popheaderwillbeprovidedbythepublisher N=1 domain wall solutions of massive type II supergravity and the issue of mirror symmetry SilviaVaula` ∗ InstitutodeF´ısicaTeo´ricaUAM/CSIC FacultaddeCienciasC-XVI,C.U.Cantoblanco,E-28049-Madrid,Spain 7 0 0 Keywords Supergravity,Fluxcompactifications,DomainWalls,MirrorSymmetry 2 PACS 11.25.-w,12.10.-g,04.65.+e n WereportonDomainWallsolutionofCalabi–Yaucompactificationswithgeneral fluxesandtheir appli- a cationtothestudyofmirrorsymmetryingeneralizedbackgrounds. Weaddress,inparticular,totheissue J ofmagneticNSNSfluxes. WeshowthattheDomainWallgradientflowequationscanbeinterpretedasa 1 setofgeneralizedHitchin’sflowequationsofamanifoldwithSU(3)×SU(3)structurefiberedalongthe 3 directiontransversetotheDomainwall. 1 Copyrightlinewillbeprovidedbythepublisher v 6 8 The equivalence between type II theories compactified on Calabi–Yau (CY) mirror pairs (Y, Y˜) is 2 a well–known property. In particular, compactification of type IIA and IIB supergravity on Y and Y˜ 1 respectively, gives rise to the same N = 2 four dimensional ungauged supergravity. The possibility to 0 considercompactificationsinthepresenceofp–formfluxesalongnontrivialp–cyclese = F raises 7 I γI p thequestionwhetheritispossibletogeneralizethenotionofmirrorsymmetrytosuchmoregeHneralcases. 0 / CY compactifications of type II supergravities in the presence of fluxes yelds four dimensional gauged h supergravities, the gauge parameters being proportional to the fluxes [1]–[7]. It has been proved that t - type II supergravitiescompactified on mirror pairs (Y, Y˜) in the presence of RR fluxes, give rise to the p same gauged supergravity[2]. This shows that at the supergravitylevel type IIA and IIB RR fluxes are e h mappedontooneanotherundermirrorsymmetry,ascanbeexpectedfromthematchingofoddandeven : cohomologyonmirrorpairs. ForthesamereasonitisunlikelythatasimilarmatchingholdsforNSNS3– v i formfluxes,whichresideintheoddcohomologybothfortypeIIAandIIB.InfactfortheNSNSsectorthe X 3–formfluxescorrespondundermirrorsymmetryto adeformationoftheCY geometry. Moreprecisely, r in the presence of electric fluxes, the SU(3) holonomyof the mirror manifold is relaxed in favor of an a SU(3) structure, the intrinsic torsion correspondingto the NSNS 3–formfluxes [8]. In particular, it has beenproventhatCY compactificationof typeII supergravitiesin the presenceof electric NSNS 3–form fluxescorrespondsundermirrorsymmetrytocompactificationsonahalf–flatmanifold[9,10],wherethe CYcohomologyisdeformedaccordingto dα =−e ωi; dα =0; dβA =0; dω =e β0; dωi =0. (1) 0 i a i i In order to fix our notations let us consider e.g. type IIB supergravity compactified on a CY Y˜ in the presence of NSNS 3–form fluxes. This correspondsto type IIA compactifiedon a half–flat manifoldYˆ (1);inthiscaseA = (0, a),a = 1,...h(2,1) andi = 1,...h(1,1). Theparameterse correspondtothe i electricNSNSfluxesintypeIIBcompactificationonY˜,thatisH = ···−e βΛ withΛ = (0, i),while 3 Λ thefluxcomponente ismappedintoitself. 0 The descriptionof mirrorsymmetryin the presenceof magneticNSNS 3–formfluxesis more involved. ConsiderindeedthegeneralcasewhereH = ···+mΛα −e βΛ. Thechoiceofelectricversusmag- 3 Λ Λ netic fluxescorrespondsto a changeofbasisin (α , βΛ), the oddcohomologyofY˜, reflectingthe four Λ ∗ Correspondingauthor E-mail:[email protected] Copyrightlinewillbeprovidedbythepublisher 4 SilviaVaula`: dimensionalelectric/magneticdualityofthevectorequationsofmotions/Bianchiidentities,whichholdsas wellinthepresenceofgeneralfluxes[4,6]. Suchasymplecticstructurehasnoimmediatecounterpartin theevencohomologyofY (1). Moreover,adeformationof(1)supportingamagneticindexwouldimply thepresenceofaclosed5–formχ,suchthate.g. dωi ∝ miχ[11]. Thefollowingobservationgoesalong thelineof[12,13]whereitisdiscussedthecorrespondenceundermirrorsymmetryofthemagneticNSNS fluxesandcompactificationsonanSU(3)×SU(3)structuremanifoldYˇ. Indeed, introducing a symplectic basis also for the even cohomology, which includes 0– and 6– forms, (ω ,ωΛ), and indicating with (α , βΛ) a basis for the odd cohomology, which includes 1–, 3– and 5– Λ Λ forms,onecanwriteforYˇ dα =mΛω −e ωΛ; dα =0; dβA =0; dω =e β0; dωΛ =mΛβ0. (2) 0 Λ Λ a Λ Λ SinceverylittleisknownaboutthepropertiesofSU(3)×SU(3)structuremanifoldsitisnotstraightfor- wardtocheck(2)byperforminganexplicitcompactificationonYˇ. Instead,following[14],wearegoing tomakeuseofDomainWall(DW)solutions. ADWsolutionofthefourdimensionalgaugedsupergravity correspondingtotypeIIBcompactificationinthepresenceofelectricNSNSfluxeswasconsideredin[14]. TakingadvantageoftheSO(1,2)× RsymmetryoftheDWsolution,onecanconsiderthegeometryof w Xˆ ≡Yˆ × R,whereRparametrizesthedirectiontransversetotheDW.IfYˆ isahalf–flatmanifoldthen 7 w Xˆ isaG holonomymanifold,whosegeometryischaracterizedbytheHitchin’sflowequations[16] 7 2 dImΦ− =dImΦ+ =0; ∂yImΦ+ =−dReΦ−; ∂yImΦ− =dReΦ+ (3) whereΦ±arethetwopurespinorcharacterizingYˆ,disthedifferentialalongYˆ while∂y isthederivative alongthe(rescaled)directiontransversetotheDW. Wearegoingtogeneralizetheresultof[14]andconsider[15]aDWsolutionofthegaugedsupergravity corresponding to type IIB compactification in the presence of electric and magnetic NSNS fluxes. As- sumingthatthegeometryofXˇ ≡ Yˇ × R isdescribedbyHitchin’s–likeflowequations[17], theflow 7 w equationsofthe DWsolutionprovidethe y–dependencein (3)allowingto checkif (2)issuitable to de- scribeYˇ. LetusthereforeconsiderthefollowingDWmetric: g (xµ)dxµdxν =eU(z)gˆ (xm)dxmdxn −e−2pU(z)dzdz. (4) µν mn wheregˆ (xm), m = 0, 1, 2,isthemetricofathree-dimensionalspace-timewhichweassumetohave mn constantcurvatureandpisanarbitraryrealnumber.Usingµ=eU(z) insteadofzasthecoordinateofthe transversespacewearriveat dµdµ g (xµ)dxµdxν =µ2gˆ (xm)dxmdxn− , (5) µν mn µ2W2(z) where W =±epU(z)U′(z). (6) In order to look for 1/2 BPS configurations we impose the following projector on the supersymmetry parameters[14,18] ε =hA γ εB . (7) A AB 3 Here h(z) is a complexfunction while A is a constantmatrix. Consistency of (7) with its hermitian AB conjugateimplieshh=1whileAB ≡A ǫCB mustbeahermitianmatrixwhichinadditionsatisfies A AC ABAC =δC . (8) A B A Copyrightlinewillbeprovidedbythepublisher popheaderwillbeprovidedbythepublisher 5 ThusAhastobeasuitablelinearcombinationof(1,~σ)where~σarethePaulimatrices. As we are interested in the flow of the fields along the direction transverse to the Domain Wall, we assume they do notdependon the coordinatesxm; moreoverwe set to zerothe vectorand tensor field– strengthsFΛ =HI =0. Withthisassumptionthesupersymmetrytransformationlawsofthefermions µν µνρ simplifyandthe1/2BPSconditionreads[4] δψ =D ε +iS γ εB =0 (9) µA µ A AB µ δλiA =i∂ tiγµεA+WiABε =0 (10) µ B δζ =iP ∂ quγµεA+NAε =0 (11) α uAα µ α A where(7)isimposed.ThematricesS ,WiABandNAarethefermionshifts;theyareduetothegauging AB α andencodeitsproperties. Forthepresentcase,andmoregenerallyforAbeliangaugings,theyarerelated bygradientflowequations[19] 1 1 ∇ S = g W¯ ; ∇ S = h PvαN (12) i AB 2 i¯ AB u AB 2 uv (A B)α Thispropertygivestotheconditions(10)and(11)thestructureofgradientflowequations dti dqu µ =−gi∇ lnW; µ =−guv∂ lnW (13) dµ dµ v where we have used as a transverse coordinate µ(z) = eU(z). Equations (9)–(11) further imply that AABS isproportionaltotheidentityorinotherwords BC 1 iAABS = WδA , (14) BC 2 C wheretheproportionalityfactordefinesthesuperpotentialW in(13).Thecondition(14)imposesalgebraic constraintsonthescalarfieldswhichplayanimportantroleinthederivationofthesolution[15]. Sincethenon–vanishingcomponentsofthespinconnectionωabaregivenby µ ωab =ωˆab, ωa3 =e(p+1)U(z)U′(z)eˆa , (15) m m m m equation(9)forµ=misaswellcontrolledbythesuperpotentialW. 1 1 = eUIm(hW); U′ =e−pURe(hW) (16) ℓ 2 where 1 isthecosmologicalconstantalongtheDW.From(11)wealsoobtainthathW isrealandtherefore ℓ theDWisflat. Furthermore,wecanidentify W =±|W|. (17) Using(13)and(16)onecanfindtheexplicitU(z)dependenceoftherelevantscalarfields[15]. SinceouraimistogiveageometricinterpretationintermoftypeIIAcompactification,fromnowonwe willinterpretallthefieldsinthisframework.Inparticularwehave[15] 1 eφA =C; e−KV =4e2U; e−KH =16C2e−6U; W = eU(XΛe −F mΛ) (18) Λ Λ 8 NotethattheIIAdilatonisconstant.TheKa¨hlerpotentialsofthevector–andhyper–multipletsaredefined intermsofthemoduliofYˆ intypeIIAoncompactificationsas e−KV ≡i X¯ΛF −F¯ XΛ ; e−KH ≡i Z¯AW −W¯ ZA (19) Λ Λ A A (cid:2) (cid:3) (cid:2) (cid:3) Copyrightlinewillbeprovidedbythepublisher 6 SilviaVaula`: whereΛ = 0,...n andA = 0,...n beingn andn thenumberofvector–andhyper–multiplets, V H V H respectively. They parametrize the Ka¨hler class and the complex structure deformations n = h(1,1), V n =h(1,2). H The complexscalars in (10) are the special coordinatesof the vector multipletsspecial Ka¨hler manifold ti = Xi. The scalars za = Za span the special Ka¨hler submanifold inside the quaternionic manifold X0 Z0 spannedbythequ(11). In order to describe the geometry of the internal manifold Yˇ, we can convenientlyrewrite equations (13)and(16).Beforeweperformachangeofcoordinates∂ =e(p+3)U∂ anddefinearescaledsection z w (ZA, W )=|c|(ZA, W ) , |c|2 ≡eKV−KH (20) A A η Wecannowrewrite(13)as ImXΛ mΛ ∂ =− (21) w(cid:18)ImFΛ(cid:19) (cid:18)eΛ(cid:19) ImZA 0 ∂wImWa=−|c| 0 . (22) ImW ReXΛe −ReF mΛ 0η Λ Λ andthezerocosmologicalconstatcondition(16)as ImXΛe −ImF mΛ =0. (23) Λ Λ Letusnowdefinetwopurespinorsaccordingtothesymplecticinvariantbasis(2) Φ+ =XΛωΛ−FΛωΛ, Φ− =ZηAαA−WηAβA . (24) ThederivativealongthedirectiontransversetotheDWiseasilycomputedusing(21),(22) ∂yImΦ+ =eΛωΛ−mΛωΛ; ∂yImΦ− =−|c|(ReXΛeΛ−ReFΛmΛ)β0. (25) Using(2)weobtain dΦ+ =(XΛeΛ−FΛmΛ)β0; dΦ− =|c|−1(mΛωΛ−eΛωΛ) (26) Up to a change of coordinatesdy = |c|−1dw, equations(25), (26) are equivalentto (3), where now the purespinorsΦ± aredefinedin(24). Finally, letusdiscussthe propertiesoftheseven-dimensionalmanifoldXˇ . Asthemetriconthe DWis 7 flatandthebackgroundM × Xˇ solvesthestringequationofmotion,weexpectXˇ tobeRicciflat. (1,2) w 7 7 Forhalf-flatmanifoldsthiswasindeedshowninrefs.[14,16,20]. Inordertodiscussthegeneralizationat handletusintroducethesevendimensionalexteriorderivativeby dˆ=d+dy∂ , (27) y where d acts on Yˇ and ∂ is the derivativewith respectto the coordinateof R. Furthermore,following 6 y [17]onecandefinethegeneralizedformsρand∗ρonXˇ7whicharegivenintermsofΦ±by ρ=−ReΦ+∧dy−ImΦ− , ∗ρ=ReΦ−∧dy+ImΦ+. (28) ∗ρistheHodgedualofρwithrespecttothegeneralizedmetric. Asnotedin[17]theequations(25)–(26) thencorrespondto dρ=∗d∗ρ=0, (29) andimplythatXˇ hasanintegrableG ×G structureandisindeedRicci-flat. 7 2 2 Copyrightlinewillbeprovidedbythepublisher popheaderwillbeprovidedbythepublisher 7 Acknowledgements ThisworkhasbeensupportedbytheSpanishMinistryofScienceandEducationgrantBFM2003- 01090,theComunidaddeMadridgrantHEPHACOSP-ESP-00346andbytheEUResearchTrainingNetworkCon- stituents,FundamentalForcesandSymmetriesoftheUniverseMRTN-CT-2004-005104 References [1] G.Dall’Agata,JHEP0111(2001)005 [2] J.LouisandA.Micu,Nucl.Phys.B635(2002)395 [3] G.Dall’Agata,R.D’Auria,L.SommovigoandS.Vaula`,Nucl.Phys.B682(2004)243 [4] L.SommovigoandS.Vaula`,Phys.Lett.B602(2004)130 [5] R.D’Auria,L.SommovigoandS.Vaula`,JHEP0411(2004)028 [6] L.Sommovigo,Nucl.Phys.B716(2005)248[arXiv:hep-th/0501048]. [7] R.D’Auria,S.Ferrara,M.TrigianteandS.Vaula,Phys.Lett.B610(2005)147 [8] S.Fidanza,R.MinasianandA.Tomasiello,Commun.Math.Phys.254(2005)401 [9] S.Gurrieri,J.Louis,A.MicuandD.Waldram,Nucl.Phys.B654(2003)61 [10] S.GurrieriandA.Micu,Class.Quant.Grav.20(2003)2181 [11] I.BenmachicheandT.W.Grimm,Nucl.Phys.B748(2006)200 [12] M.Grana,J.LouisandD.Waldram, [13] M.Grana,J.LouisandD.Waldram,arXiv:hep-th/0612237. [14] C.MayerandT.Mohaupt,Class.Quant.Grav.22(2005)379 [15] J.LouisandS.Vaula,JHEP0608(2006)058 [16] N. Hitchin, “Stable forms and special metrics,” in “Global Differential Geometry: The Mathematical Legacy of AlfredGray”, M.Fernandez and J.A.Wolf(eds.), Contemporary Mathematics 288, American Mathematical Society,Providence(2001) [17] C.JeschekandF.Witt,JHEP0503(2005)053C.JeschekandF.Witt,arXiv:math.dg/0510131. [18] K.Behrndt,G.LopesCardosoandD.Lust,Nucl.Phys.B607(2001)391 [19] R.D’AuriaandS.Ferrara,JHEP0105(2001)034 [20] S.ChiossiandS.Salamon,“TheIntrinsicTorsionofSU(3)andG2Structures,”inDifferentialgeometry,Valen- cia,2001,pp.115,arXiv:math.DG/0202282. Copyrightlinewillbeprovidedbythepublisher