Modified Friedman scenario from the Wheeler-DeWitt equation ∗ Michael Maziashvili Depa rtment of Theoretical Physics, Tbilisi State University, 3 Chavchavadze Ave., Tbilisi 0128, Georgia Weconsiderthepossible modification oftheFriedmanequation duetooperatororderingparam- eterentering theWheeler-DeWitt equation. PACSnumbers: 04.60.Kz,98.80.Qc The standard approach to quantum cosmology con- U sists of quantizing a minisuperspace model. The corre- sponding Wheeler-DeWitt(WDW) equation[1]contains an arbitrary operator ordering parameter. In one of our 5 papers[2]itwasnoticedthatthe operatororderingterm 0 for large values of operator ordering parameter can af- 0 fect the matching of false vacuum instanton with the 2 Coleman-De Luccia bounce. Continuing in the spirit of n that paper, in this brief note we would like to consider a how the operator ordering term for large enough values a a J o of operator ordering parameter can affect the Friedman 8 equationconsideredasasemiclassicallimit ofthe WDW 2 equation. (Throughout this paper we assume c=1). v Let us consider a closed universe filled with a vacuum 6 of constant energy density and the radiation, 4 0 ǫ ρ(a)=ρ + , FIG. 1: A schematic pictureof thepotential U(a). 2 v a4 1 4 where ρv is the vacuum energy density, a is the scale 0 factor and ǫ is a constant characterizing the amount of and replace the momentum in (3) by a differential oper- / radiation. The evolution equation for a can be written ator p → −i¯hd/da. Then the WDW equation is written c q as down as - gr − 3πaa˙2− 3πa+2π2a3ρ(a)=0 . (1) G¯h2 d2 + Gq¯h2 d − 3πa2+2π2a4ρ(a) ψ(a)=0 , : 4G 4G 3π da2 3πa da 4G v (cid:18) (cid:19) (4) i Thisequationisidenticaltothatforaparticlemovingin X where q is an arbitrary parameter corresponding to the a potential r operator ordering p2/a=a−(q+1)paqp. Throughout this a 3π paper q denotes U(a)= −2π2a2ρ(a) , 4G a2 with zero energy, Fig.1. q ≡α 0 , ¯hG Wetacitelyassumed256π2G2ρ ǫ/9<1.Theuniverse v can start at a=0, expand to a maximum radius a0 and where α is an arbitrary dimensionless parameter. Dis- thenrecollapseortunnelthroughthepotentialbarrierto regarding the operator ordering term, the eq.(4) has the the regime of unbounded expansion. Eq.(1) represents formofaone-dimensionalSchr¨odingerequationforapar- the zero energy condition for the Lagrangian ticledescribedbyacoordinatea,havingzeroenergyand moving in the potential 3π 3πa L=− aa˙2+ −2π2a3ρ(a) . (2) 4G 4G 3π V(a)= a2−2π2a4ρ(a) . 4G To quantize the model, we find the Hamiltonian Assuming that α is sufficiently large, in the WKB ap- G p2 3π H=− − a+2π2a3ρ(a) , (3) proximation [3] 3π a 4G ψ(a)=exp{−iW (a)/¯h+W +···} , 0 1 ∗Electronicaddress: [email protected] to the lowest order in h¯ one obtains 2 From the Hamilton-Jacobi equation (5) one obtaines the following Lagrangian[4] G dW 2 iGq¯hdW 3πa2 − 0 − 0− +2π2a4ρ(a)=0. (5) 3π da 3πa da 4G 3π iq¯ha˙ Gq2¯h2 3πa (cid:18) (cid:19) L=− aa˙2− + + −2π2a3ρ(a) . 4G 2 a 12πa3 4G We have assumed that for large values of α the second term in eq.(5) may be of the order of the first one. Let InthisLagrangianonecanomitthesecondtermbecause usjudgethevalidityofthisassumption. Fromeq.(5)one itcontainsthetotaltimederivativeandtherebydoesnot obtains affect the equation of motion [4]. Therefore one gets dW q¯h f(a) 0 =−i ±i , (6) 3π Gq2¯h2 3πa da 2a p2 L=− aa˙2+ + −2π2a3ρ(a) , 4G 12πa3 4G where for which the zero-energy condition takes the form q2¯h2 9π2a2 24π3a4ρ(a) f(a)= + − . a2 G2 G In what follows, in the region a < a0, we assume the − 3πaa˙2− α2a40 − 3πa+2π2a3ρ(a)=0 . (10) following boundary condition 4G 12Gπa3 4G dW0 q¯h f(a) The modified Friedman equation(10) containes a new =−i −i . (7) da 2a 2 term, which decays very fast in the course of expansion p of the universeand therefore cannot affect the late time Under this assumption, in the region a < a , for large 0 cosmology. But, however, the appearance of this new enoughvaluesofαtheratioofthefirstandsecondterms term is quite important for it can avoid the collapse of in eq.(4) takes the form the universe. Tosummarize,weconsideredtheinfluenceoftheoper- a dW 1 1 9π2a4 24Gπ3a6ρ(a) 0 atororderingtermonthesemiclassicallimitoftheWDW = + 1+ − ∼1 . S(cid:12)(cid:12)(cid:12)(cid:12)oq,¯hunddaer(cid:12)(cid:12)(cid:12)(cid:12)the(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)b2oun2dsary conαd2iati40on (7), inα2tah40e regio(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)n a(8<) erwaqemuaaesttsieournm. fMeorqorl=aerpgαreaeec20ni/so¯heulGyg,hfrwovhmaelurteehseαovfiesorypaenbreaagtriobnrintorinradgryeirndineimgq.pe(n4a)-- a , the secondterm ineq.(4) for largevalues of α canbe sionless parameter and take the boundary condition (7) 0 oftheorderofthefirstoneandmustbekept. Noticethat in the region a < a0. For large values of α, such that to forthesolution(6)withthepositivesignthesecondterm ensurevalidityofeqs.(8, 9),the semiclassicallimitofthe ineq.(5)becomessuppressedincomparisonwiththefirst WDWequationproducesamodificationoftheFriedman one and should be omitted. equation eq.(10). The new term appearing in equation LetusnowcheckthestandardWKBvaliditycondition (10)decaysveryfastandthereforedoesnotaffectthecos- [3]. Forlargevaluesofαintheregiona<a oneobtaines mology in the course of expansion of the universe, but, 0 however,can avoid the collapse of the universe. dW a2α d2W a2α 0 ∼−i 0 , 0 ∼i 0 , da Ga da2 Ga2 and correspondingly Acknowledgments d2W dW 2 ¯h 0 0 ∼q−1 ≪1 . (9) The author is greatly indebted to the Abdus Salam (cid:12) da2 da (cid:12) International Center for Theoretical Physics, where this (cid:12) (cid:30)(cid:18) (cid:19) (cid:12) (cid:12) (cid:12) paper was begun, for hospitality. It is a pleasure to ac- (cid:12) (cid:12) Thus, for the(cid:12)solution (7) the ap(cid:12)proximation(5) is justi- knowledge helpful conversations with Professors A. Dol- fied in the region a<a for large values of α. gov, M. Gogberashvili and V. Rubakov. 0 [1] J. Wheeler, in Battele Renconters, eds. C. DeWitt and Moscow, 1989); J.MathewsandR.Walker,Mathematical J.Wheeler(Benjamin,NewYork,1968);B.DeWitt,Phys. Methods of Physics, (Atomizdat, Moscow, 1972). Rev.160 (1967) 1113. [4] L. Landau and E. Lifshitz, Mechanics, (Nauka, Moscow, [2] M. Maziashvili, Phys.Rev. D69 (2004) 107304. 1965). [3] L. Landau and E. Lifshitz, Quantum mechanics, (Nauka,