ResearchinAstronomyandAstrophysicsmanuscriptno. (LATEX: ms1971.tex; printedonJanuary7,2015; 1:22) 5 Morphology and structure of BzK-selected galaxies at z ∼ 2 in the 1 0 ∗ 2 CANDELS-COSMOS field n a J Guan-WenFang1,2,Zhong-YangMa2,3,YangChen2,3,4,XuKong2,3 6 ] A 1 InstituteforAstronomyandHistoryofScienceandTechnology,DaliUniversity,Dali671003,China; G [email protected] . h 2 KeyLaboratoryforResearchinGalaxiesandCosmology,TheUniversityofScienceandTechnologyof p - China,ChineseAcademyofSciences,Hefei,Anhui,230026,China o r 3 CenterforAstrophysics,UniversityofScienceandTechnologyofChina,Hefei230026,China; t s a [email protected] [ 4 SISSA,viaBonomea265,I-34136Trieste,Italy 1 v 7 Received2014??;accepted2014?? 0 1 1 0 Abstract Utilizing a BzK-selected technique, we obtain 14550 star-forming galaxies . 1 (sBzKs) and 1763 passive galaxies (pBzKs) at z ∼ 2 from the K-selected (K < 22.5) 0 AB 5 catalog in the COSMOS/UltraVISTA field. The differential number counts of sBzKs and 1 : pBzKsareconsistentwiththeresultsfromtheliterature.Comparedtotheobservedresults, v i X semi-analyticmodelsofgalaxyformationandevolutionprovidetoofew(many)galaxiesat r high(low)-massend.Moreover,we find thatthe star formationrate (SFR) andstellar mass a of sBzKs follow the relation of main sequence. Based on the HST/Wide Field Camera 3 (WFC3)F160Wimaging,wefindawiderangeofmorphologicaldiversitiesforsBzKs,from diffusetoearly-typespiralstructures,withrelativelyhighM ,largesizeandlowG,while 20 pBzKsareelliptical-likecompactmorphologieswithlowerM ,smallersizeandhigherG, 20 indicatingthemoreconcentratedandsymmetricspatialextentofstellarpopulationdistribu- tioninpBzKsthansBzKs.Furthermore,thesizesofpBzKs(sBzKs)atz ∼2areonaverage twotothree(onetotwo)timessmallerthanthoseoflocalearly-type(late-type)galaxieswith similarstellarmass.Ourfindingsimplythatthetwoclasseshavedifferentevolutionmodes andmassassemblyhistories. Keywords: galaxies:evolution—galaxies:fundamentalparameters—galaxies:structure —galaxies:high-redshift SupportedbytheNationalNaturalScienceFoundationofChina. 2 G.-W.Fangetal. 1 INTRODUCTION Theformationandevolutionofmassivegalaxies(M∗ >1010M⊙)atz ∼2isahotissueofobservational astronomy.Therearemanyreasons,forinstancethepopulationofHubblesequencegalaxiesisalreadyin place at z ∼ 1.5–2 (Fang et al. 2012), the universe star formation rate density (SFRD) peaks at z ∼ 2 (Oeschetal.2012),thespecificSFR(sSFR)evolvesweaklyatz > 2(Gonza´lezetal.2014),thegalaxy’s massgrowsquicklyat1 <z < 3(Ilbertetal.2013),luminousinfraredgalaxies(L8−1000µm > 1011L⊙) aremorecommonatredshiftz ∼1–3(Murphyetal.2013),andthenumberdensityofquasi-stellarobjects (QSOs)hasapeakatz ∼2(Richardsetal.2006). Withinthepastdecade,manynoveltechniqueshavebeenappliedtoselectasampleofmassivegalaxies at the epoch of z ∼ 2 and important investigation has been made in our understanding of high-redshift galaxies(Chapmanetal.2003;Franxetal.2003;Daddietal.2004;Kongetal.2006;Deyetal.2008;Huang etal.2009;Fangetal. 2012;Wang etal. 2012;Fangetal.2014).Suchassubmillimetergalaxies(SMGs withF(850µm)>0.5mJy),distantredgalaxies(DRGswith(J−K) >2.3),ultraluminousinfrared Vega galaxies(ULIRGs;L8−1000µm > 1012L⊙),dusty-obscuredgalaxies(DOGswith(R−[24])Vega > 24), etc.Basedonasimpletwo-color(B−z andz−K)approach,Daddietal.(2004)introducedthecriteria of (z − K) = 2.5 and BzK = (z − K) −(B − z) = −0.2 to select the sample of z ∼ 2 AB AB AB massivegalaxies.ObjectswithBzK >−0.2areclassifiedasstar-forminggalaxies(sBzKs).Sourceswith BzK <−0.2and(z−K) >2.5aredefinedaspassivegalaxies(pBzKs). AB Following the BzK technique in Daddi et al. (2004), many groups selected large samples of BzKs (includesBzKsandpBzKs)fromdifferentsurveys(Kongetal.2006;Laneetal.2007;Blancetal.2008; Hartleyetal.2008;Hayashietal.2009;Cassata etal.2010;McCrackenetal.2010;Onoderaetal.2010; Fang et al. 2012; Ryan et al. 2012). Furthermore, they also investigated the physical properties of these galaxies,e.g.,surfacedensity,stellarmass,SFR,near-infrared(NIR)spectroscopy,morphology,clustering, andsize.SofarthelargestsampleofBzKsisfromMcCrackenetal.(2010),theyfoundthattheclustering ofBzKsismuchstrongerthanthatoffullK-limited(K <22)samplesoffieldgalaxies.Moreover,the AB comovingcorrelationlengthofpBzKs(r ∼7h−1Mpc)islargerthanthatofsBzKs(r ∼5h−1Mpc). 0 0 Forgalaxiesatz ∼2,HubbleSpaceTelescope(HST)/WideFieldCamera3(WFC3)NIRimagingcan providecrucialcluestotherest-frameopticalmorphologies.AtsuchredshiftHST/WFC3NIRbandsmove beyond the Balmer break (λ > 4000 A˚) to the redder wavelengthsand thus probe the light from the rest dominantstellarpopulationofgalaxy.Thiswillenableustostudytherest-frameopticalmorphologiesand structuresofBzKsatz ∼ 2.By usingHST/WFC3 NIRimagesintheHubbleUltraDeepField(HUDF), Cassata etal. (2010)reportedthestructuralfeaturesof 6pBzKs, thesegalaxiesin appearancehavea rel- ativelyregularmorphologyandsmallersizethanlocalellipticalsofanalogousstellarmasses.Thesimilar resultswerealsofoundinRyanetal.(2012),theirpBzHssampleincludes30passivegalaxiesatz ∼2(use the H-band filter replaces the K-band filter). Fang et al. (2012) measured nonparametric morphological parameters of BzKs (50 pBzKs and 173 sBzKs) at z ∼ 2 in the Extended Groth Strip (EGS) field, and foundthatBzKshavebothearlyandlatetypes. This paper will utilize HST/WFC3 F160W images to investigate the structural properties of BzKs. Compared with previous works, we present the larger sample with high resolution NIR imaging, MorphologyandstructureofBzK-selectedgalaxies 3 andforthefirsttimewestudythesizeevolutionofsBzKs.We introducethemulti-bandobservationsand data reduction of the COSMOS field in Section 2. Section 3 describes the selection, redshift distribution and numbercountsof BzKs. We show the SFR−M correlationof BzKs in Section 4. We presentthe ∗ structuralandmorphologicalpropertiesofBzKsinSection5and6,andsummarizeourresultsinSection7. Throughoutthispaper,weadoptastandardcosmologyH =70kms−1Mpc−1,Ω =0.7,andΩ =0.3. 0 Λ M AllmagnitudesusetheABsystemunlessotherwisenoted. 2 OBSERVATIONSANDDATA TheCosmicEvolutionSurvey(COSMOS)istargetedonaspecialareaofthesky,thathasbeenobserved withsomeoftheworld’smostpowerfultelescopesonthegroundandinspace,inwavelengthrangefromX- raysthroughultravioletandvisiblelight,downtoinfraredandradiowaves(Scovilleetal.2007).Inaddition, italsoincludesoptical/infraredspectroscopysurveyusingtheKeckDEIMOSandLRIS,MagellanIMACS, andVLTVIMOSspectrographs.MoredetailsoftheobservationanddatareductionintheCOSMOSfield can be found in McCracken et al. (2012) and Muzzin et al. (2013). The multi-band photometry data we useinourworkisfromtheK-limited(K < 23.4)catalogoftheCOSMOS/UltraVISTAfieldprovidedby Muzzin et al. (2013), which is produced based on the NIR data from the UltraVISTA DR1 (McCracken etal.2012).Moreover,thederivedphysicalparametersweuseinourstudyalsocomefromthecatalogof Muzzinetal.(2013),suchasstellarmass(M∗),SFR(SFRUV,uncorr+SFRIR),andphotometricredshift (z ,ifthereisnospectroscopicredshiftavailable). p In this paper, we will utilize the latest released data of HST/WFC3 F160W high-resolution images in the CANDELS1-COSMOS field to investigatethe morphologicalfeaturesof BzKs in oursample. The CANDELS/wideCOSMOSsurveycoversatotalof∼210arcmin2 atJ−andH−band.The5σ limiting magnitudeis26.9intheF160Wfilter.HST/WFC3F160Wimagesweredrizzledto0′′.06pixel−1.Further detailsareinGroginetal.(2011)forthesurveyandobservationaldesign,andKoekemoeretal.(2011)for thedataproducts. 3 SELECTION,REDSHIFTDISTRIBUTIONANDNUMBERCOUNTSOFBZKS To construct a sample of galaxies at z ∼ 2, we use the BzK color criteria from Daddi et al. (2004). The optical B- and z-band data is taken with Subaru/SuprimeCam (B , z+), while the K data is from j theVISTA/VIRCAM.Inaddition,wealso applythecolorcorrectionusedbyMcCrackenetal. (2010)to B −z+ tokeepunanimouswiththeBzK selectiontechnique.AsshowninFigure1,bluedotsrepresent j 14550sBzKswithBzK > −0.2(solidline)andK < 22.5,andreddotscorrespondto1763pBzKswith BzK <−0.2andz−K >2.5(dot-dashedline).Objectswithz−K <0.3(B−z)−0.5(dashedline), areclassifiedasstars. Figure2showstheredshiftdistributionforBzKsintheCOSMOSfield.Forasampleofgalaxieswith K < 22.5, in Figure 2(a), we find that the BzK color technique successfully selects more than 80% of galaxiesatredshift1.5 < z < 2.7(thisfractiongoestomorethan90%at1.6 < z < 2.6),indicatingthe BzK criteria isquite effectivein selectinggalaxiesatz ∼ 2. Forthe massivegalaxies(M∗ > 1010M⊙) 1 4 G.-W.Fangetal. Fig.1 BzKtwo-colordiagramforallobjectsintheCOSMOSfield.GalaxieswithBzK >−0.2 (solid line) and K < 22.5 are selected as sBzKs. Sources with BzK < −0.2 and z −K > 2.5(dot-dashedline)aredefinedaspBzKs. Thecolorcriterionofstar andgalaxyseparationis z−K =0.3(B−z)−0.5(dashedline). at 1.6 < z < 2.6, the percentage of objects selected as BzKs is > 90% (the dotted red lines in Figure 2(a)).ThemeanredshiftsofsBzKs(Figure2(b))andpBzKs(Figure2(c))are1.75±0.48and1.69±0.33, respectively. In the meantime, we use the extrapolation of the red-blue separation method of Bell et al. (2004)toseparatetheredsequenceandbluecloudintherest-frameU −V vs.M diagram.About91% V ofpBzKscanberoughlydividedintoredsequence,andmostofsBzKs(84%)arelocatedinthebluecloud region. We calculateddifferentialK-bandnumbercountsforallsBzKs andpBzKsinoursample(see Figure 3).For comparisonwith the results frompreviousworks,we also plottedtheir data in Figure3 (Deep3a- F and Daddi-Fof Kong et al. 2006;Lane et al. 2007;Blanc et al. 2008;Hartley et al. 2008;McCracken et al. 2010;Fang et al. 2012).The dot-dashedlinesrepresentthe countsof quiescentgalaxies(QGs) and star-forming galaxies (SFGs) from the semi-analytic model (Kitzbichler & White 2007). In general, our countsagreewiththeresultsfromtheliterature.Owingtotheexistenceofphotometricoffsetsandcosmic variance,thereisadiscrepancyamongdifferentworksforsBzKsandpBzKscounts.Combiningwiththe datafromtheliterature,weconfirmthatthenumbercountsofpBzKshasabreakatK ∼ 21.0,apossible explanationforthisliesinthesmallredshiftrangeofpBzKs(Kongetal.2006).Theredshiftdistributionof ourpBzKssamplealsosupportsthefinding,comparedtosBzKs.Comparedwiththeobservedresults,the semi-analyticmodelpredictstoofew(many)galaxiesathigh(low)-massend. MorphologyandstructureofBzK-selectedgalaxies 5 Fig.2 (a)FractionofBzKs(includesBzKsandpBzKs)inthetotalgalaxysampleofK <22.5. Thedottedredlinesshowthefractionofmassivegalaxies(M∗ >1010M⊙)selectedasBzKs.(b) RedshiftdistributionforsBzKsinoursample.(c)RedshiftdistributionforpBzKsinoursample. 5 3.5 (a) sBzKs (b) pBzKs ag) 4 Kitzbichler & White (2007) ag) 3.0 m m 2.5 5 5 0. 3 0. 2.0 2g/ 2g/ e e 1.5 d 2 d N (/ N (/ 1.0 This paper og 1 HThairstl epya peet ral.(2008) og 0.5 DFaandgd ie-Ft al.(2012) l Lane et al.(2007) l Deep3a-F 0 Blanc et al.(2008) 0.0 McCracken et al.(2010) 19 20 21 22 23 24 19 20 21 22 23 24 K (mag) K (mag) AB AB Fig.3 DifferentialnumbercountsofsBzKsandpBzKsintheCOSMOS/UltraVISTAfield.The resultsfromtheliteratureandthemodelarealsoshowninthisdiagram.Deep3a-FandDaddi-F fromKongetal.(2006). 4 THESTELLARMASS−SFRCORRELATIONOFBZKS For local star-forming galaxies, Brinchmann et al. (2004) found that there is a tight correlation between M∗ and SFR (SFR∝M∗α), and called it main sequence (MS). At redshift 0.5 < z < 3, the MS is also confirmed (Daddi et al. 2007; Elbaz et al. 2007; Rodighiero et al. 2011; Fang et al. 2012), but the slope (α)rangesfrom0.6to1.0(relyingondifferentsampleandtheapproachesforcalculatingM andSFR).In ∗ Figure4,weshowtherelationofM andSFRofBzKsintheCOSMOSfield.ForsBzKs,abest-fitslope ∗ α = 0.67±0.06(blueline)isfound,inagreementwiththoseprovidedbyDaddietal.(2007)(α ∼ 0.9, grayline)andRodighieroetal.(2011)(α∼0.79,cyanline).Thediscrepancyfordifferentslopesisdueto thedifferentmethodsinderivingSFR(Rodighieroetal.2014).Ontheotherhand,we findthattheSFRs andstellarmassesofpBzKsalsoshowacorrelation,butwithlowerSFRscomparedtosBzKsforagiven stellarmass.GraysquaresinFigure4representsBzKsinPannellaetal.(2009).FromKarimetal.(2011), SFGs(graytriangles)withdifferentmassandredshiftbinsarealsoplottedinthisfigure. 6 G.-W.Fangetal. Fig.4 Relationshipofstellarmassvs. SFRforBzKsin theCOSMOSfield.Solidsquaresand trianglesrepresentthestar-forminggalaxiesfromPannellaetal.(2009)andKarimetal.(2011), respectively.GrayandcyanlinescorrespondtotheMSfromDaddietal.(2007)andRodighiero etal.(2011),respectively. 5 STRUCTURESOFBZKS In order to analyze the structural properties of BzKs in the CANDELS-COSMOS field, we employ the latest catalog2 (version 1.0) providedby van der Wel et al. (2012). Galaxy sizes (r ) are measured from e theHST/WFC3F160Wimaging.Withinamatchedradiusof0′′.5,weobtainthestructuralparametersof 52pBzKsand378sBzKsfromvanderWeletal.(2012).TheM −r relationsareshowninFigure5of ∗ e pBzKsandsBzKs,respectively.Shenetal.(2003)providedtherelationswith1σdispersionforlocallate- andearly-typegalaxies(LTGsandETGs)asplottedinthisfigure.Andforcomparison,otherdatafromthe literaturearealsoshowninFigure5(b)(Cassataetal.2010;Gobatetal.2012;Ryanetal.2012;Szomoruet al.2012).FromFigure5,wefindthatthesizesofpBzKsandmassivesBzKsatz ∼2aresmallerthantheir localcounterpartsatafixedstellarmass.Moreover,wealsoseeadiversityofstructuralpropertiesamong BzKs,somesourcesaresimilartolocalgalaxies,butthereisalsotheexistenceofmassivecompactBzKs, comparedto present-day counterparts.Generally, pBzKs have elliptical-like compactstructureswith low r ,whilesBzKsarerelativelyextendandirregular,withhigherr . e e TofurtherinvestigatethesizeevolutionwithredshiftforourBzKssampleatz ∼2.Weshowthesizes for pBzKs (1.85±1.09 kpc) and sBzKs (2.63±1.36 kpc) in Figure 6, respectively. The effective radii of QGs and SFGs from the literature are also plotted in this figure (Shen et al. 2003;Cassata et al.2010; Gobatetal.2012;Ryanetal.2012;Szomoruetal.2012;Fanetal.2013;Pateletal.2013;Morishitaetal. 2014).AsshowninFigure6,wefindthatthesizesofpBzKsareafactorof∼ 2−3smallerthanthoseof localcounterparts.ForsBzKs, themeansize isonetotwotimessmallerthanthoseoftypicallocalLTGs withcomparablemass.CombinedwiththedatapointsofPateletal.(2013)andMorishitaetal.(2014),the differenceofsizes forpBzKsandsBzKs indicatesthatthetwo classes havedifferentevolutionprocesses andassemblyhistories,suchasminormergerswithalowincreaseingalaxy’smassandsecularevolution 2 MorphologyandstructureofBzK-selectedgalaxies 7 Fig.5 Distribution of M vs. r for BzKs ((a) sBzKs and (b) pBzKs) in the CANDELS- ∗ e COSMOSfield.TheresultsfromtheliteraturearealsoshowninFigure5(b)(Cassataetal.2010; Gobatetal.2012;Ryanetal.2012;Szomoruetal.2012). Fig.6 Evolutionofthe effectiveradius(r )with redshiftforpBzKsandsBzKsin oursample. e TheeffectiveradiiofQGsandSFGsfromtheliteraturearealsoplottedinthisfigure.Themean sizeofpBzKsis1.85±1.09kpc(redsolidcircle),whilesBzKsis2.63±1.36kpc(bluesolid circle). Left: Green and cyan lines correspond to r ∝ (1 + z)−1.16 (Patel et al. 2013) and e r ∝ (1+z)−1.06 (Morishitaetal.2014),respectively.Right:Greenandcyanlinesrepresent e r ∝(1+z)−0.63(Pateletal.2013)andr ∝(1+z)−0.56(Morishitaetal.2014),respectively. e e withoutmergers(ormonolithiccollapsemode).ForthesizeevolutionofpBzKs,ourobservationssupport thatthepredictionsfromminormergers.AsregardsthesizegrowthofsBzKs,apossibleexplanationlies ininternalevolutionthroughsomequenchedmechanisms(AGNfeedbackorstellarwinds). 6 MORPHOLOGIESOFBZKS Using the WFC3 on board the HST, CANDELS provided high resolution F160W imaging data ( ′′ −1).Inourwork,weutilizeHST/WFC3F160Wimagestostudythemorphologicaldiversities 8 G.-W.Fangetal. 0.8 0.8 pBzKs sBzKs 0.7 0.6 0.7 0.5 0.4 0.3 0.6 -0.5 -1.0 -1.5 -2.0 -2.5 ni Gi 0.5 0.4 0.3 HST/WFC3 F160W All images are 3" square -0.5 -1.0 -1.5 -2.0 -2.5 M 20 Fig.7 Distribution of BzKs in the M vs. Gini coefficient plane. The red and blue circles 20 representpBzKsandsBzKs,respectively. of z ∼ 2 BzKs. To clearly analyze their structural features, we calculated nonparametricmorphological parametersofgalaxy,suchasGinicoefficient(G;therelativedistributionofthegalaxypixelfluxvalues) andM (thesecond-ordermomentofthebrightest20%ofthegalaxy’sflux)(Abrahametal.1996;Lotz 20 etal.2004). InFigure7,theredandbluecirclesrepresentpBzKsandsBzKs,respectively.Meanwhile,basedonthe valuesofGandM of52pBzKsand378sBzKs,theirstampimages(3′′×3′′)arealsoplottedinthisfig- 20 ure.AsshowninFigure7,wefindthatpBzKsinappearancehaveregularandcompact(likespheroid),and thatshowlowM andhighGinrest-frameopticalmorphology.ForsBzKs,thereisawiderangeofmor- 20 phologicaldiversities, includingclumpy,irregular,extended,and early-typespiral-like morphologies,but mostofthemshowdiffusestructures,withhighM andlowG.Thatindicatesthemoreconcentratedand 20 symmetricspatialextentofstellarpopulationdistributioninpBzKsthansBzKs. Furthermore,we derived the meanvaluesofG and M forpBzKs andsBzKs, correspondingto (0.63,−1.70)and (0.51,−1.49), 20 respectively.Ourfindingsfurtherimplythatpassivegalaxiesandstar-forminggalaxieshavedifferentevo- lutionmodesandmassassemblyhistories. 7 SUMMARY Based on a BzK-selected technique, we present 14550 star-forming galaxies (sBzKs) and 1763 passive galaxies (pBzKs) at ∼ from the -selected ( ) catalog of the COSMOS/UltraVISTA MorphologyandstructureofBzK-selectedgalaxies 9 field. Utilizing data from HST WFC3/F160W imaging in the CANDELS-EGS field, we investigate the morphologicalandstructuraldiversitiesofthesegalaxies.Ourfindingsareasfollows: (1)WefindthattheBzKcolortechniquesuccessfullyselects>80%galaxiesatredshift1.4<z <2.7 (thisfraction> 90%at 1.6 < z < 2.6),indicatingthe BzK criteria is a quite effectivegalaxyselection methodatz ∼2.Moreover,forthemassivegalaxies(M∗ >1010M⊙)at1.6<z <2.6,thepercentageof sourcesselectedasBzKsis>90%. (2) The differential number counts of sBzKs and pBzKs agree with the results from the literature. Compared with the observedresults, models for galaxy formationand evolution providetoo few (many) galaxiesathigh(low)-massend. (3) We find that the star formation rate (SFR) and stellar mass of sBzKs follow the relation of main sequence(SFR∝M0.67±0.06).pBzksalsoshowscorrelationbetweenSFRsandstellarmassesbutwithtoo ∗ lowSFRsforpBzKs.Moreover,about91%ofpBzkscanberoughlydividedintoredsequence. (4)WefindthatthesizesofpBzKs(1.85±1.09kpc)andsBzKs(2.63±1.36kpc)atz ∼2aresmaller thantheirlocalcounterpartsatafixedstellarmass.Moreover,wealsoseeadiversityofstructuralproperties amongBzKs,somesourcesaresimilartolocalgalaxies,butthereisalsotheexistenceofmassivecompact BzKs,comparedtopresent-daycounterparts.ThesizesofsBzKsarelargerthanpBzKsingeneral,evenin high-masssystems,butsomehaveverycompactstructures,withr <1kpc. e (5)WefindawiderangeofmorphologicaldiversitiesforsBzKs,fromextendedordiffusetoearly-type spiral-likestructures,whilepBzKsarerelativelyregularandcompact(likespheroid).Moreover,wecalcu- latethemeanvaluesofGandM forpBzKsandsBzKs,correspondingto(0.63,−1.70)and(0.51,−1.49), 20 respectively.ThesBzKsshowhighM andlowG,whichindicateslessconcentratedandsymmetricspa- 20 tialdistributionofthestellarmassofsBzKsatz ∼2,comparingtopBzKs.Ourfindingsimplythatthetwo classeshavedifferentevolutionmodesandmassassemblyhistories. Acknowledgements This work is based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS5-26555. This work is supported by the National Natural Science Foundation of China (NSFC, Nos. 11303002, 11225315, 1320101002, 11433005, and 11421303), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, No. 20123402110037),theStrategicPriorityResearchProgram“TheEmergenceofCosmologicalStructures” oftheChineseAcademyofSciences(No.XDB09000000),theChineseNational973FundamentalScience Programs(973program)(2015CB857004),theYunnanAppliedBasicResearchProjects(2014FB155)and theOpenResearchProgramofKeyLaboratoryforResearchinGalaxiesandCosmology,CAS. References Abraham,R.G.,Tanvir,N.R.,Santiago,B.X.,etal.1996,MNRAS,279,L47 Bell,E.F.,Wolf,C.,Meisenheimer,K.,etal.2004,ApJ,608,752 Blanc,G.A.,Lira,P.,Barrientos,L.,etal.2008,ApJ,681,1099 Cassata,P.,Giavalisco,M.,Guo,Y.,etal.2010,ApJ,714,L79 Chapman,S.C.,Blain,A.W.,Ivison,R.J.,etal.2003,Nature,422,695 10 G.-W.Fangetal. Daddi,E.,Cimatti,A.,Renzini,A.,etal.2004,ApJ,617,746 Daddi,E.,Dickinson,M.,Morrison,G.,etal.2007,ApJ,670,156 Dey,A.,Soifer,B.T.,Desai,V.,etal.2008,ApJ,677,943 Daddi,E.,Cimatti,A.,Renzini,A.,etal.2004,ApJ,617,746 Dey,A.,Soifer,B.T.,Desai,V.,etal.2008,ApJ,677,943 Elbaz,D.,Daddi,E.,LeBorgne,D.,etal.2007,A&A,468,33 Fan,L.,Fang,G.,Chen,Y.,etal.2013,ApJ,771,L40 Fang,G.,Kong,X.,Chen,Y.,etal.2012,ApJ,751,109 Fang,G.,Huang,J.-S.,Willner,S.P.,etal.2014,ApJ,781,63 Franx,M.,Labbe´,I.,Rudnick,G.,etal.2003,ApJ,587,L79 Gobat,R.,Strazzullo,V.,Daddi,E.,etal.2012,ApJ,759,L44 Gonza´lez,V.,Bouwens,R.,Illingworth,G.,etal.2014,ApJ,781,34 Grogin,N.A.,Kocevski,D.D.,Faber,S.M.,etal.2011,ApJS,197,35 Hartley,W.G.,Lane,K.P.,Almaini,O.,etal.2008,MNRAS,391,1301 Hayashi,M.,Motohara,K.,Shimasaku,K.,etal.2009,ApJ,691,140 Huang,J.-S.,Faber,S.M.,Daddi,E.,etal.2009,ApJ,700,183 Ilbert,O.,McCracken,H.J.,LeFe`vre,O.,etal.2013,A&A,556,A55 Karim,A.,Schinnerer,E.,Mart´ınez-Sansigre,A.,etal.2011,ApJ,730,61 Kitzbichler,M.G.,&White,S.D.M.2007,MNRAS,376,2 Koekemoer,A.M.,Faber,S.M.,Ferguson,H.C.,etal.2011,ApJS,197,36 Kong,X.,Daddi,E.,Arimoto,N.,etal.2006,ApJ,638,72 Lane,K.P.,Almaini,O.,Foucaud,S.,etal.2007,MNRAS,379,L25 Lotz,J.M.,Primack,J.,&Madau,P.2004,AJ,128,163 McCracken,H.J.,Capak,P.,Salvato,M.,etal.2010,ApJ,708,202 McCracken,H.J.,Milvang-Jensen,B.,Dunlop,J.,etal.2012,A&A,544,A156 Morishita,T.,Ichikawa,T.,&Kajisawa,M.2014,ApJ,785,18 Murphy,E.J.,Stierwalt,S.,Armus,L.,etal.2013,ApJ,768,2 Muzzin,A.,Marchesini,D.,Stefanon,M.,etal.2013,ApJS,206,8 Oesch,P.A.,Bouwens,R.J.,Illingworth,G.D.,etal.2012,ApJ,759,135 Onodera,M.,Arimoto,N.,Daddi,E.,etal.2010,ApJ,715,385 Pannella,M.,Carilli,C.L.,Daddi,E.,etal.2009,ApJ,698,116 Patel,S.G.,vanDokkum,P.G.,Franx,M.,etal.2013,ApJ,766,15 Richards,G.T.,Strauss,M.A.,Fan,X.,etal.2006,AJ,131,2766 Rodighiero,G.,Daddi,E.,Baronchelli,I.,etal.2011,ApJ,739,40 Rodighiero,G.,Renzini,A.,Daddi,E.,etal.2014,MNRAS,443,19 Ryan,R.E.,Jr.,McCarthy,P.J.,Cohen,S.H.,etal.2012,ApJ,749,53 Scoville,N.,Aussel,H.,Brusa,M.,etal.2007,ApJS,172,1 Shen,S.,Mo,H.J.,White,S.D.M.,etal.2003,MNRAS,343,978 Szomoru,D.,Franx,M.,&vanDokkum,P.G.2012,ApJ,749,121