ebook img

NASA Technical Reports Server (NTRS) 20140006948: A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20140006948: A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft ∗ JamesUrnes,Sr. BoeingResearch&Technology,St. Louis,MO63134 NhanNguyen†,CoreyIppolito‡,JosephTotah§ NASAAmesResearchCenter,MoffettField,CA94035 KhanhTrinh¶,EricTing(cid:3) StingerGhaffarianTechnologies,Inc. /NASAAmesResearchCenter,MoffettField,CA94035 Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptiveliftanddragperformanceforfuturetransportaircrafthavinglight-weight, flexiblewings. ThisVariableCamberContinuousTrailingEdgeFlap(VCCTEF)systemoffersalighter-weightliftcontrol systemhavingtwoperformanceobjectives:(1)anefficienthighliftcapabilityfortake-offandlanding,and(2) reductionincruisedragthroughcontrolofthetwistshapeoftheflexiblewing. Thiscontrolsystemduring cruisewillcommandvaryingflapsettingsalongthespanofthewinginordertoestablishanoptimumwing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraftchangesgrossweightandcruiseconditionsforeachmissionsegment.Designweightoftheflapcontrol systemisbeingminimizedthroughuseoflight-weightshapememoryalloy(SMA)actuationaugmentedwith electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transportswiththefurtherbenefitsoflighter-weightactuationandlessdragusingthevariablecambershape oftheflap. I. Introduction Theaircraftindustryhasbeenrespondingtotheneedforenergy-efficientaircraftbyredesigningairframestobe aerodynamically efficient, employing light-weight materials for aircraft structures and incorporating more energy- efficient aircraft engines. Reducing airframe operational empty weight (OEW) using advanced composite materials is one of the major considerations for improving energy efficiency. Modern light-weight materials can provide less structural rigidity while maintaining sufficient load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments can alter aircraft aerodynamics significantly, thereby potentially degradingaerodynamicefficiency. UndertheFundamentalAeronauticsProgramattheNASAAeronauticsResearchMissionDirectorate,theFixed Wing(FW)projectisconductingdiscipline-basedandmultidisciplinaryfoundationalresearchtoinvestigateadvanced conceptsandtechnologiesforfutureaircraftsystems. ANASAstudyentitled“ElasticallyShapeFutureAirVehicleConcept”wasconductedin20101 toexaminenew conceptsthatcanenableactivecontrolofwingaeroelasticitytoachievedragreduction. Thisstudyshowedthathighly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and vertical deflectioninordertooptimizethelocalangleofattackofwingsectionstoimproveaerodynamicefficiencythrough dragreductionduringcruiseandenhancedliftperformanceduringtake-offandlanding. ∗ProgramManager,PlatformSystems/SubsystemsTechnology,[email protected],(314)234-3775 †AssociateFellowAIAA,IntelligentSystemsDivision,[email protected],(650)604-4063 ‡IntelligentSystemsDivision,[email protected],(650)604-1605 §AssociateFellowAIAA,IntelligentSystemsDivision,[email protected],(650)604-1864 ¶IntelligentSystemsDivision,[email protected],(650)604-5280 (cid:3)IntelligentSystemsDivision,[email protected] 1of24 AmericanInstituteofAeronauticsandAstronautics Thestudyshowsthatactiveaeroelasticwingshapingcontrolcanhaveapotentialdragreductionbenefit. Conven- tionalflapandslatdevicesinherentlygeneratedragastheyincreaselift. Thestudyshowsthatconventionalflapand slatsystemsarenotaerodynamicallyefficientforuseinactiveaeroelasticwingshapingcontrolfordragreduction. A newflapconcept,referredtoasVariableCamberContinuousTrailingEdgeFlap(VCCTEF)system,wasdevelopedto addressthisneed. InitialresultsindicatethattheVCCTEFsystemmayofferapotentialpay-offfordragreductionthat will result in significant fuel savings. In order to realize the potential benefit of drag reduction by active aeroelastic wingshapingcontrol,configurationchangesinhigh-liftdeviceshavetobeapartofthewingshapingcontrolstrategy. Asecondstudywasawardedin2011undertheNASASubsonicFixedWing(SFW)project,entitled“Development ofVariableCamberContinuousTrailingEdgeFlapSystem”.2 ThisstudybuiltuponthedevelopmentoftheVCCTEF system for NASA Generic Transport Model (GTM) which is essentially based on the B757 airframe,3 employing light-weightshapedmemoryalloy(SMA)technologyforactuationandthreeseparatechordwisesegmentsshapedto provideavariablecambertotheflap.Thiscamberedflaphaspotentialfordragreductionascomparedtoaconventional straight,plainflap. Theflapisalsomadeupofindividual2-footspanwisesectionswhichenabledifferentflapsetting ateachflapspanwiseposition.Thisresultsintheabilitytocontrolthewingtwistshapeasafunctionofspan,resulting in a change to the wing twist to establish the best lift-to-drag ratio (L/D) at any aircraft gross weight or mission segment. Currentwingtwistoncommercialtransportsispermanentlysetforonecruiseconfiguration, usuallyfora 50% loading or mid-point on the gross weight schedule. The VCCTEF offers different wing twist settings for each grossweightconditionandalsodifferentsettingsforclimb,cruiseanddescent,amajorfactorinobtainingbestL/D conditions. The second feature of VCCTEF is a continuous trailing edge flap. The individual 2-foot spanwise flap sections areconnectedwithaflexiblecovering,sonobreakscanoccurintheflapplatforms,thusreducingdragbyeliminating these breaks in the flap continuity which otherwise would generate vorticity that results in a drag increase and also contributestoairframenoise. Thiscontinuoustrailingedgeflapdesigncombinedwiththeflapcamberresultinlower dragincreaseduringflapdeflections. Inaddition,italsooffersapotentialnoisereductionbenefit. TheVCCTEFprojecthasfourobjectives: 1. UsetheVCCTEFtotwisttheflexiblewingtoobtainchangesinlift-to-dragratiosthatwillreducecruisedrag throughouttheflightenvelope. 2. Determineaeroelasticcontrolapproachesthatwillcompensateforreducedfluttermarginsofflexiblewings. 3. Use the full span cambered flap as the primary high lift device for take-off, climb-out, let-down and final ap- proach. 4. Use the aft section of the cambered flap as a roll control effector and as an aeroservoelastic control device of flexiblewingstructuredynamicmodes. II. PerformanceBenefit Drag reduction by increasing lift-to-drag ratios through reshaping the wing twist has a significant advantage if the wing has structural flexibility properties that will permit this change in shape. Current transport wing design incorporates a twist profile that provides efficient lift-to-drag ratios, and the twist angle is set for an average flight profileandatthemid-pointgrossweight. Figure1showsresultsofdragpolarsofaflexiblewingtransportforthree fuelloadings: 80%fuelloadearlyincruise,50%fuelloadatthemid-pointcruise,and20%fuelloadtowardtheend ofcruise. The1-gtrimpointsshowthelowestdragatthe50%mid-pointthatisindicativeofthewingtwistdesign,witha significantdragincreaseattheotherfuelloadingconditionsduetowingshapechangesforaflexiblewingtransport. Using the VCCTEF, the drag polars can be changed to reduce drag, two examples are shown in Figure 1.1 The importantfactoristomaintainthedesiredwingtwistthroughthedeflectionoftheVCCTEF,butnottolosethedrag benefit by having too much increase in drag due to the flap deflections. Hence, the use of the variable camber flap insteadofconventionalflapscanofferabetterdragsignature. 2of24 AmericanInstituteofAeronauticsandAstronautics 0.03 80% Fuel w/ Aeroelastic Deflection 50% Fuel @ Design Condition 20% Fuel w/ Aeroelastic Deflection 0.025 VCCTE Flap Down 3.9 deg VCCTE Flap Up −3.3 deg 0.02 D C 1−g Trim Points 0.015 0.01 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 C L Nguyen,N.,“ElasticallyShapedFutureAirVehicleConcept,”NASAInnovationFundAward2010Report,October2010 SubmittedtoNASAInnovativePartnershipsProgram Figure1. WingShapingControlcanChangetheLift-to-DragRatiotoMinimizeTrimDrag III. DesignoftheVCCTEFSystem Figure2showsawingandflaplayoutoftheVCCTEFdesignfortheGTM. Figure2. WingConfiguredwiththeVariableCamberContinuousTrailingEdgeFlap The flap is divided into 14 sections attached to the outer wing and 3 sections attached to the inner wing. Each 24-inchsectionhasthreecamberflapsegmentsthatcanbeindividuallycommanded. Thesecamberflapsarejoinedto 3of24 AmericanInstituteofAeronauticsandAstronautics thenextsectionbyaflexibleandsupportedmaterial(showninblue)installedwiththesameshapeasthecamberand thusprovidingcontinuousflapsthroughoutthewingspanwithnodragproducinggaps. Amajorgoaloftheprogramistodevelopalight-weightflapcontrolsystemthathasasignificantweightadvantage as compared to current flap screw-jack actuators. Hydraulic, electric and Shape Memory Alloy (SMA) torque rod actuationwereevaluatedwiththeresultthattheSMAactuationhasthebestweightadvantage,asshowninFigure3 hardwarecomparisons. Moreover,theuseofhingelineactuationeliminatesthelargeandheavyexternalmountedactuators,andpermits allactuatorstobeinteriortothewingandflapmoldlines,thuscontributingtotheoveralldragreductiongoal. Figure3. ShapeMemoryAlloyActuatorsHaveaLowWeightComparedtoElectricMotorActuators Figure4showsthreeoftheouterwingflapsections,eachhavingthreecambercomponents. Figure4. TheVariableCamberFlapControlusesShapeMemoryAlloyTorqueRodandElectricDriveActuation 4of24 AmericanInstituteofAeronauticsandAstronautics SMAactuatorsdrivethefirstandsecondcamberflapsegmentsandafasteractingelectricactuatordrivesthethird camberflapsegment. SMAactuatorscandeliverlargehingemoments,butgenerallymoveataslowrate. Theouter wingflapusesthefull-spanthirdcambersegmentasarollcommandeffectorandasacontroldeviceforsuppressing aeroelasticwingstructuraldynamicmodes,bothrequiringhighrateswhichcanbemetbyelectricactuators. Figure5 showsanSMAactuator. Figure5. ShapeMemoryAlloyActuatorscanMeettheVCCTEFHingeMomentRequirements IV. HighLiftConfiguration Using the camber positioning, a full-span, low-drag, high-lift configuration can be activated that has no drag producinggapsandalowflapnoisesignature. ThisisshowninFigure6. Tofurtheraugmentlift,aslottedflapconfigurationisformedbyanairpassagebetweenthewingandtheinnerflap thatservestoimproveairflowovertheflapandkeeptheflowattached. Thisairpassageappearsonlywhentheflaps areextendedinthehighliftconfiguration. Figure6. CruiseandHighLiftVCCTEFConfigurations 5of24 AmericanInstituteofAeronauticsandAstronautics Inthehigh-liftconfiguration,theouterwingflapusesthethirdcambersectionforrollcontrol,asshowninFigure 6. Thisprovidesrollingmomentthatisequivalenttoaileroncontrol. Itissomewhatsimilartodeflectingtheailerons inadrooppositiontoactasflaps,acommonprocedureusedontacticalaircraftandonsometransportaircraft. Thehigh-liftconfigurationdistributestherequiredflaphingemomentthroughoutthespanofthewingwhileusing actuationcomponentsthatarealllocatedinteriortothewingandflap. ThiscanbeachievedbytheuseofSMAhinge linetorquerods,sizedtomeetthehingemomentrequirementsateachspanwiselocationonthewing.Thisdistribution ofactuatorloadpermitsefficientsizingoftheactuators,andeliminatestheneedforlargeexternalflapactuatorsand associateddragfromtheseinstallations. V. Vortex-LatticeFlexibleAircraftGeometryModeling TheGTMconfiguredwiththeVCCTEFisanalyzedusingNASAvortex-latticecodeVorview.4 Thiscodeisalso usedtooptimizelift-to-dragratiosoftheVCCTEFwings. Vorviewreadsinaircraftgeometries,flightstatesincluding altitude, airspeed, angle of attack and aircraft weight and computes aircraft aerodynamic coefficients, stability and control derivatives, and distributions of wing lift, drag, and pitching moment coefficients. The aircraft geometry in Vorview is defined by a surface mesh. The optimization process involved running multiple Vorview analyses comparing different flap settings of the VCCTEF. In the optimization process, a new mesh model was produced for eachnewflapsettingontheflygeneratedbyanautomatedgeometrygenerationtooldevelopedinMatlab. Figure7showsameshmodeloftheGTMwiththeVCCTEF.Themeshmodelcontains6components: fuselage, wings, engines, pylons, horizontal tails and vertical tails. Each component is a structured mesh containing quadri- lateral elements defining the outer mold line of the component geometry. Each component is treated as a cylinder topologically. Non-uniform section cuts were placed along cylinder axes and non-uniform mesh nodes were placed alongthecircumferentialdirectionofeachsectioncutstocapturetheaircraftgeometrywhilekeepingthenumberof elementsdown. Eachcomponentwasmeshedseparately. Vorviewdoesnotrequireaconformalmeshatintersections ofintersectingcomponents. However,Vorviewdoesrequirethegeometrytobewater-tight. Toproduceawater-tight mesh, intersecting ends of wings, pylon, horizontal tails and vertical tails were extended so that the end nodes pro- truded into adjacent components. The aircraft mesh has a total of 20,806 nodes and 19,908 quadrilateral elements. Table1showsmeshsizedataforthe6components. NumberofSections NumberofNodesperSection NumberofQuadElements Fuselage 84 101 8300 Wings 80 115 8892 Engines 32 21 600 Pylons 4 23 44 HorizontalTails 18 81 1280 VerticalTail 20 45 792 Table1. MeshSizeDataofGeometryModel Figure7. VorviewGTMMesh 6of24 AmericanInstituteofAeronauticsandAstronautics InmeshingtheVCCTEFwings,sectioncutswereplacedateveryflap/followerflexiblematerialboundary. This allowsthemeshtocorrectlydefinetheVCCTEFgeometryinthewingspanwisedirection.Likewise,meshnodesalong eachwingsectionswereplacedtocorrectlydefinetheflapgeometryinthewingchord-wisedirection. Therewere3 quadsalongthechord-wisedirectionofeachofthe3chordwiseflapsections. Foreachflapsetting,thelocationsof the3flaphingerodsweredeterminedfirst. Thennodelocationsofthequadsdefiningeachflapwerecalculated. Thus, thesidesoftheflapquadsfollowtheflapgeometryboundaries. Figure8showsmeshofVCCTEFwingsandmesh sectionsfor2differentflapsettings. Vorviewprocessesaircraftquadsurfacemeshalongwithuser-definedcontrolparameterstodefineslicesandsub polygonsthataresubsequentlyusedintheaerodynamiccalculations.Figure8showsVorviewslicesandsub-polygons oftheGTMwithVCCTEF,respectively. Figure8. VorviewGTMSub-Polygons ThevariablecamberflapismodeledwiththreechordwiseflapsegmentsasshowninFigure9.1 Nguyen,N.,“ElasticallyShapedFutureAirVehicleConcept,”NASAInnovationFundAward2010Report,October2010 SubmittedtoNASAInnovativePartnershipsProgram Figure9. VariableCamberFlap The variable camber flap geometry is specified by three deflection values δ , δ , and δ for the innermost, f1 f2 f3 intermediate, and outermost flap segments, respectively. The baseline camber shape is described by a circular arc, witheachflapsegmentdeflectedbythesameamountrelativetoeachother. Withacirculararccamber,onlyoneflap deflectioncommandisneeded. Forexample, foracommandedflapdeflectionof12o, theinnermostflapsegmentis deflected4o,theintermediateflapsegmentisdeflected8o,andtheoutermostflapsegmentisdeflectedby12o. Thus, ingeneral iδ δ = fc (1) fi 3 7of24 AmericanInstituteofAeronauticsandAstronautics wherei=1,2,3,andδ isthecommandedflapdeflection. fc Thecamberangleofthecirculararccamberflapisthedifferencebetweenbetweenδ andδ . Thus,thevariable f3 f1 camberangleχ=2δ /3isafunctionofthecommandedflapdeflection.Acamberflapismoreeffectiveinproducing fc liftthanastraightuncamberedflap. Asthecamberincreases,thepressuredistributionattheaftoftheairfoilincreases thatresultsinaliftincrease. The variable camber flapproduces about the same downwash as a simpleplain flap deflected by the same angle as shown in Figure 9–. However, the normal surface area of the variable camber flap exposed to the flow field is significantlyreduced. Thus,thedragreductionbenefitofthevariablecamberflapisrealizedsincethepressuredrag acrosstheflapsurfaceisreducedduetolessexposednormalsurfacearea. In order to model a flexible wing aircraft, an automated geometry generation tool is developed in Matlab. This geometry modeling uses structural deflection data computed by a finite-element model (FEM) to update the unde- formedaircraftwinggeometrytoreflectstaticaeroelasticdeflections. Thedeformedgeometry,whichreflectsaseries ofcoordinatetransformationsontheoutermoldlineofthejig-shapeaircraftwing, isprocessedintoageometryfile thatcanbeuseddirectlyinvortex-latticecalculations. WithreferencetoFigure10, thecoordinatereferenceframe(x ,y ,z )definestheBodyStation(BS),theBody B B B Butt Line (BBL), and the Body Water Line (BWL) of the aircraft, respectively. The coordinate reference frame (x ,y ,z )isthetranslatedcoordinatesystemattachedtothenoseoftheaircraftsuchthatx =x −13.25ft,y =y , V V V V B V B andz =z −15.8333ft. Thisreferenceframeisusedforthevortex-latticeaerodynamicmodelingandoptimization. V B Thestabilityreferenceframe(x,y,z)isattachedtotheCGsuchthatx=x¯ −x ,y=y −y¯ ,andz=z¯ −z ,where V V V V V V (x¯ ,y¯ ,z¯ )isthecoordinateoftheCGinthe(x ,y ,z )referenceframe.5 V V V V V V Figure10. GTMCoordinateSystems Thewingreferenceframeisdefinedbythecoordinatereferenceframe(x ,y ,z )asshowninFigure11. The W W W x -axisisthewingelasticaxis,they -axispointsaftalongthechorddirection,andthez -axisisthewingnormal W W W direction. Figure11. WingBendingDeflectionsandTwist 8of24 AmericanInstituteofAeronauticsandAstronautics Neglecting chordwise bending deflection, the aeroelastic deflections in bending and torsion are expressed in a vectorformas φ =Θi −W j (2) W x W δ =−WsinW i +WcosW k (3) xW x W whereΘisthewingtwist(positivenose-down),W isthewingbendingslope(positiveslopeupward),and(i ,j ,k ) x W W W aretheunitvectorscorrespondingto(x ,y ,z ). W W W Thecoordinatereferenceframe(x ,y ,z )isrelatedtothecoordinatereferenceframe(x ,y ,z )bythefollow- W W W V V V ingrelationship: ⎡ ⎤ ⎡ ⎤⎡ ⎤ i −sinΛcosΓ −cosΛcosΓ −sinΓ −i ⎢ W ⎥ ⎢ ⎥⎢ V ⎥ ⎣ j ⎦=⎣ −cosΛ sinΛ 0 ⎦⎣ −j ⎦ (4) W V k sinΛsinΓ cosΛsinΓ −cosΓ −k W V whereΛisthesweepaxisoftheelasticaxis,Γthewingdihedralangle,and−(i ,j ,k )aretheunitvectorscorre- V V V spondingto(x ,y ,z ). V V V Thus, the aeroelastic deflections result in a wing twist expressed as an incremental angle of attack Δα (positive nose-up),ahorizontaldeflectionΔy (positivedisplacementtowardwingtip),andaverticaldeflectionΔz (positive V V displacementupward)asfollows: Δα =−ΘcosΛcosΓ−W sinΛ (5) x Δy =−WsinW cosΛcosΓ−WcosW cosΛsinΓ (6) V x x Δz =−WsinW sinΓ+WcosW cosΓ (7) V x x A coordinate transformation to account for wing aeroelastic deflections is performed by rotating a wing section about its elastic axis by the incremental angle of attack Δα and then translating the resultant coordinates by the horizontaldeflectionΔy andtheverticaldeflectionΔz accordingto V V x(cid:4) =x +(x −x )cosΔα−(z −z )sinΔα (8) V ea V ea V ea y(cid:4) =y +Δy (9) V V v z(cid:4) =z +Δz +(x −x )sinΔα+(z −z )cosΔα (10) V ea V V ea V ea wheretheprimesuperscriptdenotesthetransformedcoordinates,and(x ,y ,z )isthecoordinateoftheelasticaxis ea ea ea inthereferenceframe(x ,y ,z ). V V V VI. RollControlAnalysis AninvestigationoftherollcontrolauthorityofferedbytheVCCTEFisconducted.Asaconcept,rollcontrolusing theVCCTEFisaccomplishedbyutilizingsolelytheoutermostcamberflapsegmentsofthe14spanwisesectionsof theVCCTEFonthewingportionoutboardfromtheengines. Vorviewisemployedwiththeflapmodeltoanalyzeroll controlderivatives. Theinitialanalysisdoesnotincludetheeffectofaeroelasticdeflectionswhichgenerallydecrease therollcontroleffectiveness. InordertoanalyzetheasymmetricdeflectionoftherollcontrolsegmentsoftheVCCTEF,Avortex-latticeanalysis isperformedonthreesepa(cid:8)ratecasesfo(cid:9)reachflightcondition. First,anominalbaselineisestablishedbasedonatrim deflectionoftheVCCTEF δ ,δ ,δ whichrepresentsthedeflectionsoftheinnermost,intermediate,andoutermost f1 f2 f3 camber segments of a VCCTEF spanwise flap section. The second and third vortex-lattice cases are then computed for δ ±Δδ on the 14 VCCTEF spanwise flap sections, with Δδ =1o. These three cases thus provide the wing f3 f3 f3 spanwisedistributionsofliftanddrag. To generate a positive roll about the roll axis of the aircraft, the outermost camber segments are differentially deflectedsuchthatΔδ >0ontheleftwingandΔδ <0negativeontherightwing. Letybethespanwiselocation f3 f3 ofawingstationalongtheaircraftpitchaxiswherepositiveyisalongtherightwingwingandnegativeyisalongthe leftwing. Aerodynamicdataforspanwisewingstationsarethenobtainedfromthevortex-latticesolutionsasshown inFigure12. 9of24 AmericanInstituteofAeronauticsandAstronautics 1 Nominal VCCTEF Setting 0.9 Negative −1o VCCTEF Roll Segments Deflection 0.8 Positive 1o VCCTEF Roll Segments Deflection cl 0.7 nt e ci 0.6 effi o 0.5 C Lift 0.4 al c o 0.3 L 0.2 0.1 0 −80 −60 −40 −20 0 20 40 60 80 Spanwise Location y, ft Figure12. LocalLiftDistributionwithDifferentialDeflectionofOutermostVCCTEFSegmentsforRollControl The spanwise lift and drag distributions on the left and right wings allow the rolling moment coefficient to be establishedintermsoftherollcontrolderivativeduetothedeflectionoftherollcontrolsegmentsoftheVCCTEF. ˆ 1 b/2 C = [Δc (y)cosα (y)−Δc (y)sinα (y)]c(y)ydy (11) lδf SbΔδf3 −b/2 l l d l whereΔc andΔc aretheincrementalsectionliftanddragcoefficients, respectively, cisthesectionchord, S isthe l d referencewingarea,bisthewingspan,andα isthelocalangleattackdefinedas l α (y)=α+γ(y)+Δα(y) (12) l whereγ isthewingpre-twistdistribution. Themagnitudeofthedragcontributiontotherollingmomentismuchsmallerthanthatoftheliftcontributionand isnotincludedintheestimate. 0.34 0.32 Clδf 0.3 C, lδa 0.28 s e ativ 0.26 Cl Conventional Ailerons v δ eri 0.24 C a VCCTEF D l ol 0.22 δf ntr o 0.2 C Roll 0.18 0.16 −2 0 2 4 6 8 10 12 α, deg Figure13. ComparisonofRollControlDerivativesduetoVCCTEFC andConventionalAileronsC atCruise lδf lδa Conditions 10of24 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.