MULTIPLE-COMPARTMENT ANAEROBIC BIOREACTORS FOR THE GENERATION OF ENERGY: EXPLORING ENERGY-POSITIVE WASTEWATER TREATMENT by Andrew R. Pfluger Copyright by Andrew Ross Pfluger 2018 All Rights Reserved A thesis submitted to the Faculty and Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering). Golden, Colorado Date: __________________________ Signed: __________________________ Andrew R. Pfluger Signed: __________________________ Dr. Junko Munakata-Marr Thesis Advisor Signed: __________________________ Dr. Linda A. Figueroa Thesis Advisor Golden, Colorado Date: __________________________ Signed: __________________________ Dr. Terri S. Hogue Professor and Head Department of Civil and Environmental Engineering ii ABSTRACT Wastewater contains resources such as energy, clean water, and nutrients. Under the current wastewater treatment paradigm (i.e., activated sludge), resources are consumed rather than recovered. Anaerobic bioreactors are a potentially viable alternative to traditional aerobic wastewater treatment for several reasons, to include their ability to generate methane-rich biogas while simultaneously reducing volumes of waste sludge and decreasing waste disposal burden. Multiple-compartment anaerobic bioreactors, such as the anaerobic baffled reactor (ABR), are particularly attractive due to the reactor’s low complexity and its ability to generate methane with little to no energy input. Despite these advantages, pilot-scale demonstrations of ABRs, or variations of the ABR, operated under colder wastewater temperatures (11 – 24 C) are extremely limited. Prior to widespread implementation, ABRs treating domestic wastewater require additional pilot-scale demonstration, study of the lifecycle impacts relative to conventional wastewater treatment technologies, and a more complete understanding of the microbial community dynamics for modeling and performance prediction. To address these research needs, this dissertation examines the performance of two low-complexity pilot-scale multiple-compartment anaerobic bioreactors in three different areas: (1) characterizing bioreactor performance over varying temperatures for organic removal, suspended solids removal, and methane generation; (2) modeling lifecycle impacts and energy generating potential relative to conventional wastewater treatment approaches; and (3) characterizing methanogenic community structure over time and space within both bioreactor systems. The pilot-scale anaerobic bioreactors characterized in this study were: (1) an existing four-compartment ABR located at the Plum Creek Water Reclamation Authority in Castle Rock, CO, and (2) a three-compartment ABR coupled with an anaerobic fixed film reactor (AFFR), which was constructed at the Mines Park Wastewater Test Bed. Modeling methods include full treatment train modeling in BioWin 5.2, environmental impact modeling in SimaPro (version 8.0.3.14), lifecycle cost modeling in CAPDETWorks (version 2.5, Hydromantis, Inc.), and uncertainty modeling (Monte Carlo simulation) in Oracle Crystal Ball. Microbial community structure was examined using 16S rRNA gene sequencing. Key findings of this study are numerous, and include: (1) both ABRs studied remove higher levels of organics and suspended solids relative to conventional primary treatment while generating near stoichiometric volumes of methane; (2) ABRs have high chemical energy conversion efficiencies relative to other wastewater treatment reactors, recovering 52% of the chemical energy available in the influent wastewater organics; (3) modeling suggests that iii energy generated by ABRs coupled with combined heat and power (CHP) with heat recovery is sufficient to power many typical conventional activated sludge systems; (4) lifecycle environmental impacts for treatment trains including ABRs are lower in most impact categories (e.g., fossil fuel emissions, acidification, etc.), but dissolved methane capture is required to reduce greenhouse gas emissions and enhance potential energy generation; (5) lifecycle costs and net energy balances for modeled configurations with ABRs are lower relative to conventional treatment configurations; and (6) both ABRs developed similar methanogen-rich microbial communities dominated by Methanosaeta, an acetate-utilizing methanogen. Additional study is needed in several areas, to include the treatment of residual contaminants in the effluent of ABRs and long-term characterization of the microbial community structure for accurate modeling. However, this study concludes that multiple-compartment anaerobic bioreactors, such as the ABR, are a viable energy-generating alternative to conventional primary treatment. Full-scale demonstrations should be implemented near-term. iv TABLE OF CONTENTS ABSTRACT.................................................................................................................................. iii LIST OF FIGURES........................................................................................................................x LIST OF TABLES........................................................................................................................xiv ACKNOWLEDGEMENTS..........................................................................................................xvii DEDICATION............................................................................................................................xviii CHAPTER 1 INTRODUCTION...................................................................................................1 1.1 Wastewater-Energy Nexus....................................................................................1 1.2 Anaerobic Wastewater Treatment.........................................................................2 1.3 Multiple-Compartment Anaerobic Bioreactors.......................................................4 1.4 Research Questions, Objectives, and Dissertation Structure................................5 1.5 Research Motivation..............................................................................................7 CHAPTER 2 METHANE GENERATION AND METHANOGENIC COMMUNITY STRUCTURE IN AN ANAEROBIC BAFFLED REACTOR FOR BIOLOGICALLY ENHANCED PRIMARY TREATMENT OF DOMESTIC WASTEWATER UNDER COLD TEMPERATURES..............................................8 2.1 Abstract..................................................................................................................8 2.2 Introduction............................................................................................................9 2.3 Materials and Methods.........................................................................................11 2.3.1 Anaerobic Reactor Configuration.............................................................11 2.3.2 Data Collection and Analysis...................................................................12 2.3.3 Microbial Community Structure................................................................13 2.4 Results and Discussion........................................................................................14 2.4.1 ABR-AFFR Approached Effluent Discharge Standards Under Warmer Temperatures...........................................................................................15 v 2.4.2 Observed Methane Production Approaches the Theoretical Maximum and Varies with Wastewater Temperatures.............................................20 2.4.3 The ABR-AFFR is an Energy-Positive Process.......................................24 2.4.4 Relative Abundance of Euryarchaeota Increased Between Warm- and Cold-Weather Samples.....................................................................25 2.4.5 Complete Energy-Positive Wastewater Treatment Configurations..........29 2.5 Conclusions.........................................................................................................30 2.6 Acknowledgements..............................................................................................31 CHAPTER 3 ENERGY GENERATING POTENTIAL OF BIOLOGICALLY ENHANCED PRIMARY TREATMENT OF DOMESTIC WASTEWATER USING MULTIPLE COMPARTMENT BIOREACTORS………….....................................32 3.1 Abstract................................................................................................................32 3.2 Introduction..........................................................................................................33 3.3 Materials and Methods.........................................................................................34 3.3.1 Anaerobic Reactor Configurations...........................................................34 3.3.2 Data Collection and Analysis...................................................................35 3.3.3 Energy-Related Calculations....................................................................36 3.3.4 Uncertainty Analyses...............................................................................37 3.4 Results and Discussion........................................................................................40 3.4.1 Comparison of Observed Organic Removal and Methane Generation to Other Sludge Blanket Bioreactor Studies.............................................40 3.4.2 Comparison of Theoretical and Observed Methane Generation..............42 3.4.3 Modeled Energy Generation from Combined Heat and Power Technologies............................................................................................46 3.4.4 Implications for Integration of Anaerobic Primary Treatment using ABRs into WWRFs...................................................................................47 3.4.5 Path Forward for Anaerobic Primary Treatment using ABRs .................. 48 3.5 Conclusions.........................................................................................................53 vi 3.6 Acknowledgements..............................................................................................53 CHAPTER 4 LIFECYCLE COMPARISON OF MAINSTREAM ANAEROBIC BAFFLED REACTOR AND CONVENTIONAL ACTIVATED SLUDGE SYSTEMS FOR DOMESTIC WASTEWATER TREATMENT........................................................54 4.1 Abstract................................................................................................................54 4.2 Introduction..........................................................................................................55 4.3 Materials and Methods.........................................................................................56 4.3.1 System Boundaries and Functional Unit..................................................56 4.3.2 System Design for Lifecycle Inventory and Modeling..............................58 4.3.3 Uncertainty and Sensitivity Analyses.......................................................60 4.4 Results and Discussion........................................................................................61 4.4.1 NEB for Configurations with AnP are Lower Than Conventional Systems...................................................................................................61 4.4.2 Recovery of dCH is Required to Reduce Global Warming Impacts 4 and Enhance Energy Generation.............................................................62 4.4.3 AnP/AeS+AnD Configurations Have Lower Impacts Relative to Conventional Treatment Configurations in Most Impact Categories........65 4.4.4 Lifecycle Costs of Configurations with Anaerobic Primary Treatment are Lower than Conventional Systems....................................................67 4.4.5 AnP Coupled with Other Anaerobic Technologies May be a Path Forward for Energy-Positive Domestic Wastewater Treatment with Further Study....................................................................................69 4.5 Acknowledgements..............................................................................................71 CHAPTER 5 SUCCESSION OF A FOUNDING MICROBIOME AFTER SEEDING IN A MULTIPLE-COMPARTMENT ANAEROBIC BIOREACTOR FOR DOMESTIC WASTEWATER TREATMENT........................................................72 5.1 Abstract................................................................................................................72 5.2 Introduction..........................................................................................................73 5.3 Materials and Methods.........................................................................................75 vii 5.3.1 Reactor Operation and Performance Modeling........................................75 5.3.2 Sludge Sampling, DNA Extraction, and 16S rRNA Gene Sequencing....77 5.3.3 Amplicon Sequence Processing and Quality Control...............................77 5.3.4 Statistical Methods and Analyses............................................................77 5.4 Results…………………........................................................................................78 5.4.1 Wastewater Chemistry and Reactor Performance...................................78 5.4.2 Consistency of Influent Wastewater Community Structure over Time and Location....................................................................................79 5.4.3 Community Assembly Over Time and Space in Reactor Compartments..........................................................................................82 5.4.4 Increasing Percent Relative Abundance of Euryarchaeota......................83 5.4.5 Persistence of the Founding Microbiome.................................................87 5.5 Discussion………….............................................................................................88 5.5.1 Changes in Community Similarity Suggest Two Successional Trajectories in ABR 2...............................................................................88 5.5.2 Increasing Percent Relative Abundance of Euryarchaeota Drove Community Similarity...............................................................................90 5.5.3 A Founding Microbiome Persists in each ABR 2 Compartment Over Time................................................................................................91 5.6 Conclusions.........................................................................................................92 5.7 Acknowledgements..............................................................................................92 CHAPTER 6 CONCLUSIONS AND FUTURE WORK..............................................................93 6.1 Conclusions.........................................................................................................93 6.2 Future Work.........................................................................................................95 REFERENES CITED...................................................................................................................97 APPENDIX A: SUPPLEMENTARY INFORMATION FOR CHAPTER 2...................................123 viii APPENDIX B: SUPPLEMENTARY INFORMATION FOR CHAPTER 3...................................133 APPENDIX C: SUPPLEMENTARY INFORMATION FOR CHAPTER 4...................................137 APPENDIX D: SUPPLEMENTARY INFORMATION FOR CHAPTER 5...................................165 APPENDIX E: STATISTICAL EXPOSÉ OF A MULTIPLE-COMPARTMENT ANAEROBIC REACTOR TREATING DOMESTIC WASTEWATER.................173 APPENDIX F: TECHNOLOGY DIFFUSION: ANAEROBIC DIGESTION AND BIOGAS BENEFICIAL USE AT MUNICIPAL WASTEWATER TREATMENT FACILITIES IN COLORADO: BARRIERS TO WIDESPREAD IMPLEMENTATION...........................................................................................208 APPENDIX G: TECHNOLOGY APPLICATION: METHANE-GENERATION VIA ANAEROBIC MICROBES AS A SUSTAINABLE APPROACH FOR RESOURCE-LIMITED DEEP SPACE EXPLORATION.....................................251 APPENDIX H: TECHNOLOGY APPLICATION: BIOGAS GENERATION FROM WASTE: OVERCOMING BARRIERS TO WIDESPREAD IMPLEMENTATION OF ANAEROBIC TECHNOLOGIES IN THE DEPARTMENT OF DEFENSE FOR ENERGY SECURITY................................................................................257 APPENDIX I: ENGINEERING EDUCATION: MAINTAINING STUDENT ENGAGEMENT IN AN EVENING, THREE HOUR LONG AIR POLLUTION COURSE: INTEGRATING ACTIVE LEARNING EXERCICES AND FLIPPED CLASSES..........................................................................................................263 APPENDIX J: ENGINEERING EDUCATION: LEARNING BENEFITS OF INTEGRATING SOCIO-ECONOMIC AND CULTURAL CONSIDERATIONS INTO AN ONSITE WATER RECLAMATION COURSE PROJECT..................................276 ix
Description: