ebook img

Multiphase Hybrid Electric Machines: Applications for Electrified Powertrains PDF

234 Pages·2021·10.484 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Multiphase Hybrid Electric Machines: Applications for Electrified Powertrains

Ahmad S. Al-Adsani Omid Beik Multiphase Hybrid Electric Machines Applications for Electrified Powertrains Multiphase Hybrid Electric Machines (cid:129) Ahmad S. Al-Adsani Omid Beik Multiphase Hybrid Electric Machines fi Applications for Electri ed Powertrains AhmadS.Al-Adsani OmidBeik DepartmentofElectricalEngineering DepartmentofElectricalandComputer Technology,PublicAuthorityforApplied Engineering EducationandTraining(PAAET) McMasterUniversity CollegeofTechnologicalStudies(CTS) Hamilton,ON,Canada KuwaitCity,Kuwait ISBN978-3-030-80434-3 ISBN978-3-030-80435-0 (eBook) https://doi.org/10.1007/978-3-030-80435-0 ©SpringerNatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this bookarebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Developmentofroadvehiclesthroughelectrifiedpowertrainswithoutcompromising theirpowercapability,efficiency,performance,reliability,safety,drivingrange,and costhasbeenthecenterofattentioninacademiaandindustry.Thisbookisauser- friendly reference and attractive subject for researchers and undergraduate and graduateengineerswhoareinterestedinmultiphase,permanentmagnetandhybrid machine topologies with a specific application in electric and hybrid electric vehicles. This book begins with an overview and principals of classical electric machine operation, magnetic modeling, and characteristics of materials. Various classical electric machine topologies,includingbrushedDC,anddifferentACmachinesare discussedinChap.1. Chapter 2 discusses hybrid electric machine concept together with a review of differenthybridmachinetopologies,indicatingtheiroperationalphilosophy,advan- tages,anddisadvantages. Chapter3presentsahybridpermanentmagnet(HPM)machinetopologythatis selected and analyzed in terms of its geometry, excitation field technique, back- EMF, and developed electromagnetic torque for both no-load and on-load opera- tions.TheHPMtopologyconsistsoftwodifferentsynchronousmachines,aperma- nent magnet (PM) and a wound field (WF) machine that are coupled on the same rotorshaft,rotatewiththesamespeed,andsharethesamemultiphasestator. Chapter 4 discusses an overview of multiphase electric machines. AC and rectified DC output voltage waveforms of three- and nine-phase systems with associated power electronics are presented. A comparison of three- and two nine- phase machine winding, rectification characteristics, and losses for both HPM and PMmachinetopologiesispresentedinChap.4. Chapter 5 presents an overview of electric vehicles (EVs) and hybrid electric vehicles(HEVs),theirpowertrains, andon-boardenergy sources.Differentbattery technologiesarediscussed,andinthecaseofHEVsthefeasibilityofdisconnecting theinternalcombustionengine(ICE)fromtheelectricdrivetrainisstudied.Driving range,fueleconomy,andemissionsareevaluatedoverdifferentdrivingcycles,and atdifferentvehiclepowertrainhybridizationratios(HR)inChap.5. v vi Preface InChap.6,adynamicmodelofvehiclepowertrainthatincludesaHPMgenerator integrated into an ICE in an SHEV while considering a load demand is presented. TheICE/HPMgeneratoroutputpowercontrolschemeismodeledwhilemaintaining ICE efficiency within its optimal region. Several operating scenarios for the HPM generator excitation scheme are assessed, and the HPM generator is characterized utilizinga32-phasebrushlessexcitationscheme.Inaddition,differentcases,suchas normal,boost,andbuckfunctionalityofHPMmachineoperation,areanalyzed,and a choice of the most appropriate operation mode has been selected to regulate the totalback-EMFviaaWFexcitationcurrentcontrol. Dr. Al-Adsani wishes to express his sincere gratitude toward his wife, and the authors extend special thanks to Dr. Nigel Schofield at the University of Hudders- fieldforhisvaluableinputsandtotheteamatSpringerfortheircareduringthebook production. KuwaitCity,Kuwait AhmadS.Al-Adsani Toronto,ON,Canada OmidBeik Contents 1 GeneralElectricMachineTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 MagneticCircuitPrinciples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 MagneticFieldDistributionandFluxDensity. . . . . . . . . 1 1.1.2 FerromagneticMaterialsandMagnetizationCurves. . . . . 3 1.2 ElectricMachineFundamentals. . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 OverviewofClassicalElectricMachineTopologies. . . . . . . . . . . 6 1.3.1 BrushedDCandACMachines. . . . . . . . . . . . . . . . . . . . 7 1.3.2 BrushlessACMachines. . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.3 SwitchReluctanceMachines. . . . . . . . . . . . . . . . . . . . . 11 1.4 WFandPMSynchronousMachineExcitationFields. . . . . . . . . . 13 1.4.1 MagneticFluxPathRepresentationofWF SynchronousMachines.. . . . .. . . . .. . . .. . . . .. . . . .. 13 1.4.2 MagneticFluxPathRepresentationofPM SynchronousMachines.. . . . .. . . . .. . . .. . . . .. . . . .. 14 2 HybridElectricMachineConcept. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 HybridElectricMachineClassification. . . . . . . . . . . . . . . . . . . . . 17 2.3 DifferentHybridMachineTopologies. . . . . . . . . . . . . . . . . . . . . 18 2.3.1 PMSynchronousMachinewithClawPole FieldExcitation(PSCPF). . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Toroidal-StatorTransverse-FluxMachine(TSTFM). . . . . 21 2.3.3 HybridExcitationSynchronousMachine(HESM). . . . . . 23 2.3.4 SynchronousPermanentMagnetHybridAC Machine(SynPM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.5 ConsequentPolePermanentMagnetHybrid ExcitationMachine(CPPM). . . . . . . . . . . . . . . . . . . . . . 27 2.3.6 FieldControlledTorus-NS(FCT-NS)Machine. . . . . . . . 29 2.3.7 Dual-RotorMachine. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.8 ImbricatedHybridExcitationMachine(IHEM). . . . . . . . 33 vii viii Contents 2.3.9 SeriesDoubleExcitedSynchronousMachine (SDESM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.10 SwitchReluctanceMachinewithStatorField Assistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.11 Dual-StatorHybridExcitedSynchronous WindGenerator(DSHESG). . . . . . . . . . . . . . . . . . . . . . 39 2.4 SummaryofSurveyedLiteratureonHPMMachines. . . . . . . . . . . 43 3 HybridPermanentMagnetMachineDesign. . . . . . . . . . . . . . . . . . . 45 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 MachineVolumeEnvelopeConsideration. . . . . . . . . . . . . . . . . . 45 3.2.1 PMMachineDimensions. . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 PMMachineStatorWindingLayout. . . . . . . . . . . . . . . . 47 3.2.3 StatorWindingFillFactorandResistance. . . . . . . . . . . . 50 3.2.4 FiniteElementMethodProgram. . . . . . . . . . . . . . . . . . . 52 3.2.5 MachineBack-EMFPrediction. . . . . . . . . . . . . . . . . . . . 55 3.2.6 PMMachineAnalysisViaEMCModel. . . . . . . . . . . . . 56 3.3 WFMachine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 WFRotorDesign.. . . . . . .. . . . . . .. . . . . . .. . . . . . .. 62 3.3.2 WFtoPMSplitRatio. . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.3 ComparativeAnalysisofWFRotorDesigns. . . . . . . . . . 65 3.4 HPMMachineParameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.1 TorquePredictionandSaturation. . . . . . . . . . . . . . . . . . 69 3.4.2 SynchronousInductanceandWindingResistance. . . . . . 73 3.5 HPMMachineFinalDesignModelAnalysis. . . . . . . . . . . . . . . . 75 3.5.1 RotorPMDemagnetization. . . . . . . . . . . . . . . . . . . . . . 75 3.5.2 CoreLossPrediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6 HPMMachineThermalModel. . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6.1 GeneralPrincipleoftheLumpedParameterMethod. . . . . 81 3.6.2 ConductionHeatTransfer. . . . . . . . . . . . . . . . . . . . . . . . 82 3.6.3 ConvectionHeatTransfer. . . . . . . . . . . . . . . . . . . . . . . . 84 3.6.4 RadiationHeatTransfer. . . . . . . . . . . . . . . . . . . . . . . . . 86 3.6.5 HPMMachineThermalModel. . . . . . . . . . . . . . . . . . . . 86 3.7 ComparisonBetweenPMandFourHPMMachine Topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 MultiphaseHPMGeneratorSystems. . . . . . . . . . . . . . . . . . . . . . . . 95 4.1 OverviewonMultiphaseMachines. . . . . . . . . . . . . . . . . . . . . . . 95 4.1.1 MultiphaseWindingsPrinciples. . . . . . . . . . . . . . . . . . . 96 4.1.2 RectifiedVoltageduetoThree-andNine-Phase HPMGeneratorSystems. . . . . . . . . . . . . . . . . . . . . . . . 96 4.2 Nine-PhaseHPMGeneratorParameters. . . . . . . . . . . . . . . . . . . . 101 4.2.1 Nine-PhaseWindingLayoutandBack-EMF. . . . . . . . . . 101 4.2.2 Back-EMFandTorqueWaveformHarmonics Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Contents ix 4.2.3 SynchronousInductancePrediction. . . . . . . . . . . . . . . . . 107 4.2.4 ConstructionofHPMMachinesPrototype. . . . . . . . . . . . 111 4.2.5 ResistanceandInductanceMeasurements. . . . . . . . . . . . 114 4.3 AnalysisModels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.1 GeneraldqMathematicalModelofHPMGenerator. . . . . 115 4.3.2 SimulationModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4 Three-andNine-PhaseHPMGeneratorSystemStudies. . . . . . . . 119 4.4.1 ImpactonSynchronousInductanceandRectifier. . . . . . . 121 4.4.2 SystemSensitivitytoGeneratorSynchronous Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.4.3 DC-LinkVoltageQuality. . . . . . . . . . . . . . . . . . . . . . . . 130 4.5 LossAuditofGeneratorSystems. . . . . . . . . . . . . . . . . . . . . . . . . 134 4.5.1 Introduction. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 134 4.5.2 CoreLossPrediction. . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.5.3 PassiveandActiveConverterLossforHPM andPMGeneratorSystems. . . . . . .. . . . . . . . . . . . . .. . 136 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5 ElectricandHybridElectricPowertrains. . . . . . . . . . . . . . . . . . . . . 143 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2 OverviewofEVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2.1 EVPowertrainConfiguration. . . . . . . . . . . . . . . . . . . . . 145 5.2.2 BatteryTechnology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3 OverviewofHEVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.1 HEVPowertrainConfigurations. . . . . . . . . . . . . . . . . . . 148 5.4 VehicleDrivingCycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.5 SeriesHybridElectricVehicle(SHEV). . . . . . . . . . . . . . . . . . . . 151 5.5.1 ZEBRABattery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.5.2 InternalCombustionEngine(ICE). . . . . . . . . . . . . . . . . 156 5.5.3 Engine-MountedMultiphaseHPMGenerator. .. . .. . . .. 159 5.6 ElectricVehicleRangeExtender. . . . . . . . . . . . . . . . . . . . . . . . . 159 5.6.1 Introduction. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 159 5.6.2 LiteratureReviewofEVRangeExtenderStudies. . . . . . . 160 5.7 ICE/HPMGeneratorRangeExtenderinSHEVs. . . . . . . . . . . . . . 162 5.7.1 VehicleTractionMachineTorque. . . . . . . . . . . . . . . . . . 163 5.7.2 HybridizationRatio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.7.3 RangeExtenderSizinginSHEVPowertrain. . . . . . . . . . 165 5.7.4 StudyCases. . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . 169 5.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6 OperationandCharacterizationofMultiphaseHPM GeneratorinSHEVPowertrain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.2 HPMMachineBack-EMFControlStrategy. . . . . . . . . . . . . . . . . 173 6.2.1 ControlStrategyAnalysis. . . . . . . . . . . . . . . . . . . . . . . . 174 6.2.2 DC-linkDesignOptions. . . . . . . . . . . . . . . . . . . . . . . . . 178 x Contents 6.3 HPMMachineOutputPowerControl. . . . . . . . . . . . . . . . . . . . . 181 6.3.1 Introduction. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 181 6.3.2 HPMGeneratorOperatingScenarios. . . . . . . . . . . . . . . . 184 6.3.3 EnergyLossPredictionforTwoDrivingCycles. . .. . . .. 187 6.3.4 SolvingFinalChoicewithFullSimulationModel. . . . . . 189 6.3.5 ThermalAnalysisResultsoftheInvestigated HPMMachine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.4 HPMMachineCharacterizationUsingBrushlessExcitor. . . . . . . . 194 6.4.1 32-PhaseBrushlessExcitationScheme. . . . . . . . . . . . . . 197 6.4.2 PerformanceCurves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.4.3 EfficiencyMapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

See more

The list of books you might like