©EntomologicaFennica.16June2017 Molecular identification of Trichogramma species from South and South-East Asia and natural Wolbachia infection Yu-DiLiu,Mao-LinHou&KaiSong Liu, Y.-D., Hou, M.-L. & Song, K. 2017: Molecular identification of Tricho- grammaspeciesfromSouthandSouth-EastAsiaandnaturalWolbachiainfec- tion.—Entomol.Fennica28:57–66. Trichogrammawaspswerecollectedfromtheparasitizedeggsoflepidopteran pests from 21 sampling sites in East Asia and South-East Asia. Six Tricho- grammaspecieswereidentifiedbasedonthemolecularidentificationmethodus- ingtheinternaltranscribedspacer2(ITS2)regionoftherDNAofTrichogramma chilonis, T. evanescens, T. ostriniae, T. embryophagum, T. dendrolimi and T. japonicum.Theresultsofmolecularidentificationwereconfirmedbymorpho- logical identification. Additionally, natural populations were screened for the prevalenceofWolbachia.Fiveoutof21populationswereinfectedbythesame Wolbachiastrain,whichwasidentifiedbyusingWolbachiawspgeneandmulti– locus sequencing approach. The phylogenetic analysis of Wolbachia wsp se- quencesrevealedthattheWolbachiastrainwasclassifiedinthestrainwEvaAin thegroupofEvAofthesupergroupA. Y.-D.Liu*&M.-L.Hou,StateKeyLaboratoryforBiologyofPlantDiseasesand InsectPests,InstituteofPlantProtection,ChineseAcademyofAgriculturalSci- ences,No.2,WestYuanMingYuanRoad,Beijing100193,China;*Correspond- ingauthor’se-mail:[email protected] K.Song,DrylandFarmingInstitute,HebeiAcademyofAgriculturalandFor- estrySciences,Hengshui,China Received15December2015,accepted11November2016 1.Introduction izedskills(Pintoetal.1989,Pinto&Stouthamer 1994, Poorjavad et al. 2012). In order to be of Thereareabout650speciesinthefamilyTricho- economic importance in biological control pro- grammatidae(Grissel&Schauff1990),andthey jects, it is essential to be able to identify the arethemostwidelyusedparasitoidsinbiological Trichogrammatid species quickly, and the me- control programs (Kumar et al. 2009). For suc- thodshavetobesimpleandwidelyapplicable. cessfulbiologicalcontrolpurpose,theidentifica- Molecular approaches based on DNA se- tion of Trichogramma species is the important quences of the internal transcribed spacer 2 first step (Hassan 1994). Unfortunately, species (ITS2)havehelpedtosolvetheabovedifficulty identificationinthisgroupisdifficultduetotheir (Stouthamer et al. 1999). Several studies have small size, the large number of species, and the usedtheITSregiontoidentifytheTrichogramma lackofclearmorphologicalcharacteristics.Iden- speciesoccurringindifferentregions(Silvaetal. tificationistimeconsumingandrequiresspecial- 1999, Kumar et al. 2009, Sumer et al. 2009, 58 Liuetal. (cid:127) ENTOMOL.FENNICAVol.28 Poorjavadetal.2012,Nasiretal.2013,Pinoetal. 2.Materialsandmethods 2013).TheITS2regionhasbeenusedtodistin- guish Trichogramma species collected from to- 2.1.Trichogrammacollection matofieldsinPortugalbysequencingandrestric- tionanalysis(Silvaetal.1999).Pinoetal.(2013) Parasitized Trichogramma eggs were collected rapidlyidentifiedfiveTrichogrammaspeciesoc- from21paddyfieldsinChinaandKoreain2011 curringintheCanaryIslandsbyusingmultiplex and2012(Table1),andkeptindividuallyinglass PCRmethodbasedonamplificationofITS2re- tubesuntiladultemergence.Insomefields,fresh gion.Poorjavadetal.(2012)usedPCRamplifi- sentineleggsofCorcyracephalonica(Stainton) cation of ITS2 region to identify seven Iranian (Lepidoptera: Pyralidae) were used to trap Trichogramma species, which were identical in Trichogramma.Therefore,theoriginatinghostof externalmorphology.Nasiretal.(2013)usedthe Trichogrammaforsomesitesisthesentinelhost ITS2 region of rDNAto distinguish six Tricho- C.cephalonica.Aftercollection,theadultswere grammaspeciescollectedfromdifferentecologi- reared on eggs of the grain moth, Sitotroga calzonesofPakistan. cerealella Olivier (Lepidoptera: Gelenchiidae), InEastAsiaandSouth-EastAsia,rice(Oryza in climatechambers at 25 ± 1 °C, 70 ± 5% RH sativa L.) is a staple food source for more than with the photoperiod of 14:10 (L:D) h. Popula- half of the world’s population (Gross & Zhao tions are defined as the progeny from one egg 2014).Toreducetheapplicationofpesticidesin batch,whicharecollectedfromthesamespecies controlofthericepests,integratedpestmanage- atthesamelocationonthesameday. ment (IPM) based on biological control by Trichogrammareleaseswaslaunched(Koetal. 2.2.DNAisolation 2014). Therefore, in this study, comprehensive fieldsurveyswereconductedintheseregionsto DNA was extracted using chelating agent collect Trichogramma species. Finally, Tricho- Chelex–100(5%)(Biorad)methodaccordingto grammawerecollectedfrom21samplingsitesin Stouthameretal.(1999).Onetothreewaspsfrom East Asia and South-East Asia. The molecular thesingleparasitizedeggweregroundin100µl methodbasedonITS2regionwasusedtoidentify 5%Chelex–100(Biorad)and3µlproteinaseK theseTrichogrammaspecies. (20 mg/ml) and incubated for 2 h at56 °C, fol- Ontheotherhand,Wolbachia,asasymbiotic lowedby10minat95°C.Thesupernatantwas bacterium, plays important roles in evolution, storedat–20°Cforsubsequentmolecularanaly- ecology,andreproductionoftheirhosts(Werren sis. 1997). They are extremely common, with 20– 76%ofinsectspeciesbeinginfected(Harrisetal. 2.3.PCRamplification 2003).Morethan20Trichogrammaspecieshave beenpartlyorcompletelyinfectedbyWolbachia TheITS2regionwasamplifiedusingthefollow- (Poorjavad et al. 2012). Because Wolbachia in- ing primers: forward, 5 –TGTGAACTGCAG- fectioncanaffectthewasp’sfitness,itisneces- GACACATG–3,locatedinthe5.8SrDNA;and sarytoinvestigatetheinfectionstatusofapopu- reverse, 5 –GTCTTGCCTGCTCTGAG–3, lo- lation, which may give important aids for catedinthe28SrDNAclosertothe3endofthe Trichogramma application in biological control ITS2(Stouthameretal.1999).Touchdownther- programs (Stouthamer & Kazmer 1994, Horjus malcyclingprogramsencompassinga5°Cspan & Stouthamer 1995, Poorjavad et al. 2012). ofannealingtemperaturesat55–50°Cwereper- Therefore, in this study, the collected Tricho- formed for the amplification using a S1000™ gramma wasps were screened for the infection ThermalCycler(Bio–Rad).Afteraninitialdena- with Wolbachia, and the respective Wolbachia turation at 94 °C for 4 min, cycling parameters strainwasidentifiedbysequencesofWolbachia were10cyclesof95°Cfor20s,highestanneal- surface protein (wsp), Cytochrome c oxidase, ingtemperature(decreased0.5°Cpercycle)for subunit I (coxA) and Fructose-bisphosphate 30s,and72°Cfor30s;and30cyclesof95°Cfor aldolase(fbpA). 20s,lowestannealingtemperaturefor30s,and ENTOMOL.FENNICAVol.28 (cid:127) MolecularidentificationofTrichogramma 59 Table1.OriginsofTrichogrammaspeciesandstrainswithoriginatinghosts,no.ofbasepairsinITS2(internal transcribedspacer2regionofrDNA)sequencesandGenBankaccessionnumbers. Sampleno. Species Population Host ITS2and andCode Acc.no. 1.Tc-CJ T.chilonis Cuijia,Xing’an,China Corcyracephalonica 426 34°55’46”N,109°37’51”E KR148947 2.Tc-WLP T.chilonis Wulipai,Xing’an,China C.cephalonica 426 24°24’0”N,120°37’58”E KR148947 3.Tc-Lo T.chilonis Vientiane,Laos Chilosuppressalis 426 17°58’0”N,102°36’0”E KR148948 4.Tc-NB T.chilonis Ningbo,China C.suppressalis 426 29°52’48”N,121°33’0”E KR148948 5.Tc-MM T.chilonis Hmawbi,Myanmar Scirpophagaincertulas 426 17°5’0”N,95°57’0”E KR148948 6.Tc-TW T.chilonis Taiwan,China C.suppressalis 426 25°3’0”N,121°31’0”E KR148948 7.Tc-HS T.chilonis Hengshui,China C.suppressalis 426 37°32’14”N,115°28’59”E KR148949 8.Te-HS T.evanescens Hengshui,China Ostriniafurnacalis 546 37°32’14”N,115°28’59”E KR148950 9.Te-BJ T.evanescens Beijing,China C.cephalonica 546 39°54’27”N,116°23’17”E KR148950 10.Te-CQ T.evanescens Chongqing,China C.cephalonica 546 29°10’47”N,106°9’36”E KR148950 11.Te-K1 T.evanescens Korea O.furnacalis 546 37°28’N,126°37’E KR148950 12.Te-K2 T.evanescens Korea O.furnacalis 546 37°28’N,126°37’E KR148950 13.Te-Tconf T.evanescens Guangdong,China O.furnacalis 546 23°4’48”N,113°8’24”E KR148951 14.Te-GD T.evanescens Guangdong,China O.furnacalis 544 23°4’48”N,113°8’24”E KR148952 15.To-HBZ T.ostriniae Hebianzai,Dehong,China C.cephalonica 566 24°16’57”N,104°25’21”E KR148945 16.To-MZ T.ostriniae Mangzai,Dehong,China C.cephalonica 566 24°0’16”N,101°6’26”E KR148945 17.To-HS T.ostriniae Hengsui,China C.cephalonica 566 37°32’14”N,115°28’59”E KR148946 18.Tem-Tcac T.embryophagum Husa,Dehong,China C.cephalonica 587 24°27’48”N,97°53’24”E KR148953 19.Td-NJ T.dendrolimi Nanjing,China Cnaphalocrocismedinalis 520 32°3’0”N,118°46’60”E KR148954 20.TJ-GD T.japonicum Guangdong,China C.suppressalis 432 23°4’48”N,113°8’24”E KR148955 21.Tj-HS T.japonicum Husa,Dehong,China S.incertulas 432 24°27’48”N,97°53’24”E KR148955 72°Cfor30s.Thiswasfollowedbyafinalexten- fromTrichogrammasampleswasthatdescribed sionstepat72°Cfor7min.Eachreactionwasrun by Braig et al. (1998). We also used two con- inavolumeof30µL,containing3µL(10×)Taq servedWolbachiagenes,fbpAandcoxA,tochar- assay buffer, 300 µM dNTP, 0.4 µM of each acterize Wolbachia strain for Trichogramma primer, 1 U of Taq DNA polymerase (TaKaRa samples,whichwereamplifiedbasedontheme- Biotechnology, Dalian, China), and 50–100 ng thods of Baldo et al. (2006). The PCR primers genomicDNA. were designed also according to Baldo et al. Theprimerusedtoamplifythewspfragment (2006). The PCR reaction conditions and the 60 Liuetal. (cid:127) ENTOMOL.FENNICAVol.28 Table2.InformationofwspgeneforconstructingthephylogenictreeofWolbachiastrainsinFig1. Group Wolbachiahostspecies Wolbachia GenBank strain Acc.no. SupergroupA Ha Drosophilasechella wHa AF020073 Ha Cadracautella wCauA AF020075 Aus Glossinaausteni wAus AF020077 Kue Trichogrammaourarachae wBou AF071913 Kue Trichogrammaevanescens wEvaB AY390280 Kue Trichogrammakaykai wKayA AF071912 Mel Drosophilasimulans wCof AF020067 Mel Amitusfuscipennis wFus AF071909 Mel Drosophilamelanogaster wMel AF020063 Dro Trichogrammadrosophilae wDro AF071910 Eva Trichogrammaevanescens wEvaA AY390279 Pap Phlebotomuspapatasi wPap AF020082 Uni Muscidifuraxuniraptor wUni AF020071 Mors Nasoniavitripennis wVitA AF020081 SupergroupB Ori Leptopilinaaustralis wAus AF071920 Ori Cadracautella wCauB AF020076 Ori Spalangiafuscipes wFu AF071921 Con Trichogrammabedeguaris wBed AF071915 Dei Trichogrammadeion wDei AF020084 Vul Armadillidiumvulgare wVul AF071917 Pip Trichogrammachilonis wChi AY311486 Pip Drosophilasimulans wMa AF020069 Pip Culexpipiens wPip AF020061 Spodopteraexigua wExiB EU332344 Pip Ostriniafurnacalis wFurB EU294312 Kay Trichogrammakaykai wKayB AF071924 Kay Trichogrammanubilale wNub AF071926 SupergroupD Brugiamalayi JX506736 SupergroupF Cimexlectularius DQ842459 thermalcyclingprotocolwereidenticaltothose aligned with Clustal X1.83 (www.clustal.org). describedabove. Some reference sequences of Wolbachia wsp, After purified with PCR Cleanup Kit coxA,andfbpAsequencesofotherspecieswere (Axygen,USA),thePCRproductsweredirectly downloadedfromGenBankforthephylogenetic sequenced on an Automated DNA Sequencer analysisofWolbachia(Tables2and3).Inorder (ABIPRISMTM 3730XL, APPLIEDBIOSYS- toverifytheconsistencyofthetree,phylogenetic TEMS, INC. Foster City, CA). All sequences treeswereconstructedusingtwomethods,neigh- werealignedusingCLUSTAL_X(Thompsonet borjoining(NJ)andmaximumparsimony(MP) al.1997)andrecheckedbyeyetoverifyforaccu- (Mega 4.0 software, MEGA, www.megasoft- racy. ware.net). Bootstrap analysis was done with 1,000replications,andbootstrapvalueswerecal- culatedusinga50%majorityrule.Tworeference 2.4.Phylogeneticanalysis sequences belonging to the Wolbachia D and F Thewsp,coxA,andfbpAsequencesofWolbachia supergroups were used as the outgroups in the from the different Trichogramma populations phylogenetic trees of wsp, coxA, and fbpA; were first blasted in NCBI, then analyzed and Brugia malayi (Brug, 1927) (wsp JX506736, ENTOMOL.FENNICAVol.28 (cid:127) MolecularidentificationofTrichogramma 61 Table3.Hostspecies,supergroupsandGenBankaccessionnumbersofcoxAandfbpAgenesforconstructing thephylogenictree(Fig.2)ofWolbachiastrains. Hostspecies Supergroup coxA fbpA orsubspecies Accessionno. Accessionno. Brugiamalayi D DQ842273 DQ842347 Cimexlectularius F DQ842275 DQ842349 Acromissparsa A DQ842271 DQ842345 Aedesalbopictus A DQ842268 DQ842342 Camponotuspennsylvanicus A DQ842276 DQ842350 Drosophilabifasciata A DQ842279 DQ842353 Drosophilainnubila A DQ842280 DQ842354 Drosophilamelanogaster A DQ842304 DQ842378 Drosophilaneotestacea A DQ842281 EU126408 Drosophilaorientacea A DQ842282 EU126398 Drosophilarecens A DQ842283 DQ842357 Ephestiakuehniella A DQ842289 DQ842363 Incisitermessnyderi A DQ842292 DQ842366 Muscidifuraxuniraptor A DQ842293 DQ842367 Nasoniagiraulti A DQ842294 DQ842368 Nasonialongicornis A DQ842295 DQ842369 Nasoniavitripennis A FJ390240 DQ842370 Solenopsisinvicta A DQ842300 DQ842374 Acraeaencedon B DQ842269 DQ842343 Acraeaeponina B DQ842270 DQ842344 Armadillidiumvulgare B FJ390241 EF451552 Chelymorphaalternans B DQ842274 DQ842348 Culexpipienspipiens B DQ842277 DQ842351 Culexpipiensquinquefasciatus B DQ842278 DQ842352 Drosophilasimulans B KF987018 KF987033 Encarsiaformosa B DQ842288 DQ842362 Gryllusfirmus B DQ842291 DQ842365 Nasoniavitripennis B DQ842297 DQ842371 Ostriniascapulalis B DQ842298 DQ842372 Protocalliphorasialia B DQ842299 DQ842373 Teleogryllustaiwanemma B DQ842303 DQ842377 Triboliumconfusum B DQ842301 DQ842375 Trichogrammadeion B DQ842302 DQ842376 coxADQ842273, fbpADQ842347) and Cimex fied:T.chilonis(Ishii,1941)(sevenpopulations), lectularius (Latreille, 1802) (wsp DQ842459, T.evanescens(Westwood,1833)(sevenpopula- coxADQ842275,fbpADQ842349). tions), T. ostriniae (Pang & Chen, 1974) (three populations), T. embryophagum (Hartig, 1838) (one population), T. dendrolimi (Matsumura, 3.Results 1926) (one population) and T. japonicum (Ash- mead, 1904) (two populations). The ITS2 se- 3.1.Trichogrammaidentification quences obtained from each species were (97– anddistribution 100% Max Ident score in BLAST) similar to thosepresentinGenBank.Inthisstudy,atotalof TheITS2sequencesthatwereobtainedfromeach eleven ITS2 sequences were deposited in Gen- population were compared with the identified Bank (accession numbers KR148945–KR14- ITS2sequencesofrDNAfromGenBanktocon- 8955)(Table1),andthesesequenceswerecom- firmtheidentificationofTrichogrammaspecies pleteITS2sequencesplusflankingsequencesof (Table4).SixTrichogrammaspecieswereidenti- 5.8Sand28S.Althoughthesesequencesdisplay 62 Liuetal. (cid:127) ENTOMOL.FENNICAVol.28 Table4.SequencesusedfromGenBankforcomparisonoftheTrichogrammaspeciesinthisstudy. Sampleno. Sequence Basepairs Accessionno. Sequence andspp. similarity(%) 1.T.chilonis partialITS-2 1,155 AY167415 99 2.T.chilonis partialITS-2 1,158 AY167418 99 3.T.chilonis CompleteITS-2 560 DQ088055 99 4.T.chilonis CompleteITS-2 538 GU562445 99 5.T.evanescens CompleteITS-2 559 DQ088059 99 6.T.evanescens CompleteITS-2 546 FJ436332 99 7.T.evanescens CompleteITS-2 546 JN315373 99 8.T.evanescens CompleteITS-2 546 JN315380 99 9.T.ostriniae CompleteITS-2 446 AY244463 98 10.T.ostriniae CompleteITS-2 447 AY518695 99 11.T.ostriniae CompleteITS-2 491 GQ324625 98 12.T.embryophagum CompleteITS-2 479 AF453562 100 13.T.embryophagum CompleteITS-2 474 AY244465 100 14.T.embryophagum CompleteITS-2 593 DQ344044 97 15.T.embryophagum CompleteITS-2 530 JF920430 97 16.T.dendrolimi partialITS-2 510 AB094398 98 17.T.dendrolimi CompleteITS-2 412 AF453555 99 18.T.dendrolimi CompleteITS-2 540 AF517576 98 19.T.dendrolimi CompleteITS-2 465 DQ344045 97 20.T.japonicum CompleteITS-2 578 DQ471294 98 21.T.japonicum partialITS-2 436 FN822756 98 22.T.japonicum partialITS-2 438 FN822758 98 23.T.japonicum partialITS-2 436 FN822759 98 significantinterspeciesdifferences,theyshowed TheT.ostriniaespecimensfromthreepopula- low intraspecific variability in length (2–10 tionshadtwodifferentsequences:To–HBZand bases). To–MZ (KR148945); To–HS (KR148946), ThecomparisonshowedthatT.chiloniswas whichhadtwomutationsites(Table1).Thetwo foundfromsevenpopulationswiththreedifferent sequences were closely similar (98–99%) to T. sequences, Tc–CJ and Tc–WLP (KR148947); ostriniae in GenBank accession numbers Tc–Lo, Tc–NB, Tc–MM, Tc–TW (KR148948); AY244463,AY518695andGQ324625(Table4). Tc–HS (KR148949) (Table 1). The three se- The sequence of T. embryophagum, Tem– quenceshadonlythreemutationsites,andthese- Tcac (KR148953), was closely similar (97– quenceswerecloselysimilar(99%)toT.chilonis 100%) to GenBank accession numbers AF- in GenBank accession numbers AY167415, 453562, AY244465, DQ344044 and JF920430 AY167418, DQ088055 and GU562445 (Table (Table4). 4). The sequence of T. dendrolimi (Td–NJ, TheT.evanescensspecimensfromsevenpop- KR148954)wascloselysimilar(97–99%)tothat ulations had three different sequences: Te–HS, of T. dendrolimi available in GenBank (AB- Te–BJ,Te–CQ,Te–K1andTe–K2(KR148950); 094398,AF453555,AF517576andDQ344045) Te–Tconf (KR148951); Te–GD (KR148952) (Table4). (Table1).Thethreesequenceshad10mutation The sequence of T. japonicum (Tj–GD and sites, and the sequences were closely similar Tj–HSKR148955)wascloselysimilar(98%)to (99%) to T. evanescens in GenBank accession thatofT.japonicumavailableinGenBank(DQ- numbers DQ088059, FJ436332, JN315373 and 471294,FN822756,FN822758andFN822759) JN315380(Table4). (Table4). ENTOMOL.FENNICAVol.28 (cid:127) MolecularidentificationofTrichogramma 63 3.2.Identificationoftheassociated Wolbachiastrain The detection of Wolbachia was performed for Trichogrammaspeciesfrom21sites.Theinfec- tionexistedinonlyfivepopulations,whichwere Tc-TW,Te-BJ,Te-K1,Tem-TcacandTj-GD,and all tested individuals of these five populations wereinfected.Furthermore,allofthefivepopu- lationswerefoundtohaveidenticalsequencesof thewsp,coxAandfbpAgenes.Asthesefivepop- ulationswereinfectedwiththesameWolbachia strain,onlyoneofthem(Trichogrammajaponi- cum) was used for the phylogenetic analysis basedonwsp,coxAandfbpAgenes. Thephylogeneticanalysiswasperformedfor theTrichogrammaWolbachiawspsequencesand 29referencesequences.Thetreehastwomajor branches,correspondingtosupergroupsAandB (Fig. 1). The wsp sequence in Trichogramma samplesshared100%identitywiththesequences fromT.evanescens(AY390279).ThisWolbachia strain was defined in the strain wEvaA in the group of Eva of the supergroup A(Fig. 1). The phylogenetictreefortheconcatenatedsequences ofWolbachiacoxAandfbpAisshowninFig.2. Similar to the wsp tree, the concatenated se- quences were first clustered into supergroup A branch. The concatenated sequences were clus- tered into a subclade with Aedes albopictus (Skuse, 1894) (coxA DQ842268 and fbpA DQ842342),sharing99%identity(Fig.2).Asthe topologies of the trees inferred from neighbor joining and maximum parsimony were similar based on wsp and concatenated coxAand fbpA sequences, we only displayed the trees con- structedbyneighborjoining(Figs1and2).The sequencesforthewsp,fbpAandcoxAgeneswere deposited in GenBank with the accession num- Fig.1.Phylogeneticneighborjoiningtreeof bersKR906068,KR906069andKR906070. Wolbachiabasedonwspsequences.Forinformation ofwspgene,seeTable2.SequencesofBrugia malayiandCimexlectulariuswereusedasoutgroups. 4.Discussion Namesofhostspeciesandtheirrelatedgroupsare listedontherightsideofthefigure.Supergroupsof ITS2providesanexcellentmethodforseparating Wolbachiaareshownasuppercaseletters.Thein- closely related species of Trichogramma. The fectedstrainofTrichogrammajaponicumclusteredto- mainadvantageoftheDNAidentificationsystem getherwiththatofTrichogrammaevanescens,which overthemorphologicalsystemisthatitisfastand werethestrainEva.Theyarehighlightedbyshaded area.Bootstrapvalues>50%areshownabove requiresfewspecializedskills,andcanworkwell branches. onthedriedor100%alcoholstoredspecimen(s). 64 Liuetal. (cid:127) ENTOMOL.FENNICAVol.28 Fig.2.PhylogeneticneighborjoiningtreeofWol- bachiabasedonconcatenatedsequencesofcoxA andfbpA.ForinformationofcoxAandfbpAgenes, seeTable3.SequencesofBrugiamalayiandCimex lectulariuswereusedasoutgroups.Namesofhost speciesandtheirrelatedgroupsarelistedontheright sideofthefigure.SupergroupsofWolbachiaare shownasuppercaseletters.PopulationofTricho- grammajaponicumishighlightedbyboldfaceinthe figure.Bootstrapvalues>50%areshownabove branches. informationfortheidentificationofTrichogram- maspecies. In this study, the sequences of the tested Trichogramma samples were blasted in NCBI andthespecieswith98–100%identitywereiden- tifiedasthesamespecies.Finally,theidentifica- tion results of molecular methods and morpho- logical characters were identical. Therefore, it canbededucedthattheresultsofthemolecular identificationbasedonITS2genesarereliable. ThephylogenyofWolbachiahasbeenstudied extensively based on different gene sequences (Roussetetal.1992,Braigetal.1998).Astheex- tensiverecombinationandstrongdiversifyingse- lectionaffectthewspgene,itisanunreliabletool forthecharacterizationofWolbachia(Werren& Bartos 2001, Baldo et al. 2002, Jiggins et al. 2002,Baldoetal.2005).Therefore,anothertwo Wolbachia genes, coxA and fbpA, were also applied. Inthisstudy,Wolbachiainfectionwasfound only infivepopulationsofTrichogrammafrom 21 sites. The phylogenetic analysis of the Wol- bachia wsp sequences revealed that the Wol- bachiastrainbelongedtothestrainwEvaAinthe groupofEvaofthesupergroupA.Thephylogen- etictreeofalsotheconcatenatedcoxAandfbpA revealed that the Wolbachia strain of Tricho- grammawasdefinedassupergroupA,anditwas closely, with 83% identity, related to the Wol- bachiaofAedesalbopictus. Inarecentstudyusingthewspgeneandfive genes in multilocus sequence typing (MLST) (Poorjavadetal.2012),onlytwopopulationsof MoreandmoreresourcesofTrichogrammaITS2 Trichogrammabrassicae(Bezdenko,1968)from genes are becoming publicly available from 34 tested Trichogramma populations were in- NCBIdatabase,whichprovidesarichsourceof fectedbyWolbachia.Thetwopopulationswere ENTOMOL.FENNICAVol.28 (cid:127) MolecularidentificationofTrichogramma 65 infected with the same Wolbachia strain, which Guo,Z.,Ruan,C.C.,Zang,L.S.,Zhang,F.&Jin,F.Y. wasdefinedinsupergroupBinthatstudy. 2011: The new record of Trichogramma japonicum ashmead, an egg parasitoid of Chilo suppressalis AlthoughtheWolbachiainfectionrateswere (Walker) in Jilin, China. — Biological Control 27: low in both our current study and in that of 276–279. Poorjavad et al. (2012), the Wolbachia strains Harris,H.L.,Braig,H.R.&Journal,A.2003:Spermchro- weredifferent.ThetwoT.brassicaepopulations matinremodellingandWolbachia-inducedcytoplas- were from Iran, i.e. Western Asia, whereas the micincompatibilityinDrosophila.—Biochemistry andCellBiology81:229–240. fiveinfectedpopulationsinourstudywerefrom Hassan, S. A. 1994: Strategies to select Trichogramma EastAsiaandSouth-EastAsia.Itisthuspossible speciesforuseinbiologicalcontrol.–In:Wajnberg,E. that the Trichogramma populations in Western &Hassan,S.A.(eds.),Biologicalcontrolwitheggpa- AsiaareinfectedwithdifferentWolbachiastrains rasitoids: 55–71. CAB International, Wallingford thanthoseinEastAsiaandSouth-EastAsia. (UK).304pp. Horjus,M.&Stouthamer,R.1995:Doesinfectionwith The molecular identification and Wolbachia thelytokycausingWolbachiainthepre-adultandadult infectiontestfortheTrichogrammaspeciesfrom life stages influence the adult fecundity of Tricho- 21populationscanprovideanimportantaidfor grammadeionandMuscidifuraxuniraptor?—Pro- biologicalcontrolprogramsusingTrichogramma ceedings Experimental and Applied Entomology 6: spp. 35–40. Jiggins,F.M.,Hurst,G.D.D.&Yang,Z.H.2002:Host- symbiont conflicts: positive selection on an outer Acknowledgments. We thank two anonymous reviewers membrane protein of parasitic but not mutualistic fortheirvaluablecommentstoimprovethemanuscript. Rickettsiaceae.—MolecularBiologyandEvolution WealsothankProf.HongyingHufromXinjiangUniver- 19:1341–1349. sityforTrichogrammamorphologicalidentification.This Ko,K.,Liu,Y.D.,Hou,M.L.,Babendreier,D.,Zhang,F. research was funded by the National Natural Science & Song, K. 2014: Evaluation for potential Tricho- FoundationofChina(31370439)andaEuropeAidproject gramma (Hymenoptera: Trichogrammatidae) strains (DCIFood/2010/230–238). for control of the Striped Stem Borer (Lepidoptera: Crambidae) in the Greater Mekong Subregion. — JournalofEconomicEntomology107:955–963. References Kumar,A.G.,Jalali,S.K.,Venkatesan,T.,Stouthamer,R., Niranjana,P.&Lalitha,Y.2009:Internaltranscribed Baldo,L.,Bartos,J.D.,Werren,J.H.,Bazzocchi,C.,Casi- spacer-2 restriction fragment length polymorphism raghi,M.&Panelli,S.2002:Differentratesofnucleo- (ITS-2-RFLP)tooltodifferentiatesomeexoticandin- tidesubstitutionsinWolbachiaendosymbiontsofar- digenous Trichogrammatid egg parasitoids in India. thropodsandnematodes:armsraceorhostshifts?— —BiologicalControl49:207–213. Experimentalparasitology44:179–187. Nasir,M.F.,Hagedorn,G.,Büttner,C.,Reichmuth,C.& Baldo,L.,DunningHotopp,J.C.,Jolley,K.A.,Borden- Schöller,M.2013:MolecularidentificationofTricho- stein,S.R.,Biber,S.A.,Choudhury,R.R.,Hayashi, grammaspeciesfromPakistan,usingITS-2regionof C.,Maiden,M.C.J.,Tettelin,H.&Werren,J.H.2006: rDNA.—BiologicalControl58:483–491. Multilocussequencetypingsystemfortheendosym- Pino,M.D.,Rugman-Jones,P.,Herna’ndez-Sua’rez,E., biontWolbachiapipientis.—AppliedandEnviron- Polaszek,A.&Stouthamer,R.2013:Rapidmolecular mentalMicrobiology72:7098–7110. identificationoffivespeciesofTrichogrammaoccur- Baldo,L.,Lo,N.&Werren,J.H.2005:Mosaicnatureof ringintheCanaryIslandswithnotesontheirdistribu- theWolbachiasurfaceprotein.—JournalofBacterio- tioninbananagroves.—BiologicalControl58:515– logy187:5406–5418. 524. Braig,H.R.,Zhou,W.,Dobson,S.L.&O’Neill,S.L. Pinto,J.D.,Velten,R.K.,Platner,G.R.&Oatman,E.R. 1998:Cloningandcharacterizationofageneencoding 1989:Phenotypicplasticityandtaxonomiccharacters the major surface protein of the bacterial endosym- in Trichogramma (Hymenoptera: Trichogrammati- biontWolbachiapipientis.—JournalofBacteriology dae).—AnnalsoftheEntomologicalSocietyofAme- 180:2373–2378. rica82:414–425. Grissel,E.E.&Schauff,M.E.1990:Ahandbookofthefa- Pinto,J.H.&Stouthamer,R.1994:SystematicsoftheTri- milies of Nearctic Chalcidoidea (Hymenoptera). — chogrammatidaewithemphasisonTrichogramma.— Proceedings of the Entomological Society of In: Wajnberg, E. & Hassan, S. A. (eds), Biological Washington.85pp. ControlwithEggParasitoids:1–35.CABInternatio- Gross,B.L.&Zhao,Z.J.2014:Archaeologicalandgene- nal,Wallingford(UK).304pp. ticinsightsintotheoriginsofdomesticatedrice.— Poorjavad,N.,Goldansaz,S.H.,Machtelinckx,T.,Tirry, Proceedings of the National Academy of Sciences L.,Stouthamer,R.&VanLeeuwen,T.2012:Iranian 111:6190–6197. Trichogramma:ITS2DNAcharacterizationandnatu- 66 Liuetal. (cid:127) ENTOMOL.FENNICAVol.28 ral Wolbachia infection. — Biological Control 57: crobe-associatedparthenogenesisanditsconsequen- 361–374. cesforgeneflowinTrichogrammawasps.—Heredi- Rousset,F.,Bouchon,D.,Pintureau,B.,Juchault,P.&So- ty73:317–327. lignac, M. 1992: Wolbachia endosymbionts respon- Sumer, F., Tuncbilek, A. S., Oztemiz, S., Pintureau, B., sibleforvariousalterationsofsexualityinarthropods. Rugman-Jones,P.&Stouthamer,R.2009:Amolecu- —ProceedingsoftheRoyalSocietyBBiologicalSci- larkeytothecommonspeciesofTrichogrammaofthe ences250:91–98. Mediterraneanregion.—BioControl54:617–624. Silva,I.M.M.S.,Honda,J.,vanKan,F.,Hu,J.G.,Neto, Thompson,J.D.,Gibson,T.J.,Plewniak,F.,Jeanmougin, L.,Pintureau,B.&Stouthamer,R.1999:Molecular F.&Higgins,D.G.1997:TheCLUSTAL_Xwindows differentiation of five Trichogramma species occur- interface: flexible strategies for multiple sequence ringinPortugal.—BiologicalControl16:177–184. Stouthamer,R.,Hu,J.G.,vanKan,F.J.P.M.,Platner,G. alignmentaidedbyqualityanalysistools.—Nucleic R.&Pinto,J.D.1999:Theutilityofinternallytran- AcidsResearch25:4876–4882. scribedspacer2DNAsequencesofthenuclearriboso- Werren,J.H.1997:BiologyofWolbachia.—AnnualRe- malgenefordistinguishingsiblingspeciesofTricho- viewofEntomology42:587–609. gramma.—BiologicalControl43:421–440. Werren,J.H.&Bartos,J.D.2001:RecombinationinWol- Stouthamer,R.&Kazmer,D.J.1994:Cytogeneticsofmi- bachia.—CurrentBiology11:431–435.