The MOLLER Experiment Measurement Of a Lepton Lepton Electroweak Reaction An Ultra-precise Measurement of the Weak Mixing Angle using Møller Scattering An MIE proposal to The United States Department of Energy TheMOLLERCollaboration September12,2011 The MOLLER Collaboration J.Benesch,P.Brindza,R.D.Carlini,J-P.Chen,E.Chudakov,S.Covrig,C.W.deJager,A.Deur,D.Gaskell, J.Gomez,D.W.Higinbotham,J.LeRose,D.Mack,R.Michaels,B.Moffit,S.Nanda,G.R.Smith,P.Solvignon, R.Suleiman,B.Wojtsekhowski JeffersonLab H.Baghdasaryan,G.Cates,D.Crabb,D.Day,M.M.Dalton,C.Hanretty,N.Kalantarians,N.Liyanage, V.V.Nelyubin,B.Norum,K.Paschke,M.Shabestari,J.Singh,A.Tobias,K.Wang,X.Zheng UniversityofVirginia P.Decowski,S.Johnston,K.S.Kumar[Contact∗],J.Mammei,L.Mercado,R.Miskimen,S.Riordan,J.Wexler UniversityofMassachusetts,Amherst J.Birchall,M.T.W.Gericke,W.R.Falk,L.Lee,R.Mahurin,S.A.Page,W.T.H.vanOers,V.Tvaskis UniversityofManitoba V.Bellini,A.Giusa,F.Mammoliti,G.Russo,M.L.Sperduto,C.M.Sutera INFNSezionediCataniaandUniversita’diCatania D.S.Armstrong,T.D.Averett,W.Deconinck,J.Katich,J.P.Leckey CollegeofWilliam&Mary K.Grimm,K.Johnston,N.Simicevic,S.Wells LouisianaTechUniversity L.ElFassi,R.Gilman,G.Kumbartzki,R.Ransome, RutgersUniversity J.Arrington,K.Hafidi,P.E.Reimer,J.Singh ArgonneNationalLab P.Cole,D.Dale,T.A.Forest,D.McNulty IdahoStateUniversity K.Aulenbacher,S.Baunack,F.Maas,V.Tioukine JohannesGutenbergUniversitaetMainz W.Duvall,A.Lee,M.Pitt VirginiaPolytechnicInstituteandStateUniversity E.Fuchey,F.Itard,C.Mun˜ozCamacho LPCClermont,Universite´ BlaisePascal J.H.Lee,P.M.King,J.Roche OhioUniversity E.Cisbani,S.Frullani,F.Garibaldi INFNGruppoCollegatoSanita’andIstitutoSuperiorediSanita’ R.DeLeo,L.Lagamba,S.Marrone INFN,SezionediBariandUniversitydiBari F.Meddi,G.M.Urciuoli DipartimentodiFisicadell’Universita’laSapienzaandINFNSezionediRoma R.Holmes,P.Souder SyracuseUniversity G.Franklin,B.Quinn CarnegieMellonUniversity C.A.Davis,W.D.Ramsay TRIUMF J.A.Dunne,D.Dutta MississippiStateUniversity A.T.Katramatou,G.G.Petratos KentStateUniversity A.Ahmidouch,S.Danagoulian NorthCarolinaA&TStateUniversity S.Kowalski,V.Sulkosky MassachusettsInstituteofTechnology J.Napolitano,P.Stoler RensselaerPolytechnicInstitute O.Glamazdin,R.Pomatsalyuk NSCKharkovInstituteofPhysicsandTechnology J.Erler UniversidadAuto´nomadeMe´xico M.J.Ramsey-Musolf UniversityofWisconsin,Madison Yu.G.Kolomensky UniversityofCalifornia,Berkeley K.A.Aniol CaliforniaStateU.(LosAngeles) J.W.Martin UniversityofWinnipeg E.Korkmaz UniversityofNorthernBritishColumbia T.Holmstrom LongwoodUniversity S.F.Pate NewMexicoStateUniversity G.Ron HebrewUniversityofJerusalem D.T.Spayde HendrixCollege P.Markowitz FloridaInternationalUniversity F.R.Wesselmann XavierUniversityofLouisiana C.Hyde OldDominionUniversity F.Benmokhtar ChristopherNewportUniversity E.Schulte TempleUniversity M.Capogni IstitutoNazionalediMetrologiadelleRadiazioniIonizzantiENEAandINFNGruppoCollegatoSanita’ R.Perrino INFNSezionediLecce ∗[email protected] ExecutiveSummary We present the physics case and experimental design for the MOLLER project, in which we propose to measure the parity-violating asymmetry A in polarized electron-electron (Møller) scattering. In the PV StandardModel,A isduetotheinterferencebetweentheelectromagneticamplitudeandtheweakneutral PV currentamplitude,thelatterbeingmediatedbytheZ0 boson. A ispredictedtobe≈ 35partsperbillion PV (ppb) at our kinematics. Our goal is to measure A to a precision of 0.73 ppb. The result would yield a PV measurement of the weak charge of the electron Qe to a fractional accuracy of 2.3% at an average Q2 of W 0.0056GeV2. The measurement is sensitive to the interference of the electromagnetic amplitude with new neutral current amplitudes as weak as ∼ 10−3 · G from as yet undiscovered high energy dynamics. Such a F level of sensitivity is unlikely to be matched by any experiment measuring a flavor- and CP-conserving process over the next decade, and results in a unique window to new physics at the multi-TeV scale in a manner complementary to direct searches at high energy colliders. Some examples of physics beyond the StandardModeltowhichourmeasurementextendssensitivitywellbeyondrecentandongoinglowenergy measurementsincludenewZ(cid:48) bosons,electroncompositeness,supersymmetryanddoublychargedscalars. IntheStandardModel,theQe measurementyieldsadeterminationoftheweakmixinganglesin2θ W W with an uncertainty of ±0.00026(stat) ± 0.00013(syst), similar to the accuracy of the single best such determination from high energy colliders. Thus, our result could potentially influence the central value of this fundamental electroweak parameter, a critical input to deciphering signals of any physics beyond the StandardModelthatmightbeobservedattheLargeHadronCollider(LHC). ThemeasurementwouldbecarriedoutinHallAatJeffersonLaboratory,wherea11GeVlongitudinally polarized electron beam would be incident on a 1.5 m liquid hydrogen target. Møller electrons (beam electrons scattering off target electrons) in the full range of the azimuth and spanning the polar angular range5mrad< θ <19mrad,wouldbeseparatedfrombackgroundandbroughttoaringfocus∼ 30m lab downstream of the target by a spectrometer system consisting of a pair of toroidal magnet assemblies and precision collimators. The Møller ring would be intercepted by a system of quartz detectors; the resulting Cherenkovlightwouldprovidearelativemeasureofthescatteredflux. Longitudinally polarized electrons are generated via photoemission on a GaAs photocathode by circu- larly polarized laser light, enabling rapid polarization (helicity) reversal and suppression of spurious sys- tematic effects. A would be extracted from the fractional difference in the integrated Cherenkov light PV response between helicity reversals. Additional systematic suppression to the sub-ppb level would be ac- complishedbyperiodicallyreversingthesignofthephysicsasymmetrybythreeindependentmethods. Simultaneouslywithdatacollection, thefluctuationsintheelectronbeamenergyand trajectory andits potential systematic effects on A would be precisely monitored, active feedback loops would minimize PV beam helicity correlations, and detector response to beam fluctuations would be continuously calibrated. Background fractions and their helicity-correlated asymmetries would be measured by dedicated auxiliary detectors. TheabsolutevalueofQ2 wouldbecalibratedperiodicallyusingtrackingdetectors. Thelongitu- dinalelectronbeampolarizationwouldbemeasuredcontinuouslybytwoindependentpolarimetersystems. Astrongcollaborationwithextensiveexperienceinsimilarexperimentsiscommittedtothedesign,con- structionanddeploymentoftheapparatusandtodatacollectionandanalysis. Itisenvisionedthatconstruc- tion and assembly will take three years, to be followed by three data collection periods with progressively improvedstatisticalerrorsandsystematiccontroloverasubsequentthreetofouryearperiod. TheMOLLERExperiment p.i Contents ListofFigures v ListofTables viii 1 Introduction 1 1.1 PhysicsContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 DefinitionsandPrecisionGoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 PhysicsMotivation 3 2.1 NewContactInteractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Z(cid:48) Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Doubly-ChargedScalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 PrecisionElectroweakMeasurementsandsin2θ . . . . . . . . . . . . . . . . . . . . . . . 8 W 3 ExperimentalDesign 10 3.1 PolarizedBeam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 LiquidHydrogenTarget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 ToroidalSpectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 KinematicalConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 ConceptualDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 HybridCoilDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.1 MainIntegratingDetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.2 AuxiliaryDetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 TrackingDetectorsandScanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 ElectronicsandDataAcquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.1 RapidHelicityFlip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.2 IntegratingElectronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.3 OnlineCalibrationsandFeedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 HallAInfrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 SystematicControl 23 4.1 BeamFluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 Helicity-CorrelatedBeamFluctuations . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 BeamSpotSizeDifferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 LongitudinalBeamPolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.1 ComptonPolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.2 MøllerPolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 TransverseBeamPolarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 AbsoluteValueofQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5.1 ElasticepScattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5.2 InelasticepScattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.5.3 HadronsandMuons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5.4 PhotonsandNeutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 TheMOLLERExperiment p.ii 5 BeamTimeRequestandRunGoals 31 5.1 TheThreeRuns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.1 RunI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.2 RunII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.3 RunIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 SpecialBeamConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.1 TransversePolarizationRunning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.2 WienAngle“Tweaks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.3 TheDouble-Wien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.4 BeamEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Collaboration 34 6.1 Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 ResearchandDevelopmentTopics 35 7.1 PolarizedBeam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1.1 PolarizedLaserLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1.2 BeamlineInstrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.1.3 BeamTransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.2 TargetDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.3 SimulationsandSoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.4 SpectrometerDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7.4.1 ToroidDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.4.2 CollimationandShielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.5 DetectorDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.5.1 QuartzandLightGuide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.5.2 MechanicalAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.5.3 PionBackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.5.4 TrackingDetectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.6 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.6.1 ComptonPolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.6.2 MøllerPolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8 TheMOLLERProject 41 9 Conclusions 41 A PolarizedBeam 43 A.1 PolarizedElectronSource. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A.2 OperationalExperience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 A.3 AdiabaticDamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 A.4 Slowreversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 A.5 Requirementsfor11GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.5.1 RapidHelicityFlip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.5.2 MeasurementandControlofHCBAs . . . . . . . . . . . . . . . . . . . . . . . . . 47 A.5.3 Beamjitterandmonitorresolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 A.5.4 PositionFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 TheMOLLERExperiment p.iii A.5.5 Beamspot-sizeasymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A.6 StrategyforcontrolofHCBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 B DetailedDiscussionoftheHydrogenTarget 54 B.1 ComparableTargets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 B.2 TargetParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 B.3 DensityVariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 B.4 CellDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 B.5 Refrigeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 B.6 QweakTargetExperienceandExpectedMOLLERPerformance . . . . . . . . . . . . . . . 60 C ToroidalSpectrometer 64 C.1 HybridToroidConcept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 C.2 DetailedDescriptionofCoilDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2.1 ConductorLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2.2 SuggestionsfromtheMagnetAdvisoryCommittee . . . . . . . . . . . . . . . . . . 66 C.2.3 SummaryofCoilSpecifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 C.3 SimulatedPropertiesoftheSpectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3.1 PropertiesoftheIdealizedHybridField . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3.2 PropertiesoftheActualConductorLayout . . . . . . . . . . . . . . . . . . . . . . 69 D IntegratingDetectorConsiderations 74 D.1 Current-ModeSignalMagnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 D.2 Event-ModeSignalMagnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 D.3 RadiationHardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 E Electronics 76 E.1 TheTRIUMFElectronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 E.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 F ComptonPolarimetry 79 F.1 TheHallAComptonPolarimeterBaselineUpgrade . . . . . . . . . . . . . . . . . . . . . . 79 F.2 UpgradesBeyondtheBaseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 F.2.1 LaserSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 F.2.2 AlternativeLaserSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 F.2.3 ChicaneMagnetModification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 F.2.4 PhotonDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 F.3 SystematicUncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 F.3.1 SourcesofCorrelatedError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 F.3.2 SystematicErrorsfortheElectronDetector . . . . . . . . . . . . . . . . . . . . . . 86 F.4 SystematicErrorsforthePhotonDetector . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 F.5 SummaryofComptonPolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 G MøllerPolarimetry 91 G.1 MøllerScattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 G.2 WaystoHigherAccuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 G.3 AtomicHydrogenTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 G.3.1 HydrogenAtominMagneticField . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 G.3.2 StorageCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 TheMOLLERExperiment p.iv G.3.3 GasProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 G.3.4 GasLifetimeintheCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 G.3.5 UnpolarizedContamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 G.3.6 BeamImpactonStorageCell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 G.3.7 BeamRFGeneratedDepolarization . . . . . . . . . . . . . . . . . . . . . . . . . . 96 G.3.8 ContaminationbyFreeElectronsandIons . . . . . . . . . . . . . . . . . . . . . . . 97 G.3.9 ApplicationoftheAtomicTargettoMøllerPolarimetry . . . . . . . . . . . . . . . 97 G.4 MøllerPolarimeterinHallC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 References 102 TheMOLLERExperiment p.v List of Figures 1 FeynmandiagramsforMøllerscatteringattreelevel(reproducedfromRef.[6]) . . . . . . . 2 2 γ −Z mixingdiagramsandW-loopcontributiontotheanapolemoment(reproducedfrom Ref.[6]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Relative shifts in the electron and proton weak charges due to SUSY effects. Dots indicate therangeofallowedMSSM-loopcorrections. Theinteriorofthetruncatedellipticalregions give possible shifts due to R-parity violating (RPV) SUSY interactions, where (a) and (b) correspondtodifferentassumptionsonlimitsderivedfromfirstrowCKMunitarityconstraints. 5 4 90% C.L. exclusion regions for a 1.2 TeV Z(cid:48) (E gauge group) for MOLLER, Qweak and 6 SOLID, assuming they obtain exactly the SM predictions. Also shown is the contour from theE158result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 90% C.L. exclusion regions for a 1.2 TeV Z(cid:48) from the E gauge group for E158, and 6 MOLLER,assumingtheMOLLERcentralvalueishalf-waybetweentheE158centralvalue andtheSMprediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 Summary of 1σ bands from various precision measurements. The red (filled) ellipse is the 90% C.L. contour of all precision electroweak data. The colored regions are excluded by direct colliders searches. The strongest constraint on the width of the purple (dotted) con- tour (Q2 (cid:28) M2 measurements) is E158, while its shape and location are influenced by Z NuTeV [23, 24] (deep inelastic ν-scattering): large values of M are favored, similar to H theA (b)band. Incontrast,theA (had)andM bandsfavorverylowvaluesofM FB LR W H which are already ruled out by direct searches. The proposed A measurement would PV dominatethefuturewidthandlocationofthedottedcontour. . . . . . . . . . . . . . . . . . 8 7 Current and proposed weak mixing-angle measurements vs. the energy scale µ. The three futuremeasurementsarelocatedatappropriateµvaluesbuttheverticallocationsarearbi- trary. NotethatthePDGvalueofν-DIShasbeenadjustedfromthepublishedvalue. . . . . 9 8 Layoutofthetarget,spectrometeranddetectors. . . . . . . . . . . . . . . . . . . . . . . . 10 9 The SLAC E158 target loop is shown; MOLLER proposes to use the same concept. Liquid flows clock-wise in the picture (downstream to upstream). The liquid-gas interface is just belowthemotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 10 A CAD drawing of the SLAC E158 target chamber. The target loop is remotely movable 6 in in the vertical direction. A table containing optics targets can be moved in and out horizontally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 11 Θ vs E(cid:48) for E = 11 GeV, and E(cid:48) vs θ are depicted by the two plots on the COM lab beam lab lab left. On the right is shown the proposed concept for the primary acceptance collimator, whichisabletoachieve100%acceptancewithjudiciouslychosenφ-sectors. . . . . . . . . 14 12 Projected radial coordinate of scattered Møller electron trajectories. Colors represent θ (rad). Thespectrometercoils(grey)andcollimators(black)areoverlaid. . . . . . . . . 15 lab 13 Singlehybridcoilwithactualconductorlayout,with1/10scaleinthezdirection. . . . . . 15 14 TransversedistributionofMøller(black)andep(red)electrons28.5mdownstreamoftarget 17 15 RadialdistributionofMøller(black)andep(red)electrons28.5mdownstreamoftarget. . . 17 16 Layout of the main integrating and tracking detectors. Elastically scattered electrons off targetprotons(blue)andelectrons(green)arealsoshown. . . . . . . . . . . . . . . . . . . 18 TheMOLLERExperiment p.vi 17 Plan cutaway view, along with the main elastic Møller (green) and ep (blue) trajectories. The quartz detectors are color coded. The main Møller events predominantly hit the red quartz,whiletheelasticeptrajectorieshittheyellowquartz. Theblueandgreendetectorsin betweenwillbeimportanttoestimatetheinelasticepbackgroundcorrection;seeSec.4.5.2. Note the two back-to-back red detectors that will simultaneously measure the flux of the Møllerpeak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 Aperspectiveviewoftheintegratingdetectorassembly . . . . . . . . . . . . . . . . . . . . 19 19 Proposed radial segmentation of the scattered electron flux, shown both in linear and log scale. The vertical lines correspond to the radial segmentation of the quartz detectors as showninFig.17. Theblack,redandgreencurvesareforelectronsfromMøller,elastice-p andinelastice-pscattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 20 Band structure of GaAs, showing how circularly polarized laser light produces polarized electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 21 Schematic of the laser transport line that allows for rapid reversal of the electron beam polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 22 Beam position and differences, plotted for all 27×106 pairs of the HAPPEX-II analysis. Arithmetic means, widths, and centroid uncertainty due to random noise are shown. The systematiccorrelationtohelicitywasmeasuredtobeconsistentwithzerowithintherandom beamnoise. Gaussianfitsareincludedforreference. . . . . . . . . . . . . . . . . . . . . . 45 23 Schematicoftheconceptofthe“Double-Wien”filter,whichallowsafull“slow”flipofthe electron beam polarization with minimal disruption to the front end electron beam optics. Theflipisaccomplishedbyadjustingthesecondsolenoid, withoutchangingthesettingsof thetwoWienrotators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 24 Typical position measurement resolutions from the Qweak experiment for 480 Hz window pairsfor“stripline”beampositionmonitors. Theresidualsfromacomparisonofthemea- suredbeampositiontotheprojectedpositionfromtwoupstreammonitorsareshown. . . . . 49 25 Typical X and Y position and angle difference distributions for 480 Hz window pairs from theQweakexperimentat160µAbeamcurrent. TheRMSvaluesfromtheGaussianfitsare therandombeamnoise(“jitter”)intheseparameters.. . . . . . . . . . . . . . . . . . . . . 50 26 Typical intensity asymmetry and energy difference distributions for 480 Hz window pairs fromtheQweakexperimentat160µAbeamcurrent. TheRMSvaluesfromtheGaussianfits aretherandombeamnoise(“jitter”)intheseparameters. . . . . . . . . . . . . . . . . . . 51 27 TargetdensityfluctuationwidthsversushelicityflipfrequencyfromrecentQ beamstudies. 58 weak 28 E158-type target cell design. Note that the fluid flow (left to right) is opposite the electron beamdirection(righttoleft). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 29 CFDsimulationsofaE158-typecellinnominalconditions. . . . . . . . . . . . . . . . . . . 60 30 Qweak target performance: density fluctuation widths versus beam current from recent Q measurements. The blue points are measured data. The red curve is a fit to the weak data. Thegreencurveisanotherfit,providingameasureoftheuncertainties. . . . . . . . . 61 31 CFDstudyoffilmboilingatthealuminumwindows: windowheatfluxforthreeexperiments (G0, Qweak and MOLLER). The blue points are the convective part of the heat flux, which is mainly responsible for the film boiling. The red points are the total heat flux. The first (red)datapointshowsthethresholdforfilmboiling.. . . . . . . . . . . . . . . . . . . . . . 62 32 Schematicofthehybridtoroiddesignconcept. . . . . . . . . . . . . . . . . . . . . . . . . . 64 33 Layoutofindividualconductorswithintheallowedspaceatlowradius(trapezoidalshapes) inTOSCAfor0.1819inchODsquareconductor(a). Diagramshowingthelayoutfor0.2294 inch OD square conductor, color-coded and labeled by how they are wound in individual “double-pancakes”(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Description: