ebook img

N=1 domain wall solutions of massive type II supergravity and the issue of mirror symmetry PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview N=1 domain wall solutions of massive type II supergravity and the issue of mirror symmetry

popheaderwillbeprovidedbythepublisher N=1 domain wall solutions of massive type II supergravity and the issue of mirror symmetry SilviaVaula` ∗ InstitutodeF´ısicaTeo´ricaUAM/CSIC FacultaddeCienciasC-XVI,C.U.Cantoblanco,E-28049-Madrid,Spain 7 0 0 Keywords Supergravity,Fluxcompactifications,DomainWalls,MirrorSymmetry 2 PACS 11.25.-w,12.10.-g,04.65.+e n WereportonDomainWallsolutionofCalabi–Yaucompactificationswithgeneral fluxesandtheir appli- a cationtothestudyofmirrorsymmetryingeneralizedbackgrounds. Weaddress,inparticular,totheissue J ofmagneticNSNSfluxes. WeshowthattheDomainWallgradientflowequationscanbeinterpretedasa 1 setofgeneralizedHitchin’sflowequationsofamanifoldwithSU(3)×SU(3)structurefiberedalongthe 3 directiontransversetotheDomainwall. 1 Copyrightlinewillbeprovidedbythepublisher v 6 8 The equivalence between type II theories compactified on Calabi–Yau (CY) mirror pairs (Y, Y˜) is 2 a well–known property. In particular, compactification of type IIA and IIB supergravity on Y and Y˜ 1 respectively, gives rise to the same N = 2 four dimensional ungauged supergravity. The possibility to 0 considercompactificationsinthepresenceofp–formfluxesalongnontrivialp–cyclese = F raises 7 I γI p thequestionwhetheritispossibletogeneralizethenotionofmirrorsymmetrytosuchmoregeHneralcases. 0 / CY compactifications of type II supergravities in the presence of fluxes yelds four dimensional gauged h supergravities, the gauge parameters being proportional to the fluxes [1]–[7]. It has been proved that t - type II supergravitiescompactified on mirror pairs (Y, Y˜) in the presence of RR fluxes, give rise to the p same gauged supergravity[2]. This shows that at the supergravitylevel type IIA and IIB RR fluxes are e h mappedontooneanotherundermirrorsymmetry,ascanbeexpectedfromthematchingofoddandeven : cohomologyonmirrorpairs. ForthesamereasonitisunlikelythatasimilarmatchingholdsforNSNS3– v i formfluxes,whichresideintheoddcohomologybothfortypeIIAandIIB.InfactfortheNSNSsectorthe X 3–formfluxescorrespondundermirrorsymmetryto adeformationoftheCY geometry. Moreprecisely, r in the presence of electric fluxes, the SU(3) holonomyof the mirror manifold is relaxed in favor of an a SU(3) structure, the intrinsic torsion correspondingto the NSNS 3–formfluxes [8]. In particular, it has beenproventhatCY compactificationof typeII supergravitiesin the presenceof electric NSNS 3–form fluxescorrespondsundermirrorsymmetrytocompactificationsonahalf–flatmanifold[9,10],wherethe CYcohomologyisdeformedaccordingto dα =−e ωi; dα =0; dβA =0; dω =e β0; dωi =0. (1) 0 i a i i In order to fix our notations let us consider e.g. type IIB supergravity compactified on a CY Y˜ in the presence of NSNS 3–form fluxes. This correspondsto type IIA compactifiedon a half–flat manifoldYˆ (1);inthiscaseA = (0, a),a = 1,...h(2,1) andi = 1,...h(1,1). Theparameterse correspondtothe i electricNSNSfluxesintypeIIBcompactificationonY˜,thatisH = ···−e βΛ withΛ = (0, i),while 3 Λ thefluxcomponente ismappedintoitself. 0 The descriptionof mirrorsymmetryin the presenceof magneticNSNS 3–formfluxesis more involved. ConsiderindeedthegeneralcasewhereH = ···+mΛα −e βΛ. Thechoiceofelectricversusmag- 3 Λ Λ netic fluxescorrespondsto a changeofbasisin (α , βΛ), the oddcohomologyofY˜, reflectingthe four Λ ∗ Correspondingauthor E-mail:[email protected] Copyrightlinewillbeprovidedbythepublisher 4 SilviaVaula`: dimensionalelectric/magneticdualityofthevectorequationsofmotions/Bianchiidentities,whichholdsas wellinthepresenceofgeneralfluxes[4,6]. Suchasymplecticstructurehasnoimmediatecounterpartin theevencohomologyofY (1). Moreover,adeformationof(1)supportingamagneticindexwouldimply thepresenceofaclosed5–formχ,suchthate.g. dωi ∝ miχ[11]. Thefollowingobservationgoesalong thelineof[12,13]whereitisdiscussedthecorrespondenceundermirrorsymmetryofthemagneticNSNS fluxesandcompactificationsonanSU(3)×SU(3)structuremanifoldYˇ. Indeed, introducing a symplectic basis also for the even cohomology, which includes 0– and 6– forms, (ω ,ωΛ), and indicating with (α , βΛ) a basis for the odd cohomology, which includes 1–, 3– and 5– Λ Λ forms,onecanwriteforYˇ dα =mΛω −e ωΛ; dα =0; dβA =0; dω =e β0; dωΛ =mΛβ0. (2) 0 Λ Λ a Λ Λ SinceverylittleisknownaboutthepropertiesofSU(3)×SU(3)structuremanifoldsitisnotstraightfor- wardtocheck(2)byperforminganexplicitcompactificationonYˇ. Instead,following[14],wearegoing tomakeuseofDomainWall(DW)solutions. ADWsolutionofthefourdimensionalgaugedsupergravity correspondingtotypeIIBcompactificationinthepresenceofelectricNSNSfluxeswasconsideredin[14]. TakingadvantageoftheSO(1,2)× RsymmetryoftheDWsolution,onecanconsiderthegeometryof w Xˆ ≡Yˆ × R,whereRparametrizesthedirectiontransversetotheDW.IfYˆ isahalf–flatmanifoldthen 7 w Xˆ isaG holonomymanifold,whosegeometryischaracterizedbytheHitchin’sflowequations[16] 7 2 dImΦ− =dImΦ+ =0; ∂yImΦ+ =−dReΦ−; ∂yImΦ− =dReΦ+ (3) whereΦ±arethetwopurespinorcharacterizingYˆ,disthedifferentialalongYˆ while∂y isthederivative alongthe(rescaled)directiontransversetotheDW. Wearegoingtogeneralizetheresultof[14]andconsider[15]aDWsolutionofthegaugedsupergravity corresponding to type IIB compactification in the presence of electric and magnetic NSNS fluxes. As- sumingthatthegeometryofXˇ ≡ Yˇ × R isdescribedbyHitchin’s–likeflowequations[17], theflow 7 w equationsofthe DWsolutionprovidethe y–dependencein (3)allowingto checkif (2)issuitable to de- scribeYˇ. LetusthereforeconsiderthefollowingDWmetric: g (xµ)dxµdxν =eU(z)gˆ (xm)dxmdxn −e−2pU(z)dzdz. (4) µν mn wheregˆ (xm), m = 0, 1, 2,isthemetricofathree-dimensionalspace-timewhichweassumetohave mn constantcurvatureandpisanarbitraryrealnumber.Usingµ=eU(z) insteadofzasthecoordinateofthe transversespacewearriveat dµdµ g (xµ)dxµdxν =µ2gˆ (xm)dxmdxn− , (5) µν mn µ2W2(z) where W =±epU(z)U′(z). (6) In order to look for 1/2 BPS configurations we impose the following projector on the supersymmetry parameters[14,18] ε =hA γ εB . (7) A AB 3 Here h(z) is a complexfunction while A is a constantmatrix. Consistency of (7) with its hermitian AB conjugateimplieshh=1whileAB ≡A ǫCB mustbeahermitianmatrixwhichinadditionsatisfies A AC ABAC =δC . (8) A B A Copyrightlinewillbeprovidedbythepublisher popheaderwillbeprovidedbythepublisher 5 ThusAhastobeasuitablelinearcombinationof(1,~σ)where~σarethePaulimatrices. As we are interested in the flow of the fields along the direction transverse to the Domain Wall, we assume they do notdependon the coordinatesxm; moreoverwe set to zerothe vectorand tensor field– strengthsFΛ =HI =0. Withthisassumptionthesupersymmetrytransformationlawsofthefermions µν µνρ simplifyandthe1/2BPSconditionreads[4] δψ =D ε +iS γ εB =0 (9) µA µ A AB µ δλiA =i∂ tiγµεA+WiABε =0 (10) µ B δζ =iP ∂ quγµεA+NAε =0 (11) α uAα µ α A where(7)isimposed.ThematricesS ,WiABandNAarethefermionshifts;theyareduetothegauging AB α andencodeitsproperties. Forthepresentcase,andmoregenerallyforAbeliangaugings,theyarerelated bygradientflowequations[19] 1 1 ∇ S = g W¯ ; ∇ S = h PvαN (12) i AB 2 i¯ AB u AB 2 uv (A B)α Thispropertygivestotheconditions(10)and(11)thestructureofgradientflowequations dti dqu µ =−gi∇ lnW; µ =−guv∂ lnW (13) dµ  dµ v where we have used as a transverse coordinate µ(z) = eU(z). Equations (9)–(11) further imply that AABS isproportionaltotheidentityorinotherwords BC 1 iAABS = WδA , (14) BC 2 C wheretheproportionalityfactordefinesthesuperpotentialW in(13).Thecondition(14)imposesalgebraic constraintsonthescalarfieldswhichplayanimportantroleinthederivationofthesolution[15]. Sincethenon–vanishingcomponentsofthespinconnectionωabaregivenby µ ωab =ωˆab, ωa3 =e(p+1)U(z)U′(z)eˆa , (15) m m m m equation(9)forµ=misaswellcontrolledbythesuperpotentialW. 1 1 = eUIm(hW); U′ =e−pURe(hW) (16) ℓ 2 where 1 isthecosmologicalconstantalongtheDW.From(11)wealsoobtainthathW isrealandtherefore ℓ theDWisflat. Furthermore,wecanidentify W =±|W|. (17) Using(13)and(16)onecanfindtheexplicitU(z)dependenceoftherelevantscalarfields[15]. SinceouraimistogiveageometricinterpretationintermoftypeIIAcompactification,fromnowonwe willinterpretallthefieldsinthisframework.Inparticularwehave[15] 1 eφA =C; e−KV =4e2U; e−KH =16C2e−6U; W = eU(XΛe −F mΛ) (18) Λ Λ 8 NotethattheIIAdilatonisconstant.TheKa¨hlerpotentialsofthevector–andhyper–multipletsaredefined intermsofthemoduliofYˆ intypeIIAoncompactificationsas e−KV ≡i X¯ΛF −F¯ XΛ ; e−KH ≡i Z¯AW −W¯ ZA (19) Λ Λ A A (cid:2) (cid:3) (cid:2) (cid:3) Copyrightlinewillbeprovidedbythepublisher 6 SilviaVaula`: whereΛ = 0,...n andA = 0,...n beingn andn thenumberofvector–andhyper–multiplets, V H V H respectively. They parametrize the Ka¨hler class and the complex structure deformations n = h(1,1), V n =h(1,2). H The complexscalars in (10) are the special coordinatesof the vector multipletsspecial Ka¨hler manifold ti = Xi. The scalars za = Za span the special Ka¨hler submanifold inside the quaternionic manifold X0 Z0 spannedbythequ(11). In order to describe the geometry of the internal manifold Yˇ, we can convenientlyrewrite equations (13)and(16).Beforeweperformachangeofcoordinates∂ =e(p+3)U∂ anddefinearescaledsection z w (ZA, W )=|c|(ZA, W ) , |c|2 ≡eKV−KH (20) A A η Wecannowrewrite(13)as ImXΛ mΛ ∂ =− (21) w(cid:18)ImFΛ(cid:19) (cid:18)eΛ(cid:19) ImZA 0 ∂wImWa=−|c| 0  . (22) ImW ReXΛe −ReF mΛ  0η  Λ Λ  andthezerocosmologicalconstatcondition(16)as ImXΛe −ImF mΛ =0. (23) Λ Λ Letusnowdefinetwopurespinorsaccordingtothesymplecticinvariantbasis(2) Φ+ =XΛωΛ−FΛωΛ, Φ− =ZηAαA−WηAβA . (24) ThederivativealongthedirectiontransversetotheDWiseasilycomputedusing(21),(22) ∂yImΦ+ =eΛωΛ−mΛωΛ; ∂yImΦ− =−|c|(ReXΛeΛ−ReFΛmΛ)β0. (25) Using(2)weobtain dΦ+ =(XΛeΛ−FΛmΛ)β0; dΦ− =|c|−1(mΛωΛ−eΛωΛ) (26) Up to a change of coordinatesdy = |c|−1dw, equations(25), (26) are equivalentto (3), where now the purespinorsΦ± aredefinedin(24). Finally, letusdiscussthe propertiesoftheseven-dimensionalmanifoldXˇ . Asthemetriconthe DWis 7 flatandthebackgroundM × Xˇ solvesthestringequationofmotion,weexpectXˇ tobeRicciflat. (1,2) w 7 7 Forhalf-flatmanifoldsthiswasindeedshowninrefs.[14,16,20]. Inordertodiscussthegeneralizationat handletusintroducethesevendimensionalexteriorderivativeby dˆ=d+dy∂ , (27) y where d acts on Yˇ and ∂ is the derivativewith respectto the coordinateof R. Furthermore,following 6 y [17]onecandefinethegeneralizedformsρand∗ρonXˇ7whicharegivenintermsofΦ±by ρ=−ReΦ+∧dy−ImΦ− , ∗ρ=ReΦ−∧dy+ImΦ+. (28) ∗ρistheHodgedualofρwithrespecttothegeneralizedmetric. Asnotedin[17]theequations(25)–(26) thencorrespondto dρ=∗d∗ρ=0, (29) andimplythatXˇ hasanintegrableG ×G structureandisindeedRicci-flat. 7 2 2 Copyrightlinewillbeprovidedbythepublisher popheaderwillbeprovidedbythepublisher 7 Acknowledgements ThisworkhasbeensupportedbytheSpanishMinistryofScienceandEducationgrantBFM2003- 01090,theComunidaddeMadridgrantHEPHACOSP-ESP-00346andbytheEUResearchTrainingNetworkCon- stituents,FundamentalForcesandSymmetriesoftheUniverseMRTN-CT-2004-005104 References [1] G.Dall’Agata,JHEP0111(2001)005 [2] J.LouisandA.Micu,Nucl.Phys.B635(2002)395 [3] G.Dall’Agata,R.D’Auria,L.SommovigoandS.Vaula`,Nucl.Phys.B682(2004)243 [4] L.SommovigoandS.Vaula`,Phys.Lett.B602(2004)130 [5] R.D’Auria,L.SommovigoandS.Vaula`,JHEP0411(2004)028 [6] L.Sommovigo,Nucl.Phys.B716(2005)248[arXiv:hep-th/0501048]. [7] R.D’Auria,S.Ferrara,M.TrigianteandS.Vaula,Phys.Lett.B610(2005)147 [8] S.Fidanza,R.MinasianandA.Tomasiello,Commun.Math.Phys.254(2005)401 [9] S.Gurrieri,J.Louis,A.MicuandD.Waldram,Nucl.Phys.B654(2003)61 [10] S.GurrieriandA.Micu,Class.Quant.Grav.20(2003)2181 [11] I.BenmachicheandT.W.Grimm,Nucl.Phys.B748(2006)200 [12] M.Grana,J.LouisandD.Waldram, [13] M.Grana,J.LouisandD.Waldram,arXiv:hep-th/0612237. [14] C.MayerandT.Mohaupt,Class.Quant.Grav.22(2005)379 [15] J.LouisandS.Vaula,JHEP0608(2006)058 [16] N. Hitchin, “Stable forms and special metrics,” in “Global Differential Geometry: The Mathematical Legacy of AlfredGray”, M.Fernandez and J.A.Wolf(eds.), Contemporary Mathematics 288, American Mathematical Society,Providence(2001) [17] C.JeschekandF.Witt,JHEP0503(2005)053C.JeschekandF.Witt,arXiv:math.dg/0510131. [18] K.Behrndt,G.LopesCardosoandD.Lust,Nucl.Phys.B607(2001)391 [19] R.D’AuriaandS.Ferrara,JHEP0105(2001)034 [20] S.ChiossiandS.Salamon,“TheIntrinsicTorsionofSU(3)andG2Structures,”inDifferentialgeometry,Valen- cia,2001,pp.115,arXiv:math.DG/0202282. Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.