Modular Representation Theory of Finite Groups Peter Schneider Modular Representation Theory of Finite Groups PeterSchneider DepartmentofMathematics UniversityofMünster Münster Germany ISBN978-1-4471-4831-9 ISBN978-1-4471-4832-6(eBook) DOI10.1007/978-1-4471-4832-6 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2012954001 MathematicsSubjectClassification: 20C20,20C05 ©Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The nature of the representation theory of a finite group G in (finite-dimensional) vector spaces over some field k depends very much on the relation between the order |G| of the group G and the characteristic char(k) of the field k. If char(k) doesnotdivide |G| thenallrepresentationsaresemisimple,i.e. aredirectsumsof irreduciblerepresentations.Thereasonforthisisthesemisimplicityofthegroupal- gebrak[G]inthissituation.BythemodularrepresentationtheoryofGonemeans, ontheotherhand,thecasewherechar(k)isadivisorof|G|(sothat,inparticular, char(k)mustbeaprimenumber).Thegroupalgebrak[G]nowmaybefarfrombe- ingsemisimple.Intheextremecase,forexample,where|G|isapowerofchar(k), itisalocalring;thereisthenasingleirreduciblerepresentation,whichisthetrivial one,whereasthestructureofageneralrepresentationwillstillbeverycomplicated. Asaconsequenceawholerangeofadditionaltoolshavetobedevelopedandused in the course of the investigation. To mention some, there is the systematic use of Grothendieck groups (Chap. 2) as well as Green’s direct analysis of indecompos- ablerepresentations(Chap.4).Therealsoisthestrategyofwritingthecategoryof allk[G]-modulesasthedirectproductofcertainsubcategories,theso-calledblocks ofG,byusingtheactionoftheprimitiveidempotentsinthecenterofk[G].Brauer’s approachthenestablishescorrespondencesbetweentheblocksof Gandblocksof certainsubgroupsofG(Chap.5),thephilosophybeingthatoneistherebyreduced toasimplersituation.Thisallowsus,inparticular,tomeasurehownonsemisimple acategoryablockisbythesizeandstructureofitsso-calleddefectgroup.Begin- ninginSect.4.4alltheseconceptsaremadeexplicitfortheexampleofthegroup G=SL (F ). 2 p The present book is to be thought of as an introduction to the major tools and strategiesofmodularrepresentationtheory.Itscontentwastaughtduringacourse lasting the full academic year 2010/2011 at Münster. Some basic algebra together with the semisimple case were assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self- contained.Thereferences[1–10]provideacompletelistofthesourcesIhavedrawn upon. Of course, there already exist several textbooks on the subject. The older oneslike[5]and[6]arewritteninamostlygrouptheoreticlanguage.Thebeautiful v vi Preface book [1] develops the theory entirely from the module theoretic point of view but leavesoutcompletelythecomparisonwithgrouptheoreticconcepts.Forexample, theconceptofdefectgroupscanbeintroducedeitherpurelygrouptheoreticallyor purelymoduletheoretically.Tomyknowledgeallexistingbooksessentiallyrestrict themselvestoadiscussionofoneoftheseapproachesonly.Althoughmypresenta- tionisstronglybiasedtowardsthemoduletheoreticpointofview,Imakeanattempt tostrikeacertainbalancebyalsoshowingthereadertheotheraspect.Inparticular, inthecaseofdefectgroupsadetailedproofoftheequivalenceofthetwoapproaches willbegiven. This book is not addressed to experts. It does not discuss any very advanced aspectsnoranyspecializedresultsofthetheory.Theaimistofamiliarizestudents at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory, hopefully enabling them to subsequently pursue their ownmorespecializedproblems. IwishtothankT.SchmidtforcarefullyreadingafirstdraftandI.Reckermann andG.Dierkesfortheirexcellenttypesettingofthemanuscript. Münster,Germany PeterSchneider Contents 1 PrerequisitesinModuleTheory . . . . . . . . . . . . . . . . . . . . . 1 1.1 ChainConditionsandMore . . . . . . . . . . . . . . . . . . . . . 1 1.2 Radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 I-AdicCompleteness . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 UniqueDecomposition . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 IdempotentsandBlocks . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 ProjectiveModules . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.7 GrothendieckGroups . . . . . . . . . . . . . . . . . . . . . . . . 34 2 TheCartan–BrauerTriangle . . . . . . . . . . . . . . . . . . . . . . 43 2.1 TheSetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 TheTriangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3 TheRingStructureofR (G),andInduction . . . . . . . . . . . . 54 F 2.4 TheBurnsideRing . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.5 CliffordTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.6 Brauer’sInductionTheorem . . . . . . . . . . . . . . . . . . . . . 71 2.7 SplittingFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.8 PropertiesoftheCartan–BrauerTriangle . . . . . . . . . . . . . . 78 3 TheBrauerCharacter . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4 Green’sTheoryofIndecomposableModules . . . . . . . . . . . . . . 97 4.1 RelativelyProjectiveModules . . . . . . . . . . . . . . . . . . . . 97 4.2 VerticesandSources . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3 TheGreenCorrespondence . . . . . . . . . . . . . . . . . . . . . 110 4.4 AnExample:TheGroupSL (F ) . . . . . . . . . . . . . . . . . . 119 2 p 4.5 Green’sIndecomposabilityTheorem . . . . . . . . . . . . . . . . 140 5 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.1 BlocksandSimpleModules . . . . . . . . . . . . . . . . . . . . . 147 vii viii Contents 5.2 CentralCharacters . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.3 DefectGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.4 TheBrauerCorrespondence . . . . . . . . . . . . . . . . . . . . . 159 5.5 BrauerHomomorphisms . . . . . . . . . . . . . . . . . . . . . . . 165 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Chapter 1 Prerequisites in Module Theory Let R be an arbitrary (not necessarily commutative) ring (with unit). By an R-modulewewillalwaysmeanaleftR-module.Allringhomomorphismsrespect theunitelement,butasubringmayhaveadifferentunitelement. 1.1 ChainConditionsand More ForanR-moduleM wehavethenotionsofbeing finitelygenerated,artinian,noetherian,simple,andsemisimple. TheringRiscalledleftartinian,resp.leftnoetherian,resp.semisimple,ifithasthis propertyasaleftmoduleoveritself. Proposition1.1.1 i. The R-module M is noetherian if and only if any submodule of M is finitely generated. ii. LetL⊆M beasubmodule;thenM isartinian,resp.noetherian,ifandonlyif LandM/Lareartinian,resp.noetherian. iii. IfRisleftartinian,resp.leftnoetherian,theneveryfinitelygeneratedR-module M isartinian,resp.noetherian. iv. If R is left noetherian then an R-module M is noetherian if and only if it is finitelygenerated. Proposition1.1.2(Jordan–Hölder) ForanyR-moduleM thefollowingconditions areequivalent: i. M isartinianandnoetherian; ii. M has a composition series {0}=M ⊆M ⊆···⊆M =M such that all 0 1 n Mi/Mi−1 aresimpleR-modules. P.Schneider,ModularRepresentationTheoryofFiniteGroups, 1 DOI10.1007/978-1-4471-4832-6_1,©Springer-VerlagLondon2013 2 1 PrerequisitesinModuleTheory In this case two composition series {0}=M ⊆M ⊆···⊆M =M and {0}= 0 1 n L0 ⊆L1 ⊆···⊆Lm =M satisfy n=m and Li/Li−1 ∼=Mσ(i)/Mσ(i)−1, for any 1≤i≤m,whereσ isanappropriatepermutationof{1,...,n}. AnR-moduleM whichsatisfiestheconditionsofProposition1.1.2iscalledof finitelengthandtheintegerl(M):=nisitslength.Let Rˆ :=setofallisomorphismclassesofsimpleR-modules. Forτ ∈Rˆ andanR-moduleM theτ-isotypiccomponentofM is M(τ):=sumofallsimplesubmodulesofM inτ. Lemma1.1.3 ForanyR-modulehomomorphismf :L−→M wehavef(L(τ))⊆ M(τ). Proposition1.1.4 i. ForanyR-moduleM thefollowingconditionsareequivalent: a. M issemisimple,i.e.isomorphictoadirectsumofsimpleR-modules; b. M isthesumofitssimplesubmodules; c. everysubmoduleofM hasacomplement. ii. Submodulesandfactormodulesofsemisimplemodulesaresemisimple. iii. IfRissemisimplethenanyR-moduleissemisimple. iv. Anyτ-isotypiccomponentM(τ)ofanyR-m(cid:2)oduleM issemisimple. v. IftheR-moduleM issemisim(cid:3)plethenM= τ∈RˆM(τ). vi. IfRissemisimplethenR= τ∈RˆR(τ)asrings. Lemma 1.1.5 Any R-module M contains a unique maximal submodule which is semisimple(andwhichiscalledthesoclesoc(M)ofM). (cid:4) Proof We define soc(M):= τ∈RˆM(τ). By Proposition 1.1.4.i the submodule soc(M) is sem(cid:4)isimple. On the other hand if L⊆M is any semisimple submod- ule then L= L(τ) by Proposition 1.1.4.v. But L(τ)⊆M(τ) by Lemma 1.1.3 τ andhenceL⊆soc(M). (cid:2) Definition AnR-moduleM iscalleddecomposableifthereexistnonzerosubmod- ulesM ,M ⊆M suchthatM=M ⊕M ;correspondingly,M iscalledindecom- 1 2 1 2 posableifitisnonzeroandnotdecomposable. Lemma 1.1.6 If M is artinian or noetherian then M is the direct sum of finitely manyindecomposablesubmodules. Proof We may assume that M (cid:8)={0}. Step 1: We claim that M has a nonzero in- decomposable direct summand N. If M is artinian take a minimal element N of