Topics in Current Chemistry 335 Henrike Heise Stephen Matthews Editors Modern NMR Methodology 335 Topics in Current Chemistry EditorialBoard: K.N.Houk,LosAngeles,CA,USA C.A.Hunter,Sheffield,UK M.J.Krische,Austin,TX,USA J.-M.Lehn,Strasbourg,France S.V.Ley,Cambridge,UK M.Olivucci,Siena,Italy J.Thiem,Hamburg,Germany M.Venturi,Bologna,Italy C.-H.Wong,Taipei,Taiwan H.N.C.Wong,Shatin,HongKong Forfurthervolumes: http://www.springer.com/series/128 Aims and Scope TheseriesTopicsinCurrentChemistry presentscriticalreviews ofthepresent and futuretrendsinmodernchemicalresearch.Thescopeofcoverageincludesallareasof chemical science including the interfaces with related disciplines such as biology, medicineandmaterialsscience. Thegoalofeachthematicvolumeistogivethenon-specialistreader,whetherat theuniversityorinindustry,acomprehensiveoverviewofanareawherenewinsights areemergingthatareofinteresttolargerscientificaudience. Thuseachreviewwithinthevolumecriticallysurveysoneaspectofthattopicand placesitwithinthecontextofthevolumeasawhole.Themostsignificantdevelop- mentsofthelast5to10yearsshouldbepresented.Adescriptionofthelaboratory procedures involved is often useful to the reader. The coverage should not be exhaustiveindata,butshouldratherbeconceptual,concentratingonthemethodolog- icalthinkingthatwill allowthenon-specialistreaderto understandtheinformation presented. Discussionofpossiblefutureresearchdirectionsintheareaiswelcome. Reviewarticlesfortheindividualvolumesareinvitedbythevolumeeditors. Readership:researchchemistsatuniversitiesorinindustry,graduatestudents. Henrike Heise Stephen Matthews l Editors Modern NMR Methodology With contributions by S. Appelt (cid:1) B. Blu¨mich (cid:1) M. Etzkorn (cid:1) S. Glo¨ggler (cid:1) U.L. Gu¨nther (cid:1) H. Heise (cid:1) G. Kervern (cid:1) E¯. Kupcˇe (cid:1) S. Matthews (cid:1) H. Mu¨ller (cid:1) G. Pintacuda (cid:1) Y. Xu Editors HenrikeHeise StephenMatthews Heinrich-Heine-Universita¨tDu¨sseldorf ImperialCollegeLondon ICS-6/StrukturbiologieundBiophysik DivisionofMolecularBiosciences Ju¨lich BiochemistryBuilding Germany SouthKensington London UnitedKingdom ISSN0340-1022 ISSN1436-5049(electronic) ISBN978-3-642-37990-1 ISBN978-3-642-37991-8(eBook) DOI10.1007/978-3-642-37991-8 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013939356 #Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Nuclear magnetic resonance (NMR) spectroscopy is an extremely versatile and powerful analytical tool, which is indispensable in many research fields within chemistry, physics, biology, and medicine. Applications of this technique range from routine chemical analysis to materials science and from biological structure determination to biomedical imaging. Although the technique itself is almost 70yearsold,itisfarfrombeingfullyexploited,asnoveldevelopmentsinhardware technology, pulse sequences, and hyperpolarization techniques have expanded its applicability to ever more complex systems and demanding questions. In this volume,wegivethereaderaflavorofthelargeandmultifacetedrangeofapplica- tions of NMR spectroscopy by highlighting the recent advances in a variety of areas. While improvements in superconductor technology have facilitated high- resolution NMR spectroscopy at ultra-high magnetic fields with B strengths up 0 to23.5T(correspondingtoa1HLarmorfrequencyof1GHz),improvementsatthe other end of the scale, i.e., NMR spectroscopy at ultra-low magnetic fields, also offersintriguingopportunities.NMRspectroscopyattheEarth’smagneticfieldis an extremely attractive option for field applications, as no large superconducting magnets are required. Furthermore, at ultra-low magnetic fields the scalar coupling becomes the major interaction which leads to a novel type of NMR spectroscopy. In the chapter “NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields,” the underlying principles, recent applications, and state-of-the- art hyperpolarization techniques used for pre-polarization of nuclear spins are reviewed. AmajorlimitationforNMRspectroscopyistheintrinsicallylowsensitivitydue to the rather unfavorable Boltzmann distribution for nuclear spins at thermal equilibrium. Thus, considerable effort in magnetic resonance spectroscopy is made towards sensitivity enhancement by hyperpolarization techniques, such as opticalpolarization,para-hydrogen-inducedpolarizationenhancement,anddynam- ic nuclear polarization (DNP), a method which exploits the magnetization of unpairedelectronsinstableradicalsortransitionmetalstoenhancenuclearpolari- zationbeyondtheBoltzmannlimit.Inthechapter“DynamicNuclearHyperpolari- zation in Liquids,” the fundamental theory for different polarization transfer v vi Preface mechanisms in DNP is explained, and the experimental background for DNP applicationsisdescribed. Structure determination ofsoluble proteinsofmoderate size(upto30 kDa)by multinuclearmultidimensionalNMRspectroscopyisnowfairlystandardwithwell- established protocols. In the chapter “NMR with Multiple Receivers,” an acquisi- tion scheme employing multiple receivers is described which allows for faster structuredeterminationinsmallmolecules.Further,recentlyemployedfastacqui- sition schemes such as Hadamard spectroscopy, projection-reconstruction techni- ques,andreduceddimensionalityexperimentsareexplained. The most severe limitation towards structure determination by solution NMR spectroscopyofproteinslargerthan50kDaistheline-broadeningduetorestricted molecular tumbling. Transverse-relaxation optimized spectroscopy (TROSY), originallydevelopedbyWu¨thrichforamide-protons,reliesontheselectivedetec- tion of the spin state for which dipolar coupling and chemical shift anisotropy relaxationmechanismscompensateeachother,thusleadingtoreducedline-widths. Inthechapter“TROSYNMRSpectroscopyofLargeSolubleProteins,”theappli- cation of TROSY methodology to extensively deuterated proteins with selective protonationinmethylgroupsisreviewed. For even larger proteins, protein aggregates, protein complexes, or proteins embedded in a lipid bilayer, where the molecular tumbling is further reduced, solid-stateNMRspectroscopymaybecomeaviablealternativeforstructureeluci- dationorevenhigh-resolutionstructuredetermination.Inthechapter“Solid-State NMR Spectroscopy of Proteins”, basic principles of biological solid-state NMR spectroscopyaswellasfundamentaltechniquesforisotopelabeling,sampleprepa- ration, and some selected applications are reviewed. In addition, recent develop- mentsinpolarizationenhancementbyDNPforsolid-stateNMRspectroscopy are outlined. Paramagneticcentersinmoleculesareoftenconsideredaninconvenientobstacle towardscharacterizationbyNMRspectroscopy.However,inthepastdecade,great effort has been made towards the exploitation of paramagnetic centers in small organometallic compounds, stable radicals, or even proteins with paramagnetic centers for elucidation of chemical or structural properties. In the chapter “ParamagneticSolid-StateMagic-AngleSpinningNMRSpectroscopy,”theappli- cation of NMR spectroscopy to paramagnetic solids is reviewed: The theory of major interactions between electrons and nuclei such as the hyperfine shift, the pseudocontact shift, and paramagnetic relaxation enhancement is explained in detail. Experimental details are described and some illustrative recent examples aregiven. Thedynamicsofnuclearspinsinmagneticfieldsandtheirmanipulationarethe underlyingcommonthemeinmanynewdevelopmentsinNMR.Wehopethatthe readerwillenjoytherangeofaspectscoveredinourbook.Furthermore,wewould liketothankallthecontributingauthorsfortheirvaluablecontributions. London StephenMatthews Du¨sseldorf HenrikeHeise Contents NMRSpectroscopyforChemicalAnalysisatLowMagneticFields ....... 1 StefanGlo¨ggler,BernhardBlu¨mich,andStephanAppelt DynamicNuclearHyperpolarizationinLiquids ............................ 23 UlrichL.Gu¨nther NMRwithMultipleReceivers ............................................... 71 E¯riksKupcˇe TROSYNMRSpectroscopyofLargeSolubleProteins .................... 97 YingqiXuandStephenMatthews Solid-StateNMRSpectroscopyofProteins ................................ 121 HenrikMu¨ller,ManuelEtzkorn,andHenrikeHeise ParamagneticSolid-StateMagic-AngleSpinningNMRSpectroscopy .... 157 GuidoPintacudaandGwendalKervern Index .......................................................................... 201 vii TopCurrChem(2013)335:1–22 DOI:10.1007/128_2011_304 #Springer-VerlagBerlinHeidelberg2011 Publishedonline:14December2011 NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields StefanGl€oggler,BernhardBlu€mich,andStephanAppelt Abstract This chapter addresses the limits of low-field NMR spectroscopy for chemical analysis and will answer the question of whether high-resolution NMR spectroscopy for chemical analysis of solutions can be achieved with magnetic fieldsmuchlowerthan0.1Twithoutlosingthechemicalinformationwhichathigh fieldisderivedfromthechemicalshiftandtheindirectspin–spinorJ-coupling.The focusisontwomajorissues.First,thethermalspinpopulationdifferencesgivenby theBoltzmanndistributionaresmallatlowfieldandsoisthesignal-to-noise-ratio when starting measurements from thermal equilibrium. Second, the possibility of identifyingchemicalgroupsisexploredatlowmagneticfieldswherethechemical shiftcanusuallynolongerberesolved. Keywords Hyper-polarization (cid:1) Low-field NMR (cid:1) NMR spectroscopy (cid:1) Strong coupling S.Gl€oggler InstituteforTechnicalChemistryandMacromolecularChemistry,RWTHAachen,52056 Aachen,Germany II.InstituteofPhysics,RWTHAachenUniversity,52056Aachen,Germany B.Bl€umich(*) InstituteforTechnicalChemistryandMacromolecularChemistry,RWTHAachen,52056 Aachen,Germany e-mail:[email protected] S.Appelt InstituteforTechnicalChemistryandMacromolecularChemistry,RWTHAachen,52056 Aachen,Germany CentralInstituteforElectronics,ResearchCenterJ€ulich,52425J€ulich,Germany 2 S.Gl€oggleretal. Contents 1 Introduction.................................................................................. 2 2 SignalEnhancement......................................................................... 3 2.1 ExperimentalSetupsforSignalEnhancement........................................ 4 2.2 PrepolarizingSamplesinHighMagneticFields...................................... 5 2.3 OpticalPumping:SEOPandSPINOE................................................ 5 2.4 Para-HydrogenInducedPolarization.................................................. 8 3 ChemicalAnalysisintheMilliteslaRegimeandBelow................................... 10 3.1 MeasurementofChemicalShiftDifferencesBelowtheLineWidth................ 10 3.2 WeakandStrongJ-CoupledNMR-SpectroscopyinMagneticFieldsfrom0to100T 12 References........................................................................................ 20 Abbreviations ALTADENA Adiabatic longitudinal transport after dissociation engenders netalignment DNP Dynamicnuclearpolarization PASADENA Parahydrogen and synthesis allow dramatically enhanced nuclear alignment PHIP Para-hydrogeninducedpolarization SABRE Signalamplificationbyreversibleexchange SEOP Spinexchangeopticalpumping SPINOE SpinpolarizationinducednuclearOverhausereffect SQUID Superconductingquantuminterferencedevice 1 Introduction MeasuringNMRsignalsatlowmagneticfieldisnotnewbutdoingspectroscopyat low magnetic fields is a new and exciting field [1–8]. Starting with Packard and Varian in 1954, signals were detected in the early days of NMR in the earth’s magnetic field despite low signal-to-noise ratio [9]. One motivation for low-field NMR is in the area of geomagnetic sensing with earth field magnetometers. For example,oneoftheearliestprojectsoftheNobellaureateSirPeterMansfieldwas todevelopanearth’sfieldNMRspectrometerin1959.Varianproposedin1968to use earth’s field NMR for well logging in oil exploration, which nowadays is a employed commercially albeit at higher field employing permanent magnets. Benoit[10]andBe´ne´ [11]showedfirstspectrawiththehetero-nuclearJ-coupling of1H31P-and1H–14N-groupsresolvedintheearth’smagneticfield.Inadditionto NMR signal detection with coils, other approaches for low-field NMR have been developed in recent years for spectroscopy and imaging. Among these are NMR detection by SQUID technology, which has widely been explored recently for spectroscopy and imaging [3, 12, 13], atomic magnetometers, for NMR detection at ultra-low and zero magnetic field [8, 14, 15], and diamonds with nitrogen vacancycenters[16,17].