ebook img

NASA Technical Reports Server (NTRS) 20120013038: Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei PDF

0.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120013038: Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

(ACCEPTEDBYTHEASTROPHYSICALJOURNALLETTERS) PreprinttypesetusingLATEXstyleemulateapjv.11/10/09 KEPLEROBSERVATIONSOFRAPIDOPTICALVARIABILITYINACTIVEGALACTICNUCLEI R.F.MUSHOTZKY1,2,5,R.EDELSON1,W.H.BAUMGARTNER2,3,P.GANDHI4 (Submitted9Sep2011;Accepted31Oct2011) ABSTRACT Overthreequartersin2010–2011,Keplermonitoredopticalemissionfromfouractivegalacticnuclei(AGN) with∼30minsampling,>90%dutycycleand(cid:2)0.1%repeatability. ThesedatadeterminedtheAGNoptical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of −2.6 to −3.3, much steeper than typically seen in the X-rays. We find 1 evidencethatindividualAGNexhibitintrinsicallydifferentPSDslopes. ThesteepPSDfitsareachallengeto 1 0 recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion 2 diskfluctuations. Subjectheadings:Accretion,accretiondisks—Blackholephysics—Galaxies: active—Galaxies: Seyfert v o N 1. INTRODUCTION 109M(cid:2)typicalforAGN,thesenaturaltimescalesrangefrom hours to years. Previous data have been unable to constrain 2 Theopticalcontinuumfromactivegalacticnuclei(AGN)is theopticaltimevariabilityoverthiswiderangeforanyindi- believedtobedominatedbyemissionfromanaccretiondisk vidualAGN. ] surroundingasupermassiveblackholeandcanbeadequately A The Kepler mission (Borucki et al. 2010) provides a so- modeled as radiation from a simple Shakura-Sunyaev disk lution to these observational difficulties. Kepler has been G (Edelson & Malkan 1986). Because this region is too small observing a ∼115 square degree region of sky, monitoring to image (except via gravitational lensing; Kochanek 2004), . ∼165,000sourcesevery29.4minuteswithunprecedentedsta- h indirectmethodsmustbeusedtoprobeitsstructureandphys- p ical conditions. One of the best probes is provided by the bility((cid:2)0.1%fora15thmagnitudesource)andhighdutycy- - strong variability seen throughout the optical/ultraviolet/X- cle(>90%)overaperiodofyears.DuringQ6(Quarter6:UT o 24June–22September2010),Q7(23September–22Decem- ray bands in most AGN. However, limitations with many r ber 2010) and Q8 (22 December 2010–24 March 2011), the t ground-based optical observations have made it difficult to s KeplertargetlistincludedatleastfourvariableAGNfromour obtainaccurate,denselyandregularlysampleddatasetscov- a guest observer program. This paper reports initial results of [ eringthelargerangeoftimescalesnecessarytoconstraindisk physicsandsearchforcharacteristictimeswhichmaybere- Q6–Q8(andinoneinstanceQ4)observationsoftheseKepler 1 latedtoorbital,dynamicorotherexpectedtimescales. Inpar- AGN,focusingonfluctuationpowerspectraldensityanalysis. v Thesourceselection,datacollectionandreductionaregiven ticular,diurnalandweatherrelatedinterruptionscanseverely 2 inSection2,thetimeseriesanalysisandresultsarereported degrade the ground based sampling pattern and atmospheric 7 inSection3,implicationsarediscussedinSection4,andbrief seeingintroducesphotometricerrorsthataremuchlargerthan 6 conclusionspresentedinSection5. theKepleruncertaintiesandoftenareaslargeasorlargerthan 0 . the intrinsic short timescale optical source variability. How- 2. DATA 1 evergroundbaseddatahavesampledmuchlongertimescales 2.1. SourceSelection 1 thanareavailableinthepresentKeplerdatasets. 1 The natural timescales for a disk—light-crossing (t), dy- Because it lies at low galactic latitudes not systematically l 1 namical (t ), and thermal (t ) timescales—are set by covered by major extragalactic or AGN surveys the Kepler dyn th v: the black hole mass and the accretion processes (Frank, field (∼0.3% of the sky) currently contains only a few cata- i King & Raine 2002). The order of magnitude estimates loguedAGN6.Targetsmustbeidentifiedandwindowschosen X for these timescales are: t = 2.6 M R hours, t = beforeKeplerdatacanbedownloaded. Thuswehaveunder- l 7 100 dyn ar w10heMre7MR1700is3/t2hdeabylsa,caknhdotltehm=a0s.s46inMun7itRs1o00f31/207αM0.0(cid:2)1−,1Ry1e0a0riss, tTahkiesnsteaxrtteendswiviethefafodratstabtoasiedesnetairfcyhAtoGfiNndinptrheeviKouespllyeridfieenltdi-. fiedAGN.WethenappliedthemethodofStockeetal. (1983) theemissiondistanceinunitsof100timestheSchwarzschild radius 2GM/c2, and α0.01 is the Shakura-Sunyaev viscosity totheRosatallskysurvey(RASS;Vogesetal. 1999)tose- lectAGNcandidatesbasedontheirX-raytoopticalfluxratio. parameter(Shakura&Sunyaev1973)dividedby100. Foras- Wealsousedthe2MASSallskysurveycatalog(Strutskieet sumedEddingtonratiosof0.01–0.1andmassrangesof106– al. 2006)toidentifyAGNcandidatesbasedoninfraredcolors (Malkan2004)andassociationwithaRASSsource. 1DepartmentofAstronomy,UniversityofMarylandCollegePark,Col- Table1givesdetailsoftheKeplerAGNwhoselightcurves legePark,MD20742 are presented in this paper, a sample of four variable AGN 2NASA/GoddardSpaceFlightCenter,AstrophysicsScienceDivision, thatKeplerhasbeenobservingsinceQ6. Ofthesefour,only Greenbelt,MD20771 Zw229−15(z=0.0275, Falcoetal. 1999, Proust1990)had 3Joint Center for Astrophysics, University of Maryland Baltimore County,Baltimore,MD21250 beenidentifiedasanAGNpriortothelaunchofKepler. Are- 4InstituteofSpaceandAstronomicalScience,JapanAerospaceExplo- centreverberationmappingcampaignfoundithadanHβ lag rationAgency, 3-1-1Yoshinodai, chuo-ku, Sagamihara, Kanagawa252- 5210,Japan 6 However, a portion of the Kepler field is covered by SDSS/SEGUE, 5Correspondingauthor:[email protected] http://www.sdss.org/segue/ 2 MUSHOTZKYETAL remindthereaderthatsystematicerrorsofthissortcouldstill Table1 bepresentinthesedata. KeplerAGNReferenceInformation 3. POWERSPECTRALDENSITYFUNCTIONS SourceName KeplerID RA(J2000) Dec(J2000) z RASS 3.1. PSDMeasurement Zw229−15 6932990 190526.0 +422740 0.028 0.450 KA1925+50 12158940 192502.2 +504314 0.067 0.170 The optical flux variations in AGN are aperiodic. A stan- KA1858+48 11178007 185801.1 +485023 0.079 0.210 dardtoolforcharacterizingsuchbroadband(intemporalfre- KA1904+37 2694185 190458.7 +375541 0.089 0.023 quency) variability is the periodigram, which measures the Note. — Columns 1 and 2 give the source name (KA refers to newly fluctuation power spectral density (PSD) function. AGN discoveredKeplerAGNfirstreportedinthispaper)andKeplerIDnumber, PSDs have been best studied in the X-rays, where the PSDs columns3and4givetheposition,column5theredshift,andcolumn6the show a broad shape that has been simply characterized as a Rosatallskysurvey(RASS)countrateincountss−1. doublepowerlawthatbreaksfromasteeprednoisehighfre- of ∼4 days and estimated its black hole mass at ∼107 M(cid:2) quency slope of αH ∼−2 (S∝ fα, where α is the slope, S is the spectral density and f is the temporal frequency) to a (Barthetal. 2011). TheotherthreeAGNinTable1wereall flatter low frequency slope of α ∼−1, at a break frequency discoveredasaresultofthesearchdescribedabove.(Thepre- L f that typically corresponds to timescales of order a week, fix“KA”isusedtodesignatenewlyidentifiedKeplerAGN.) b but scales with the mass of the black hole (e.g., Edelson & Spectraofthesethree,plustenothernewlydiscoveredKepler Nandra1999,Uttleyetal. 2002,Markowitzetal. 2003). AGNaregiveninEdelson&Malkan(2012). We used the Kepler SAP data to measure PSDs for all of theseKeplerAGN.Currently,largephotometricoffsetsintro- 2.2. KeplerSAPLightCurves duced by quarterly spacecraft rolls prevent data from being The Kepler standard data processing pipeline (Jenkins et combinedacrossquarters,sothesePSDsonlycoverindivid- al. 2010), operates on original spacecraft data to produce ual quarters. This problem should eventually be solved, so calibrated pixel data (Quintana et al. 2011). The next step, wewillproducePSDscoveringlongertimescalesinafuture PA, uses simple aperture photometry to extract SAP_FLUX paper. count rates from these 2-dimensional images (Twicken et al. For each light curve, a first order function was subtracted 2011). The spacecraft downloads not full CCD frames but off so that the first and last points of the light curve were only “postage stamp” images for the targets. Only a frac- equal. This“end-matching”removesspuriouslowfrequency tionofthedownloadedpixelsareusedintheextraction. The powerintroducedbythecyclicnatureofthePSDwhichtends next step in the standard pipeline, SAPPDC, conditions the toflattenthePSDs. (SeeFougere1985fordetails.) Thiscor- lightcurvesfortransitsearches,outputtingPDC_FLUXlight rection steepens the slopes by a mean value of 0.7, 0.3, 0.8 curves. However, no conditioning occurred for sources pre- and0.7forZw229−15,KA1925+50,KA1858+48andKA sentedinthispaper(theSAP_FLUXandPDC_FLUXdataare 1904+37,respectively. Fractionalnormalizationwasused,so identical to within a constant offset), so this and all further theresultingpowerdensityhasunitsofrms2Hz−1. stepsarenotrelevanttothecurrentwork.WeuseSAP_FLUX The resulting PSDs (see Figure 3), fitted with a single count rates for our AGN light curve analyses. These light powerlaw(S∝ fα)plusnoisemodelontemporalfrequencies curvesarepresentedinFigures1and2. of∼4×10−7 to∼4×10−5 Hz(correspondingtotimescales Kepler,withits(cid:2)0.1%repeatability,>90%dutycycleand of ∼6 hours to ∼1 month), are very steep with slopes from durationsofyears,exploresalevelofdataqualitysuperiorto α=−2.6to−3.3. anything previously obtained. Thus one must be concerned about other sources of error, especially systematic errors, in 3.2. Erroranalysis this relatively young mission. An independent check of the Kepler data is available for Zw229−15 since in 2010, it was ThesePSDsalsoallowacheckofthetruenoiselevelinthe lightcurves. Thefractionalerror,err =(cid:4)err(cid:5)/(cid:4)flux(cid:5),isre- observed by both Kepler and the ground based Lick AGN dir portedinColumn4ofTable2.Anindependentmethodofde- Monitoring Program (LAMP). These light curves, shown in terminingtheerrorfrom(cid:2)thePSDusestheformulaofVaughan Figure1,indicateaverygoodagreementbetweenKeplerand independentgroundbasedLAMPdata,wellwithintheLAMP etal. (2003): errind = (cid:4)err2(cid:5)/(cid:4)flux(cid:5)2,an(cid:3)disgiveninC(cid:4)ol- ∼1% errors and so, at least in this case, the systematic and umn 5. This reduces to the same quantity (cid:4)err(cid:5)/(cid:4)flux(cid:5) in other errors in the Zw 229−15 data are generally no larger thelimitofsmallfluctuationsinthefluxesanderrors,asisthe thanthe∼1%LAMPerrors. case with these data. The errors derived from the PSD anal- However, the quoted Kepler errors are much smaller, and ysis are typically ∼25% larger than the quoted light curve thereiscurrentlynowaytobesurethatsystematicerrorsare errors. Thisindicatesthequotederrorsareslightlyunderesti- notaffectingthedataatthelevelbetween∼0.1%and∼1%. mated,andthatnoothersourceofsystematicsdominatesthe Indeed,Figure2showsthatsmall,shortterm(1–2day),dis- quotederrors. continuities are sometimes observed following monthly data The PSD slopes for each quarter (listed in Table 2) show downloads or safe mode events. This is believed to arise small scatter for individual objects. It is difficult to directly from thermally induced focus changes as the solar illumina- measure reliable errors on derived PSD slopes, but an esti- tion changes during spacecraft slews7. Both our group and mateisprovidedbytheobserveddispersionforindividualob- theKeplerteamareworkingtocorrectforthisinfutureanal- jects. Forthetwosourceswiththemostdata,Zw229−15and yses. While our understanding will undoubtedly improve as KA 1925+50, the mean slope and associated standard devi- themissionprogresses, allthatcanbedoneatthistimeisto ations are (cid:4)α(cid:5)=−3.11±0.15 and −2.67±0.08. These dif- ferby∼2.5standarddeviations,suggesting,atverymarginal 7 http://archive.stsci.edu/kepler/release_notes/ significance,thattheintrinsicdifferencebetweenthederived release_notes5/Data_Release_05_2010060414.pdf slopes for these objects is larger than the associated errors. KEPLEROBSERVATIONSOFAGN 3 (cid:7) (cid:9)(cid:12) (cid:8) !"(cid:18)(cid:9)(cid:9)(cid:6)(cid:2)(cid:8)(cid:10)(cid:18)#(cid:11) (cid:9) (cid:31) (cid:9)(cid:12) (cid:29)(cid:30) (cid:8) (cid:2)(cid:18) (cid:28) (cid:4) (cid:8) (cid:27) (cid:26)(cid:18) (cid:25) (cid:24) (cid:23) (cid:4) (cid:22) (cid:9)(cid:12) (cid:21) (cid:8) (cid:20) (cid:19) (cid:17)(cid:18) (cid:14) (cid:15)(cid:16) (cid:14) (cid:13) (cid:5) (cid:8)(cid:12) (cid:8) (cid:2)(cid:3)(cid:4) (cid:2)(cid:5)(cid:4) (cid:2)(cid:6)(cid:4) (cid:7)(cid:4)(cid:4) (cid:7)(cid:8)(cid:4) (cid:7)(cid:9)(cid:4) (cid:7)(cid:2)(cid:4) (cid:7)(cid:7)(cid:4) (cid:7)(cid:10)(cid:4) (cid:7)(cid:11)(cid:4) (cid:11) (cid:2)(cid:12) (cid:8) (cid:7) (cid:2)(cid:12) !"(cid:18)(cid:9)(cid:9)(cid:6)(cid:2)(cid:8)(cid:10)(cid:18)#(cid:3) (cid:8) (cid:31) (cid:29)(cid:30) (cid:9) (cid:2)(cid:18) (cid:2)(cid:12) (cid:28) (cid:8) (cid:4) (cid:8) (cid:27) (cid:26)(cid:18) (cid:25) (cid:4) (cid:23)(cid:24) (cid:2)(cid:12) (cid:22) (cid:8) (cid:21) (cid:20) (cid:19) (cid:14)(cid:17)(cid:18) (cid:5) (cid:15)(cid:16) (cid:9)(cid:12) (cid:14) (cid:8) (cid:13) (cid:11) (cid:9)(cid:12) (cid:8) (cid:7) (cid:9)(cid:12) (cid:8) (cid:7)(cid:11)(cid:4) (cid:7)(cid:3)(cid:4) (cid:7)(cid:5)(cid:4) (cid:7)(cid:6)(cid:4) (cid:10)(cid:4)(cid:4) (cid:10)(cid:8)(cid:4) (cid:10)(cid:9)(cid:4) (cid:10)(cid:2)(cid:4) (cid:10)(cid:7)(cid:4) (cid:10)(cid:10)(cid:4) $(cid:17)%&(cid:29)’((cid:14))(cid:18)*%(cid:16)+’&(cid:18),’((cid:14)(cid:18)(cid:27)-(cid:9).(cid:7)(cid:10)(cid:10).(cid:4)(cid:4)(cid:4) Figure1. KeplerQ6(top)andQ7(bottom)lightcurvesofthenarrowlineSeyfert1galaxyZw229−15(inblack). Eachpanelcontainsover4,200cadences, gatheredoneevery∼30min,withaprecisionof(cid:2)0.1%.AtypicalerrorbarisseenintheoutlieratTJD∼539.Therearemonthly∼1daydatadownloadgaps (e.g.,TJD∼431and524),buttheoveralldutycycleis>90%.Notethe∼8%fluxdiscontinuitybetweenQ6andQ7asthequarterlyspacecraftrollmovesthe sourceontoadifferentchipandanewSAPapertureisused.NotealsotheexcellentagreementwithsimultaneousgroundbasedLAMPdata(showninred;Barth etal.2011),scaledtoaccountfordifferentaperturesizes. 4 MUSHOTZKYETAL (cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)#(cid:8)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)#(cid:27)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)(cid:18)#(cid:4) !(cid:31)(cid:18)(cid:7)(cid:7) (cid:2)(cid:28)(cid:9) (cid:28)(cid:29)(cid:18)(cid:30) (cid:13)(cid:20)(cid:18)(cid:28) (cid:7)(cid:9)(cid:21)(cid:9)(cid:5) (cid:26)(cid:23) (cid:12)(cid:19)(cid:15) (cid:11) (cid:17)(cid:18) (cid:28)(cid:29)(cid:18)(cid:30) (cid:16) (cid:14)(cid:18) (cid:13) (cid:26) (cid:26)(cid:18)(cid:20) (cid:25) (cid:24) (cid:23) (cid:25) (cid:13)(cid:20)(cid:18)(cid:28)(cid:4)(cid:9)(cid:4)(cid:21)(cid:6)(cid:4) (cid:21) (cid:20) (cid:19) (cid:16)(cid:10)(cid:18) (cid:24)(cid:18) (cid:16) (cid:13) (cid:28)(cid:29)(cid:18)(cid:30) (cid:13)(cid:20)(cid:18)(cid:28) (cid:5)(cid:6)(cid:21)(cid:3)(cid:27) (cid:28)(cid:29)(cid:18)(cid:30) (cid:3)(cid:4)(cid:5) (cid:6)(cid:5)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:6)(cid:5) (cid:6)(cid:8)(cid:5) (cid:6)(cid:4)(cid:5) (cid:9)(cid:5)(cid:5) (cid:9)(cid:7)(cid:5) (cid:9)(cid:6)(cid:5) (cid:9)(cid:8)(cid:5) (cid:9)(cid:4)(cid:5) (cid:8)(cid:5)(cid:5) (cid:8)(cid:7)(cid:5) $(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:17)(cid:18)*(cid:11)(cid:18)(cid:19)(cid:14)(cid:12)(cid:18),(cid:14)(cid:15)(cid:16)(cid:18)(cid:20)(cid:21)(cid:7)(cid:22)(cid:6)(cid:9)(cid:9)(cid:22)(cid:5)(cid:5)(cid:5)(cid:23) (cid:26)(cid:23)(cid:18)(cid:18)(cid:18) (cid:12)(cid:19)(cid:15) (cid:11) (cid:16)(cid:17)(cid:18) !(cid:31)(cid:18)(cid:7)(cid:7) (cid:2)(cid:28)(cid:9)(cid:18)#(cid:6) (cid:14)(cid:18) (cid:13) (cid:26) (cid:26)(cid:18)(cid:20) (cid:25) (cid:24) (cid:23) (cid:25) (cid:21) (cid:20) (cid:28)(cid:29)(cid:18)(cid:30) (cid:19) (cid:16)(cid:10)(cid:18) (cid:24)(cid:18) (cid:16) (cid:7)(cid:5)(cid:5) (cid:7)(cid:7)(cid:5) (cid:7)(cid:6)(cid:5) (cid:7)(cid:8)(cid:5) (cid:13) $(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:17)(cid:18)*(cid:11)(cid:18)(cid:19)(cid:14)(cid:12)(cid:18),(cid:14)(cid:15)(cid:16)(cid:18)(cid:20)(cid:21)(cid:7)(cid:22)(cid:6)(cid:9)(cid:9)(cid:22)(cid:5)(cid:5)(cid:5)(cid:23) Figure2. Q6–Q8lightcurvesforfourvariableKeplerAGN.A1%barisshownforscale.Q8datawerenotobtainedforKA1858+48becauseitfellondefective Module3.KeplerobservationsofKA1904+37didnotbeginuntilQ7.Arbitraryoffsetshavebeenappliedtomatchlightcurvesacrossquarterlytransitions(the dottedlinesatTJD∼462and552).Notethe16daygapduetoasafemodeeventatthebeginningofQ8;thismakestheoffsetforthatquarterhighlyuncertain. Notealsothatlightcurvesoccasionallyshow∼1%discontinuitiesimmediatelyfollowingmonthlydatadownloadsorsafemodeevents(e.g.,TJD∼568and 586inKA1925+50,andTJD∼432inZw229−15andKA1858+48)duetothermallyinducedfocuschanges. ThesmallbottompanelisthesameasFigure2abutfortheZw229−15Q4data. KEPLEROBSERVATIONSOFAGN 5 (The quoted uncertainties are standard deviations of the dis- (cid:16)(cid:11)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22) (cid:18)(cid:28)(cid:28)(cid:5)(cid:7)(cid:4) (cid:23)(cid:11)(cid:6)(cid:2)(cid:3)(cid:18)(cid:30)(cid:18)(cid:7)(cid:18)(cid:18)(cid:24)(cid:31)(cid:25)(cid:18)(cid:25)(cid:26) (cid:27)!(cid:18)"(cid:28)(cid:27)(cid:29) (cid:26)"% (cid:23)(cid:11)(cid:6)(cid:2)(cid:3)(cid:18)(cid:30)(cid:18)(cid:7)(cid:18)(cid:18)(cid:24)(cid:31)(cid:25)(cid:18)(cid:25)(cid:26)(cid:18)(cid:27)!(cid:18)(cid:24)(cid:28)$% $% *(cid:11)(cid:20)(cid:2)(cid:3)(cid:18)(cid:26)(cid:30)(cid:24)(cid:7)(cid:18)(cid:18)(cid:31)(cid:27)(cid:18)-(cid:25)(cid:27)(cid:18)"!$(cid:18)(cid:28)#% twriibthuotiuotntshoefrethdenPoSisDelseloakpecsofrorercdtiifofne,rethnetqsutaanrdtearrsd.)dNevoitaetitohnast (cid:7)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:18)(cid:15)(cid:8) (cid:6)(cid:8) (cid:29)$ (cid:29) ftiovretlhy,esseotowuorscoourrreccetsiownosuulcdcheasvsfeublleyenre0p.r5o8duacneds0s.i2m2i,larersPpSecD- (cid:7)(cid:8)(cid:18)(cid:9) (cid:7) (cid:18) (cid:18) slopes between the various quarters for each source. Since (cid:3)(cid:4)(cid:27)(cid:5)(cid:3)(cid:6) (cid:2)(cid:27) (cid:2)(cid:8) (cid:2)(cid:9) (cid:2)(cid:6) (cid:25)$ (cid:25)(cid:27) (cid:25)(cid:29) (cid:25)$ (cid:25)(cid:27) (cid:25)(cid:29) PteSmDatiacnsa(lyseseese.agr.e,Vnaoutogrhioanuselytaslu.s2c0e0p3ti)balendtothaenraelyistitchaelpsyoss-- (cid:2) (cid:16)(cid:11)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22) (cid:18)(cid:26)"% (cid:23)(cid:11)(cid:6)(cid:2)(cid:3)(cid:18)(cid:30)(cid:18)(cid:7)(cid:18)(cid:18)(cid:24)(cid:31)(cid:25)(cid:18)(cid:25)(cid:26) (cid:27)!(cid:18) (cid:28)(cid:26)$ (cid:26)"% *(cid:20)(cid:11)(cid:2)(cid:18)(cid:3)(cid:26)(cid:30)(cid:24)(cid:7)(cid:18)(cid:18)(cid:27)(cid:31)-(cid:18)(cid:25)(cid:27)(cid:18)"!(cid:18)$(cid:28)$ (cid:26)"% *(cid:11)(cid:20)(cid:2)(cid:3)(cid:18)(cid:26)(cid:30)%(cid:7)(cid:27)(cid:18)(cid:31)%(cid:18)-(cid:25)(cid:29)(cid:18)%!(cid:24)(cid:18)(cid:28)## stfhriobemisleitqynuetwahratKterceuptorlreeqrnudtalayrttaeur(nspkerneooSvwiedncets.sy2as.t2de)me,gtarhteieecaeogrfrreoceromsncfieondutelnidnceasfltfohepcaett (cid:7)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:18)(cid:15)(cid:8) (cid:29)$ (cid:29)$ (cid:29)$ theobservedsteepslopesareaccurate. (cid:9) (cid:6)(cid:7)(cid:8)(cid:18) (cid:18) (cid:18) (cid:18) 4. DISCUSSION (cid:4)(cid:27)(cid:5)(cid:3) (cid:25)# (cid:25)$ (cid:25)(cid:27) (cid:25)(cid:29) (cid:25)# (cid:25)$ (cid:25)(cid:27) (cid:25)(cid:29) (cid:25)# (cid:25)$ (cid:25)(cid:27) (cid:25)(cid:29) 4.1. ComparisontoPreviousResults (cid:3) (cid:2) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:18)(cid:15)(cid:8)(cid:16)(cid:11)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21)(cid:22) (cid:18)(cid:26)(cid:26)"(cid:18)$% (cid:23)(cid:11)(cid:6)(cid:2)(cid:3)(cid:18)(cid:30)(cid:18)(cid:7)(cid:18)(cid:18)(cid:24)(cid:31)(cid:25)(cid:18)(cid:25)(cid:26) (cid:27)!(cid:18)(cid:26)(cid:28)(cid:29)# (cid:26)"(cid:29)$% *(cid:11)(cid:20)(cid:2)(cid:3)(cid:18)(cid:26)(cid:30)(cid:24)(cid:7)(cid:18)(cid:18)(cid:31)(cid:27)(cid:18)-(cid:25)(cid:27)(cid:18)"!#(cid:18)(cid:28)(cid:27)# (cid:26)"(cid:29)$% *(cid:11)(cid:20)(cid:2)(cid:3)(cid:18)(cid:26)(cid:30)(cid:24)(cid:7)"(cid:18)(cid:31)(cid:29)(cid:18)-(cid:25) (cid:18)#!#(cid:18)(cid:28)(cid:29)# rleaytKeeetthpalaenlr.pl(irg2eh0vt0ioc9uu)srtvhdeeastaha4.ri.1geF.h1ooe.frsmOetxppuathcimchoatpholliDmeg:aheitetnarritcqhueqaudlaiatlytiatayunsidsedsfarbmoympKlitenhlge- (cid:7)(cid:8)(cid:18)(cid:9)(cid:7) (cid:29) (cid:18) (cid:18) MACHO survey of Geha et al. (2003) which has ∼5% pho- (cid:2)(cid:3)(cid:4)(cid:27)(cid:5)(cid:3)(cid:6) (cid:18)(cid:25)#(cid:2)(cid:3)(cid:4)(cid:27)(cid:25)&$(cid:8)(cid:7)’((cid:7)(cid:25)(cid:10)(cid:27))(cid:14)(cid:18)(cid:15)(cid:20)(cid:25)(cid:21)(cid:29)(cid:22) (cid:25)#(cid:2)(cid:3)(cid:4)(cid:27)(cid:25)&$(cid:8)(cid:7)’((cid:7)(cid:25)(cid:10)(cid:27))(cid:14)(cid:18)(cid:15)(cid:20)(cid:25)(cid:21)(cid:29)(cid:22) (cid:25)#(cid:2)(cid:3)(cid:4)(cid:27)(cid:25)&$(cid:8)(cid:7)’((cid:7)(cid:25)(cid:10)(cid:27))(cid:14)(cid:18)(cid:15)(cid:20)(cid:25)(cid:21)(cid:29)(cid:22) t7o.5myeteraicrse,rarnodrstahnuds6sa0m0pgloeosdapth∼o1topmoeitnrticevmeeryas4u.r5emdaeynstscoovme-r paredtothe0.1%Keplererrorsand1datapointroughlyevery 30minutes. PreviousattemptstoderivethePSDoverawide Figure3. OpticalPSDsandpowerlawpluswhitenoisefitsforthe4AGN rangeoftimescaleshavehadtocombinethedatafrommany inselectedquartersovertemporalfrequencies∼10−6.5 to10−3.5 Hz. The objectsandseveralsurveys(Hawkins2002)orhavereliedon fitsareshowningreen,andthenoiselevelinred.Sourcename,quarter,and fittedpowerlawslope(α)aregivenintheupperrightofeachplot. relatively sparsely sampled data, from several different tele- scopes(Breedtetal. 2010). Previous results (e.g. Kelly et al 2009) tend to find best fitting PSDs with slopes of ∼ −1.8 for the collective sam- ple, rather flatter than what we have found. Since the Ke- plerPSDscannotcontinuetoverylowfrequencieswithsuch steep slopes without implying very large variability ampli- tudes, theremustbeabreakattimescales>1month, which maymaketheKeplerPSDsconsistentwithpreviouswork. It isnotsurprisingthattheresultsofourobservationsarerather differentthanwhathasbeenpublishedpreviously—theother observationscouldnotseetheeffectswearedetecting. While there is a formal overlap in sampled timescales between our Keplerandotherdata,themuchlargererrorbarsfortheprevi- Table2 ousPSDs(e.g. Breedtetal. 2010,)atcharacteristicfrequen- KeplerAGNObservations ciesaboveafew×10−5Hzmakescomparisondifficult. How- ever, for at least one object, NGC 4051 (Breedt et al 2010), SourceName Quarter 103ctss−1 err_dir err_ind α the observed PSD in the 10−6– 10−8 Hz range is well deter- Zw229−15 Q4 12.1 0.047% 0.065% −3.05 minedandisflatterthanourKeplerresultsforallofourob- Zw229−15 Q6 12.0 0.051% 0.068% −3.31 jects. Onepossibleexplanationforthedifferencesmayliein Zw229−15 Q7 12.9 0.046% 0.062% −3.14 Zw229−15 Q8 10.4 0.052% 0.055% −2.96 the different luminosities or Eddington ratios of the objects, KA1925+50 Q6 4.2 0.071% 0.084% −2.60 since NGC 4051 is significantly less luminous and probably KA1925+50 Q7 3.8 0.065% 0.081% −2.75 lessmassivethantheobjectsinoursample. KA1925+50 Q8 4.1 0.075% 0.078% −2.67 KA1858+48 Q6 2.1 0.117% 0.159% −2.87 4.1.2. X-rayData KA1858+48 Q7 1.3 0.128% 0.207% −2.97 KA1904+37 Q7 5.8 0.071% 0.097% −2.74 AlthoughtheparticularSeyfert1sinoursampledonothave KA1904+37 Q8 5.5 0.080% 0.087% −2.95 measured X-ray PSDs, many other Seyfert 1s have had X- Note.—Columns1and2givethesourcenameandquarter,column3the ray PSDs measured over these timescales. These are always meanSAP_FLUXcountrateinunitsof103ctss−1,andcolumn4theratioof muchflatter, typicallyhavinghighfrequencyslopesof−1to themeanquotederrorsdividedbythemeanflux. Column5givestheerror −2 (Edelson & Nandra 1999, Uttley et al. 2002, Markowitz ratederivedfromthePSDfitsasdiscussedinSection3.2. Column6gives etal. 2003). ThusourmeasurementofsteepopticalPSDson thefittedPSDslopes(α)foreachquarter. shorttimescalesissomewhatsurprisingbecauseitissodiffer- ent from that measured in the X-rays, and because Seyfert 1 opticalandX-raylightcurvesappeartotrackwell,atleaston longertimescales(Uttleyetal. 2003). 4.2. PhysicalImplicationsforAccretionDisks 6 MUSHOTZKYETAL The characteristic timescales of the fluctuations should 5. CONCLUSIONS correspond to different physical mechanisms which may Power spectral analysis of four AGN observed by Kepler be related to the size of the system, the dynamical during Q6-Q8 show very steep (α ∼ −2.6 to −3.3) slopes, timescales, epicyclic frequencies, g-modes or other charac- considerablysteeperthanthatseenintheX-rays. ThePSDs teristic timescales which could influence the source of vari- foreachsourceareconsistentfromquartertoquarterand,at ance. Since the source of the accreting material in AGN is >2σ confidence, are different from each other. Analysis of notknown,itisunclearifthesourcesoftheperturbationsare thesehighquality lightcurvesindicatesthatthe influenceof changesintheaccretionflow,theturbulenceduetophysicsin systematicerrorsisrathersmall;additionally,directcompar- thediskitself(fromthemagnetorotationalinstabilitymecha- ison of Kepler and LAMP monitoring of Zw 229−15 shows nism (MRI), e.g. Miller & Reynolds 2009, Noble & Krolik excellent agreement. Comparison with analytic models of 2009),orperhapsotherphysics. AsshownbyMcHardyetal. AGN variability shows steeper than predicted slopes; how- (2006),thecharacteristictimescaleseenintheX-rayPSDsis ever, comparisonwithMHDsimulationsseemstoshowbet- relatedtotheAGNmassandtheaccretionrate. However,itis teragreement. Furtheranalysisofothercharacteristicsofthe notknownifthisisalsotruefortheopticalPSDs(MacLeod light curve, longer time series, the analysis of more objects etal. 2010). andthecomparisontosemi-analyticmodelsoftimevariabil- Recentresultsfromgroundbasedopticalobservations(e.g. ity will be the subject of future papers. We hope that these Kellyetal. 2009,MacLeodetal. 2010)findthattheirresults newhighqualityKeplerdatawillstimulatethecalculationof are consistent with a “damped random walk model”. How- thetimeseriesfromaccretiondisks. ever,theirlightcurvesareirregularlyandmoresparselysam- pledcomparedtoKeplerdata(seeFigure2inKozlowskietal. 2010). Ourdatadonotfindthepredicted f−2powerspectrum WethanktheKeplerteamfortheireffortstomakethedata at high frequencies predicted by this model. However, since accessibleandtractableandtheKeplerGOprogramforfund- thereisverylittleoverlapinfrequenciesandoursamplesize ing, Matt Malkan for extensive contributions to the identi- is much smaller, direct comparison is difficult. Our data are fication of new Kepler AGN, Simon Vaughan for valuable justcapableofreachingthelighttraveltimesizeofthedisks helpwithPSDmeasurementsandAaronBarthandtheLAMP onoursampledAGN.Theeffectivesizeoftheregionemitting teamforearlyaccesstotheirdata. radiationatagivenfrequencyis(Baganoff&Malkan1995): REFERENCES r1/2=7.5×1023(cid:4)−1/3ν−4/3(M/M(cid:2))−1/3(L/LEdd)1/3rG, Arévalo,P.,Uttley,P.,Lira,P.,etal.2009,MNRAS,397,2004 where rG is the Schwarzschild radius, (cid:4) is the accretion ef- Baganoff,F.K.,&Malkan,M.A.1995,ApJ,444,L13 ficiency and ν is the effective observing frequency of the Barth,A.J.,Nguyen,M.L.,Malkan,M.A.,etal.2011,ApJ,732,121 Borucki,W.J.,Koch,D.,Basri,G.,etal.2010,Science,327,977 data. Utilizing an effective wavelength of 5000Å, mass of Breedt,E.,Arévalo,P.,McHardy,I.M.,etal.2009,MNRAS,394,427 1×107M(cid:2)(Barthetal2011)andEddingtonratioof0.05we Chan,C.-k.,Liu,S.,Fryer,C.L.,etal.2009,ApJ,701,521 findaneffectivelighttraveltime(r1/2/c)of∼1daywhichis Edelson,R.,Turner,T.J.,Pounds,K.,etal.2002,ApJ,568,610 closetoourwhitenoiselimitof0.25days. The4sourcesin Edelson,R.,Malkan,M. 2011,AJ,inpreparation thispaperspanonly1orderofmagnitudeinX-rayluminos- Edelson,R.,&Nandra,K.1999,ApJ,514,682 ity(logL =42.6to43.6)andthus,probably,asmallrangein Falco,E.E.,Kurtz,M.J.,Geller,M.J.,etal.1999,PASP,111,438 X Fougere,P.F.1985,J.Geophys.Res.,90,4355 mass.Ourfutureobservationswewillhavealargernumberas Frank,J.,King,A.,&Raine,D.J.2002,AccretionPowerinAstrophysics. well as more luminous objects and thus we should constrain Cambridge,UK:CambridgeUniversityPress thelimitswherelighttraveltimeeffectscanbewellmeasured. Geha,M.,Alcock,C.,Allsman,R.A.,etal.2003,AJ,125,1 While modeling of accretion disks from first principles Hawkins,M.R.S.2002,MNRAS,329,76 Jenkins,J.M.etal.2010,ApJ,713,L87 viamagnetohydrodynamic(MHD)calculationsisinitsearly Kelly,B.C.,Bechtold,J.,&Siemiginowska,A.2009,ApJ,698,895 daysthereareseveralestimatesoftheslopeofthePSDfrom Kochanek,C.S.2004,ApJ,605,58 accretion disks. In these models the underlying physical Kozłowski,S.,Kochanek,C.S.,Udalski,A.,etal.2010,ApJ,708,927 drivers for variability in the light curve are variations in the MacLeod,C.L.,Ivezic´,Ž.,Kochanek,C.S.,etal.2010,ApJ,721,1014 accretionratecausedbythechaoticcharacterofMHDturbu- Malkan,M.2004,AGNPhysicswiththeSloanDigitalSkySurvey,311,449 Markowitz,A.,Edelson,R.,Vaughan,S.,etal.2003,ApJ,593,96 lence. Noble and Krolik (2009) simulate emission from the McHardy,I.M.,Koerding,E.,Knigge,C.,Uttley,P.,&Fender,R.P.2006, coronae appropriate to the X-ray emission, and thus it is not Nature,444,730 cleariftheirsimulationiscomparablewithourresults. Chan McHardy,I.M.,Arévalo,P.,Uttley,P.,etal.2007,MNRAS,382,985 etal. (2009)focusonSgrA*whichseemstobeaccretingin Reynolds,C.S.,&Miller,M.C.2009,ApJ,692,869 adifferentmodethantheSeyfert1sinoursample. Reynolds Moran,E.C.,Helfand,D.J.,Becker,R.H.,&White,R.L.1996,ApJ,461, 127 &Miller(2009)showPSDsofthemassaccretionratewhose Noble,S.C.,&Krolik,J.H.2009,ApJ,703,964 high frequency slopes (∼−2.9) are very close to those seen Proust,D.1990,IAUCirc.,5134,2 in our observations. However, their simulation was only run Quintana,E.V.,Jenkins,J.M.,Clarke,B.D.,etal.2010,Proc.SPIE,7740, forarelativelyshorttime(∼1.2×104 GM/c3)whichcorre- Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 spondsto14daysforobjectsofthemassofZw229−15. Stocke,J.T.,Liebert,J.,Gioia,I.M.,etal.1983,ApJ,273,458 Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Allsimulationssofarsufferfromthefundamentalproblem Timmer,J.,&Koenig,M.1995,A&A,300,707 thattocomparethemwithobservationsonehastoconvertthe Twicken,J.D.,Clarke,B.D.,Bryson,S.T.,etal.2010,Proc.SPIE,7740, simulated disk characteristics into a radiation flux spectrum. Uttley,P.,McHardy,I.M.,&Papadakis,I.E.2002,MNRAS,332,231 Thus it is not clear that the proxies for emission developed Uttley,P.,Edelson,R.,McHardy,I.M.,Peterson,B.M.,&Markowitz,A. 2003,ApJ,584,L53 so far are appropriate. This problem is fully recognized by Vaughan,S.,Edelson,R.,Warwick,R.S.,&Uttley,P.2003,MNRAS,345, the simulators and thus, in general, they have been loath to 1271 directlycomparetothedata. Voges,W.,Aschenbach,B.,Boller,T.,etal.1999,A&A,349,389

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.