ebook img

Monte Carlo methods PDF

433 Pages·2020·8.625 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Monte Carlo methods

Adrian Barbu · Song-Chun Zhu Monte Carlo Methods Monte Carlo Methods Adrian Barbu • Song-Chun Zhu Monte Carlo Methods AdrianBarbu Song-ChunZhu DepartmentofStatistics DepartmentsofStatisticsandComputerScience FloridaStateUniversity UniversityofCalifornia,LosAngeles Tallahassee,FL,USA LosAngeles,CA,USA ISBN978-981-13-2970-8 ISBN978-981-13-2971-5 (eBook) https://doi.org/10.1007/978-981-13-2971-5 ©SpringerNatureSingaporePteLtd.2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownor hereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditors giveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissions thatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmaps andinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,Singapore Preface Real-world systems studied in sciences (e.g., physics, chemistry, and biology) and engineering (e.g., vision, graphics, machine learning, and robotics) involve complex interactionsbetweenlargenumbersofcomponents.Therepresentationsforsuchsystems areprobabilisticmodelsdefinedongraphsinhigh-dimensionalspaces,towhichanalytic solutions are often unavailable. As a result, Monte Carlo methods have been used as a common tool for simulation, estimation, inference, and learning in science and engineering. It is no surprise that the Metropolis algorithm topped the list of ten most frequently used algorithms for practice of sciences in the twentieth century (Dongarra andSullivan2000).Withtheever-growingcomputingcapacities,researchersaretackling morecomplexproblemsandadoptingmoreadvancedmodels.MonteCarlomethodswill continue to play important roles in the development of sciences and engineering in the twenty-first century. The recent use of Hamiltonian Monte Carlo and Langevin Monte Carlo in developing stochastic gradient descent algorithm in deep learning is another exampleofthistrend. In history, several communities have contributed to the evolution of Monte Carlo methods. • Physicsandchemistry:theearlyMetropolisalgorithm(Metropolis,Rosenbluth,Rosen- bluth, Teller, and Teller 1953), simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983), cluster sampling (Swendsen and Wang, 1987; Edwards and Sokal 1988), and recent work on disconnectivity graphs (Becker and Karpus 1997) for visualizing the landscapeofspin-glassmodels. • Probabilityandstatistics:stochasticgradient(RobinandMonro1951,Younes1988), Hastings dynamics (Hastings 1970), data augmentation (Tanner and Wong 1987), reversible jumps (Green 1995), and dynamic weighting (Wong and Liang 1997) for studying bioinformatics and numerous analyses for bounding the convergence of MarkovchainMonteCarlo(Diaconis1988;DiaconisandStroock1991;andLiu1991). • Theoreticalcomputerscience:theconvergencerateofclusteringsampling(Jerrumand Sinclair1989,CooperandFrieze1999). • Computer vision and pattern theory: Gibbs sampler (Geman and Geman, 1984) for image processing, jump diffusion (Miller and Grenander 1994) for segmentation, v vi Preface the condensation or particle filtering algorithm for object tracking (Isard and Blake 1996),recentworkondata-drivenMarkovchainMonteCarlo(TuandZhu2002),and generalized Swendsen-Wang cuts (Barbu and Zhu 2005) for image segmentation and parsing. Consideringthatthesediverseareasspeakdifferentlanguages,interdisciplinarycommu- nicationhasbeenrare.Thisposesaconsiderablechallengeforpractitionersincomputer scienceandengineeringwhodesiretouseMonteCarlomethods. Inonerespect,effectiveMonteCarloalgorithmsmustexploretheunderlyingstructures ofaproblemdomain,andtheyarethusdomainorproblemspecificandhardlyaccessible to outsiders. For example, many important works in physics, like Swendsen and Wang (1987),areonly2–3pageslongandincludenobackgroundorintroduction,causingthem toappearutterlymysterioustocomputerscientistsandengineers. On the other hand, general or domain agnostic Monte Carlo algorithms invented by statisticians are well-explained but are usually found not very effective when they are implemented in generic ways by engineers without utilizing the structures of the underlying models and representations. As a result, there is a widespread misconception amongscientistsandgraduatestudentsthatthesemethodsaretooslowandusuallydonot work.ThisisunfairtotheMonteCarlomethodsandunfortunatefortheinnocentstudents. This textbook is written for researchers and graduate students in statistics, computer science,andengineering,basedonmaterialsanddraftversionstaughtbytheseniorauthor intheDepartmentofStatisticsandComputerScienceattheUniversityofCalifornia,Los Angeles,inthepast10years.ItcoversabroadrangeoftopicsinMonteCarlocomputing withboththeoreticalfoundationsandintuitiveconceptsdevelopedinthefourcommunities above while omitting small tricks which are less applicable or do not work in practice. It illustrates the art of Monte Carlo design using classical problems in computer vision, graphics, and machine learning and thus can be used as a reference book by researchers in computer vision and pattern recognition, machine learning, graphics, robotics, and artificialintelligence. The authors would like to thank many current and former PhD students at the UCLA for their contributions to this book. Mitchell Hill contributed Chaps.9, 10, and 11 based on his thesis work which has enriched the contents of the book. Zachary Stokes worked on polishing many details in the manuscript. Maria Pavlovskaia, Kewei Tu, Zhuowen Tu, Jacob Porway, Tianfu Wu, Craig Yu, Ruiqi Gao, and Erik Nijkamp have contributed materials and figures as examples. Two UCLA colleagues, Professors Yingnian Wu and QingZhou,havegiveninvaluablecommentsforimprovingthebook. TheauthorswouldalsoliketoacknowledgethesupportofDARPA,ONRMURIgrants, andNSFduringthedevelopmentofthisbook. Tallahassee,FL,USA AdrianBarbu LosAngeles,CA,USA Song-ChunZhu September,2018 Contents 1 IntroductiontoMonteCarloMethods ......................................... 1 1.1 Introduction................................................................. 1 1.2 MotivationandObjectives.................................................. 2 1.3 TasksinMonteCarloComputing.......................................... 3 1.3.1 Task1:SamplingandSimulation ................................ 4 1.3.2 Task2:EstimatingQuantitiesbyMonteCarloSimulation ..... 7 1.3.3 Task3:OptimizationandBayesianInference................... 9 1.3.4 Task4:LearningandModelEstimation......................... 11 1.3.5 Task5:VisualizingtheLandscape .............................. 12 References.......................................................................... 16 2 SequentialMonteCarlo .......................................................... 19 2.1 Introduction................................................................. 19 2.2 Samplinga1-DimensionalDensity........................................ 19 2.3 ImportanceSamplingandWeightedSamples............................. 20 2.4 SequentialImportanceSampling(SIS).................................... 24 2.4.1 Application:TheNumberofSelf-AvoidingWalks.............. 25 2.4.2 Application:ParticleFilteringforTrackingObjects inaVideo.......................................................... 28 2.4.3 SummaryoftheSMCFramework ............................... 31 2.5 Application:RayTracingbySMC......................................... 33 2.5.1 Example:GlossyHighlights...................................... 34 2.6 PreservingSampleDiversityinImportanceSampling.................... 35 2.6.1 ParzenWindowDiscussion....................................... 39 2.7 MonteCarloTreeSearch................................................... 41 2.7.1 PureMonteCarloTreeSearch ................................... 42 2.7.2 AlphaGo........................................................... 44 2.8 Exercises .................................................................... 46 References.......................................................................... 48 vii viii Contents 3 MarkovChainMonteCarlo:TheBasics ....................................... 49 3.1 Introduction................................................................. 50 3.2 MarkovChainBasics....................................................... 50 3.3 TopologyofTransitionMatrix:CommunicationandPeriod............. 53 3.4 ThePerron-FrobeniusTheorem............................................ 56 3.5 ConvergenceMeasures..................................................... 58 3.6 MarkovChainsinContinuousorHeterogeneousStateSpaces .......... 61 3.7 ErgodicityTheorem ........................................................ 62 3.8 MCMCforOptimizationbySimulatedAnnealing ....................... 62 3.8.1 PageRankExample............................................... 65 3.9 Exercises .................................................................... 67 References.......................................................................... 70 4 MetropolisMethodsandVariants ............................................... 71 4.1 Introduction................................................................. 71 4.2 TheMetropolis-HastingsAlgorithm....................................... 72 4.2.1 TheOriginalMetropolis-HastingsAlgorithm ................... 72 4.2.2 AnotherVersionoftheMetropolis-HastingsAlgorithm........ 74 4.2.3 OtherAcceptanceProbabilityDesigns........................... 74 4.2.4 KeyIssuesinMetropolisDesign................................. 75 4.3 TheIndependenceMetropolisSampler.................................... 75 4.3.1 TheEigenstructureoftheIMS ................................... 77 4.3.2 GeneralFirstHittingTimeforFiniteSpaces ................... 78 4.3.3 HittingTimeAnalysisfortheIMS .............................. 78 4.4 ReversibleJumpsandTrans-DimensionalMCMC ....................... 80 4.4.1 ReversibleJumps.................................................. 80 4.4.2 ToyExample:1DRangeImageSegmentation .................. 81 4.5 Application:CountingPeople.............................................. 85 4.5.1 MarkedPointProcessModel..................................... 85 4.5.2 InferencebyMCMC.............................................. 86 4.5.3 Results............................................................. 87 4.6 Application:FurnitureArrangement ...................................... 88 4.7 Application:SceneSynthesis .............................................. 90 4.8 Exercises .................................................................... 95 References.......................................................................... 96 5 GibbsSamplerandItsVariants.................................................. 97 5.1 Introduction................................................................. 97 5.2 GibbsSampler .............................................................. 99 5.2.1 AMajorProblemwiththeGibbsSampler....................... 101 Contents ix 5.3 GibbsSamplerGeneralizations ............................................ 102 5.3.1 Hit-and-Run....................................................... 103 5.3.2 GeneralizedGibbsSampler ...................................... 103 5.3.3 GeneralizedHit-and-Run......................................... 104 5.3.4 SamplingwithAuxiliaryVariables............................... 105 5.3.5 SimulatedTempering ............................................. 105 5.3.6 SliceSampling .................................................... 106 5.3.7 DataAugmentation ............................................... 107 5.3.8 MetropolizedGibbsSampler..................................... 108 5.4 DataAssociationandDataAugmentation ................................ 110 5.5 JuleszEnsembleandMCMCSamplingofTexture....................... 112 5.5.1 TheJuleszEnsemble:AMathematicalDefinition ofTexture.......................................................... 112 5.5.2 TheGibbsEnsembleandEnsembleEquivalence ............... 115 5.5.3 SamplingtheJuleszEnsemble ................................... 116 5.5.4 Experiment:SamplingtheJuleszEnsemble..................... 117 5.6 Exercises .................................................................... 119 References.......................................................................... 120 6 ClusterSamplingMethods ....................................................... 123 6.1 Introduction................................................................. 123 6.2 PottsModelandSwendsen-Wang ......................................... 124 6.3 InterpretationsoftheSWAlgorithm ...................................... 127 6.3.1 Interpretation1:Metropolis-HastingsPerspective .............. 128 6.3.2 Interpretation2:DataAugmentation............................. 131 6.4 SomeTheoreticalResults .................................................. 135 6.5 Swendsen-WangCutsforArbitraryProbabilities ........................ 137 6.5.1 Step1:Data-DrivenClustering .................................. 138 6.5.2 Step2:ColorFlipping ............................................ 139 6.5.3 Step3:AcceptingtheFlip........................................ 140 6.5.4 ComplexityAnalysis.............................................. 142 6.6 VariantsoftheClusterSamplingMethod ................................. 142 6.6.1 ClusterGibbsSampling:The“Hit-and-Run”Perspective ...... 143 6.6.2 TheMultipleFlippingScheme................................... 144 6.7 Application:ImageSegmentation ......................................... 145 6.8 MultigridandMulti-levelSW-cut ......................................... 148 6.8.1 SW-CutsatMultigrid ............................................ 150 6.8.2 SW-cutsatMulti-level ........................................... 152 6.9 SubspaceClustering........................................................ 153 6.9.1 SubspaceClusteringbySwendsen-WangCuts.................. 155 6.9.2 Application:SparseMotionSegmentation ...................... 158 x Contents 6.10 C4:ClusteringCooperativeandCompetitiveConstraints................ 163 6.10.1 OverviewoftheC4Algorithm................................... 165 6.10.2 Graphs,Coupling,andClustering ............................... 166 6.10.3 C4AlgorithmonFlatGraphs .................................... 172 6.10.4 ExperimentsonFlatGraphs ..................................... 175 6.10.5 CheckerboardIsingModel ....................................... 176 6.10.6 C4onHierarchicalGraphs ...................................... 181 6.10.7 ExperimentsonHierarchicalC4 ................................. 183 6.11 Exercises .................................................................... 184 References.......................................................................... 186 7 ConvergenceAnalysisofMCMC................................................ 189 7.1 Introduction................................................................. 189 7.2 KeyConvergenceTopics ................................................... 189 7.3 PracticalMethodsforMonitoring ......................................... 191 7.4 CouplingMethodsforCardShuffling..................................... 193 7.4.1 ShufflingtotheTop............................................... 193 7.4.2 RiffleShuffling.................................................... 194 7.5 GeometricBounds,BottleneckandConductance......................... 196 7.5.1 GeometricConvergence .......................................... 196 7.6 Peskun’sOrderingandErgodicityTheorem............................... 200 7.7 PathCouplingandExactSampling........................................ 201 7.7.1 CouplingFromthePast........................................... 202 7.7.2 Application:SamplingtheIsingModel.......................... 203 7.8 Exercises .................................................................... 205 References.......................................................................... 209 8 DataDrivenMarkovChainMonteCarlo ...................................... 211 8.1 Introduction................................................................. 211 8.2 IssueswithSegmentationandIntroductiontoDDMCMC ............... 211 8.3 SimpleIllustrationoftheDDMCMC...................................... 213 8.3.1 DesigningMCMC:TheBasicIssues ............................ 216 8.3.2 ComputingProposalProbabilitiesintheAtomicSpaces: AtomicParticles................................................... 217 8.3.3 ComputingProposalProbabilitiesinObjectSpaces: ObjectParticles ................................................... 219 8.3.4 ComputingMultiple,DistinctSolutions:SceneParticles....... 220 8.3.5 TheΨ-WorldExperiment ........................................ 221 8.4 ProblemFormulationandImageModels ................................. 223 8.4.1 BayesianFormulationforSegmentation ........................ 223 8.4.2 ThePriorProbability ............................................. 224 8.4.3 TheLikelihoodforGreyLevelImages .......................... 224

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.