ebook img

Modern Physics: A critical approach PDF

448 Pages·2020·49.362 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Physics: A critical approach

Modern Physics A critical approach Modern Physics A critical approach Edited by Canio Noce Dipartimento di Fisica ‘E R Caianiello’ University of Salerno, Salerno, Italy IOP Publishing, Bristol, UK ªIOPPublishingLtd2020 Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording orotherwise,withoutthepriorpermissionofthepublisher,orasexpresslypermittedbylawor undertermsagreedwiththeappropriaterightsorganization.Multiplecopyingispermittedin accordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgency,theCopyright ClearanceCentreandotherreproductionrightsorganizations. CertainimagesinthispublicationhavebeenobtainedbytheauthorfromtheWikipedia/ Wikimediawebsite,wheretheyweremadeavailableunderaCreativeCommonslicenceorstated tobeinthepublicdomain.Pleaseseeindividualfigurecaptionsinthispublicationfordetails.To theextentthatthelawallows,IOPPublishingdisclaimanyliabilitythatanypersonmaysufferasa resultofaccessing,usingorforwardingtheimage(s).Anyreuserightsshouldbecheckedand permissionshouldbesoughtifnecessaryfromWikipedia/Wikimediaand/orthecopyrightowner (asappropriate)beforeusingorforwardingtheimage(s). PermissiontomakeuseofIOPPublishingcontentotherthanassetoutabovemaybesought [email protected]. CanioNocehasassertedhisrighttobeidentifiedastheauthorofthisworkinaccordancewith sections77and78oftheCopyright,DesignsandPatentsAct1988. Multimediacontentisavailableforthisbookfromhttp://iopscience.iop.org/book/978-0-7503-2678-0. ISBN 978-0-7503-2678-0(ebook) ISBN 978-0-7503-2676-6(print) ISBN 978-0-7503-2679-7(myPrint) ISBN 978-0-7503-2677-3(mobi) DOI 10.1088/978-0-7503-2678-0 Version:20200801 IOPebooks BritishLibraryCataloguing-in-PublicationData:Acataloguerecordforthisbookisavailable fromtheBritishLibrary. PublishedbyIOPPublishing,whollyownedbyTheInstituteofPhysics,London IOPPublishing,TempleCircus,TempleWay,Bristol,BS16HG,UK USOffice:IOPPublishing,Inc.,190NorthIndependenceMallWest,Suite601,Philadelphia, PA19106,USA Contents Preface xiii Acknowledgements xv Editor biography xvi Contributors xvii Part I From classical to modern physics 1 The basic concepts of classical physics as a useful path 1-1 towards modern physics Delia Guerra, Ileana Rabuffo and Alfonso Romano 1.1 The Newton principles of dynamics 1-2 1.1.1 The principle of relativity and the first principle 1-2 1.1.2 The second principle 1-3 1.1.3 The third principle 1-7 1.2 Work and energy 1-7 1.2.1 The concept of work 1-7 1.2.2 The concept of kinetic energy 1-10 1.2.3 The concept of potential energy and the principle 1-13 of conservation of mechanical energy 1.3 Angular momentum 1-14 1.4 Symmetries and conservation laws 1-18 1.5 A brief description of waves 1-19 1.5.1 General remarks 1-19 1.5.2 Mathematical description 1-20 1.5.3 Interference and diffraction 1-24 1.6 Maxwell’s equations and electromagnetic waves 1-25 1.6.1 The integral and the differential forms of 1-25 Maxwell’s equations 1.6.2 Electromagnetic waves 1-31 References 1-33 2 Transition from classical physics to quantum physics: 2-1 the role of interference Lazzaro Immediata and Sergio Pagano 2.1 Introduction 2-1 v ModernPhysics 2.2 Light 2-1 2.2.1 Corpuscular theory 2-2 2.2.2 Wave theory 2-2 2.2.3 Classic electromagnetic theory 2-2 2.2.4 Quantum theory 2-2 2.3 Light as a wave 2-3 2.3.1 What is a wave? 2-3 2.3.2 Electromagnetic waves 2-4 2.3.3 Classification of electromagnetic waves 2-5 2.4 Electromagnetism 2-7 2.4.1 History 2-7 2.4.2 Maxwell’s equations 2-9 2.5 Interference 2-11 2.6 The Michelson and Morley experiment 2-11 2.6.1 Conclusions 2-17 2.7 Gravitational interferometers 2-18 2.7.1 The LIGO interferometer 2-19 2.7.2 The VIRGO interferometer 2-20 2.7.3 The future of gravitational interferometers 2-23 2.7.4 Another use of interferometers 2-24 References 2-25 3 Special relativity: an introduction 3-1 Roberto De Luca, Marcello Sette and Alessandro Sorgente 3.1 Kinematics and dynamics 3-1 3.1.1 Reference systems and events 3-1 3.1.2 Transformations and principles of relativity 3-1 3.1.3 Einstein’s relativity 3-4 3.1.4 Some important implications 3-7 3.1.5 Further work 3-9 3.2 Relativistic field transformations 3-10 3.2.1 Fields transformations in special relativity 3-10 3.2.2 Applications 3-16 Appendix 3-26 References 3-30 vi ModernPhysics 4 What happens to light when it passes through a prism? 4-1 The early history of spectroscopy Francesco Avitabile and Angela Nigro 4.1 Spectroscopy 4-1 4.1.1 The origin and development of optical spectroscopy 4-2 4.1.2 Refraction and dispersion 4-6 4.1.3 The hydrogen atom spectrum 4-8 4.1.4 Atomic theory 4-9 4.1.5 Optical spectroscopy analysis 4-12 4.2 Measuring the line spectra of inert gases and metal vapours 4-13 using a prism spectrometer 4.2.1 General description of the experiment 4-13 4.2.2 Carrying out the experiment 4-14 References 4-16 5 Electrical resistivity measurements reveal transport properties 5-1 Lazzaro Immediata and Carmine Attanasio 5.1 Introduction 5-1 5.2 General considerations 5-2 5.3 Basic methods 5-3 5.3.1 The direct method 5-3 5.3.2 The two-point probe method 5-4 5.3.3 Linear four-point probes 5-4 5.3.4 Non-collinear probe spacing 5-5 5.3.5 Square array 5-6 5.3.6 The Delta four-point probe 5-6 5.3.7 The over–under probe 5-7 5.4 The van der Pauw method 5-7 5.4.1 Methods for measuring resistivity: the case of a flat 5-8 sample of arbitrary shape 5.4.2 A method for measuring the Hall coefficient 5-12 5.5 Conclusions 5-14 References 5-14 6 The electromagnetic theory of thermal radiation 6-1 Roberto De Luca and Alessandro Sorgente 6.1 Thermal radiation 6-2 6.2 Kirchhoff theorem: definition of a black-body 6-4 6.2.1 Absorption and emission coefficients 6-5 vii ModernPhysics 6.3 Proof for the Stefan–Boltzmann equation (6.7) 6-6 6.4 Proof of Wien’s law (6.8) 6-7 6.4.1 Wien’s displacement law 6-9 6.5 Planck oscillators and the Rayleigh–Jeans law 6-10 6.6 Planck’s law 6-14 6.6.1 Obtaining the Stefan–Boltzmann law from Planck’s formula 6-17 6.6.2 Special cases of Planck’s law 6-17 6.6.3 Wien’s displacement law from Planck’s formula 6-18 6.7 Some applications 6-20 6.7.1 The Sun as a black-body 6-21 6.7.2 Luminous intensity on Earth 6-21 6.7.3 TRAPPIST-1 6-22 6.7.4 Comparison of stars 6-22 References 6-23 7 The dawn of quantum mechanics 7-1 Delia Guerra and Maria Teresa Mercaldo 7.1 Introduction 7-1 7.2 The photoelectric effect 7-3 7.3 The Compton effect 7-5 7.4 Atomic spectra 7-8 7.5 Atomic models 7-10 7.5.1 The Thomson model 7-11 7.5.2 The Rutherford model 7-12 7.5.3 The Bohr model 7-13 7.6 The Franck–Hertz experiment 7-16 7.7 The wave–particle duality 7-18 7.8 The double-slit experiment 7-20 References 7-22 8 Key concepts in quantum mechanics 8-1 Marco Figliolia, Martina Moccaldi and Canio Noce 8.1 The history of quantum theory 8-2 8.1.1 Experiments with unexpected results 8-3 8.2 Novel mechanics and novel principles 8-10 8.2.1 Classical principles 8-10 viii ModernPhysics 8.2.2 The definition of a state 8-11 8.2.3 Quantum principles 8-12 8.3 Applications and developments 8-13 8.3.1 Properties of the wave function 8-14 8.3.2 Free particles in classical and quantum mechanics 8-18 8.3.3 An infinitely deep potential well 8-20 8.3.4 The surprises do not stop: quantum tunnelling 8-24 8.3.5 The harmonic oscillator: an overview 8-29 8.3.6 General discussion of 1D problems in quantum mechanics 8-33 8.4 Interpretational issues 8-38 8.4.1 The measurement problem and the Copenhagen interpretation 8-38 8.4.2 Quantum paradoxes 8-41 8.4.3 Alternative interpretations and ‘ontology’ of the state 8-50 Appendix 8-52 References 8-55 9 Early attempts to make many-particle physics simple 9-1 Marco Figliolia and Alfonso Romano 9.1 Introduction 9-1 9.2 Kinetic theory of gases and specific heats: the classical treatment 9-1 9.2.1 Statistical mechanics and thermodynamics: 9-1 from micro to macro 9.2.2 Kinetic theory of gases: a first glance 9-6 9.2.3 The Maxwell–Boltzmann distribution 9-10 9.2.4 Specific heats of gases and solids 9-15 9.3 Transport properties of electrons in metals 9-20 9.3.1 Thermal conduction in the Drude model 9-24 9.4 A taste of quantum statistics 9-28 9.4.1 Classical versus quantum statistics 9-28 9.4.2 Bose–Einstein statistics 9-31 9.4.3 Fermi–Dirac statistics 9-33 9.4.4 The specific heat of solids 9-35 Appendices 9-40 References 9-42 10 How to look deep inside matter: scanning electron microscopy 10-1 Francesco Avitabile and Antonio Vecchione 10.1 Introduction 10-1 10.2 Microscopy 10-1 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.