEMAM           The Pitt Building, Trumpington Street, Cambridge, United Kingdom    The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org ©Cambridge University Press 2004 First published in printed format 2001 ISBN 0-511-03936-0 eBook (netLibrary) ISBN 0-521-36032-3 hardback Contents Preface pageix Acknowledgments xiv ChapterI IntroductionandOverviewofTurbulence 1 Introduction 1 1. ViscousFluids.TheNavier–StokesEquations 1 2. Turbulence:WheretheInterestsof EngineersandMathematicians Overlap 5 3. ElementsoftheTheoriesofTurbulenceof Kolmogorovand Kraichnan 9 4. FunctionSpaces,FunctionalInequalities,andDimensionalAnalysis 14 ChapterII ElementsoftheMathematicalTheoryofthe Navier–StokesEquations 25 Introduction 25 1. EnergyandEnstrophy 27 2. BoundaryValueProblems 29 3. Helmholtz–LerayDecompositionofVectorFields 36 4. WeakFormulationoftheNavier–StokesEquations 39 5. FunctionSpaces 41 6. TheStokesOperator 49 7. ExistenceandUniquenessofSolutions:TheMainResults 55 8. AnalyticityinTime 62 9. GevreyClassRegularityandtheDecayoftheFourierCoefficients 67 10. FunctionSpacesfortheWhole-SpaceCase 75 11. TheNo-SlipCasewithMovingBoundaries 77 12. DissipationRateofFlows 80 13. NondimensionalEstimatesandtheGrashofNumber 87 AppendixA. MathematicalComplements 90 AppendixB. ProofsofTechnicalResultsinChapterII 102 vii viii Contents ChapterIII FiniteDimensionalityof Flows 115 Introduction 115 1. DeterminingModes 123 2. DeterminingNodes 131 3. AttractorsandTheirFractalDimension 137 4. ApproximateInertialManifolds 150 AppendixA. ProofsofTechnicalResultsinChapterIII 156 ChapterIV StationaryStatisticalSolutionsoftheNavier–Stokes Equations,TimeAverages,andAttractors 169 Introduction 169 1. MathematicalFramework,DefinitionofStationaryStatistical Solutions,andBanachGeneralizedLimits 172 2. InvariantMeasuresandStationaryStatisticalSolutionsin Dimension2 183 3. StationaryStatisticalSolutionsinDimension3 189 4. AttractorsandStationaryStatisticalSolutions 194 5. AverageTransferof EnergyandtheCascadesinTurbulentFlows 198 AppendixA. NewConceptsandResultsUsedinChapterIV 218 AppendixB. ProofsofTechnicalResultsinChapterIV 227 AppendixC. AMathematicalComplement:TheAccretivityProperty inDimension3 244 ChapterV Time-DependentStatisticalSolutionsofthe Navier–StokesEquationsandFullyDeveloped Turbulence 255 Introduction 255 1. Time-DependentStatisticalSolutionsonBoundedDomains 262 2. HomogeneousStatisticalSolutions 271 3. ReynoldsEquationfortheAverageFlow 280 4. Self-SimilarHomogeneousStatisticalSolutions 283 5. RelationwithandApplicationtotheConventionalTheoryof Turbulence 295 6. SomeConcludingRemarks 310 AppendixA. ProofsofTechnicalResultsinChapterV 312 References 331 Index 343

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.