ebook img

Modern Aldol Reactions PDF

344 Pages·2004·3.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Modern Aldol Reactions

R.Mahrwald(Ed.) ModernAldolReactions Vol.1:Enolates, Organocatalysis, BiocatalysisandNatural ProductSynthesis ModernAldolReactions.Vol.1:Enolates,Organocatalysis,BiocatalysisandNaturalProductSynthesis. EditedbyRainerMahrwald Copyright82004WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-30714-1 Also of Interest Grubbs,R.H.(Ed.) Handbook of Metathesis 3Volumes 2003 ISBN3-527-30616-1 Nicolaou,K.C.,Snyder,S.A. Classics in Total Synthesis II More Targets, Strategies, Methods 2003 ISBN3-527-30685-4(HardcoverwithCD-Rom) ISBN3-527-30684-6(Softcover) DeMeijere,A.,Diederich,F.(Eds.) Metal-Catalyzed Cross-Coupling Reactions Second,CompletelyRevisedandExtendedEdition 2Volumes 2004 ISBN3-527-30518-1 Krause,N.,Hashmi,A.S.K.(Eds.) Modern Allene Chemistry 2Volumes 2004 ISBN3-527-30671-4 Rainer Mahrwald (Ed.) Modern Aldol Reactions Vol. 1: Enolates, Organocatalysis, Biocatalysis and Natural Product Synthesis PDDr.RainerMahrwald 9 Thisbookwascarefullyproduced. DepartmentofOrganicChemistry Nevertheless,editor,authorsand HumboldtUniversity publisherdonotwarrantthe Brook-Taylor-Str.2 informationcontainedthereintobe 12489Berlin freeoferrors.Readersareadvisedto Germany keepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate. LibraryofCongressCardNo.:Appliedfor BritishLibraryCataloguing-in- PublicationData:Acataloguerecordfor thisbookisavailablefromtheBritish Library. Bibliographicinformationpublishedby DieDeutscheBibliothek DieDeutscheBibliothekliststhis publicationintheDeutsche Nationalbibliografie;detailed bibliographicdataisavailableinthe Internetathttp://dnb.ddb.de (2004WILEY-VCHVerlagGmbH& Co.KGaA,Weinheim Allrightsreserved(includingthoseof translationinotherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,or anyothermeans–nortransmittedor translatedintomachinelanguagewith- outwrittenpermissionfromthepub- lishers.Registerednames,trademarks, etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw. PrintedintheFederalRepublicof Germany. Printedonacid-freepaper. Typesetting AscoTypesetters,Hong Kong Printing StraussGmbh,Mo€rlenbach Bookbinding Litges&Dopf BuchbindereiGmbH,Heppenheim ISBN 3-527-30714-1 v Foreword Historically, the stimulus for the development of a particular reaction has beeninterconnectedwithaclassofnaturalproductswhosesynthesiswould begreatlyfacilitatedbytheuseofthatparticularbondconstruction.Forex- ample,thesteroidsynthesischallengesprovedinstrumentalinthedevelop- mentoftheDiels–Alderreaction.Sotoothesynthesischallengesassociated with the macrolide antibiotics have provided the motivation for the devel- opmentofthefullpotentialofthealdoladditionreaction.R.B.Woodward’s 1956 quote on the ‘‘hopelessly complex’’ architecture of the erythromycins wasprobablystimulated,inpart,bythefactthatthealdolreactionexistedin acompletelyunderdevelopedstatefivedecadesago. O Me Me Me OH OH Me Me OH O Theerythromycin-Astructure,asviewed Me byWoodwardinthe’50s Et O O NMe 2 H ‘‘Erythromycin,withallofour OH O O advantages,looksatpresentquite hopelesslycomplex,particularlyinview Me ofitsplethoraofasymmetriccenters.’’ O Me H R.B.WoodwardinPerspectivesin Me OrganicChemistry;Todd,A.Ed.;Wiley- MeO Interscience,NewYork,1956,page160. OH The challenges associated with the development of this reaction are also embodied in the more general goals of acyclic stereocontrol that have been under active investigation for nearly twenty-five years. In these studies, the goal of understanding pi-face selectivity at trigonal carbon centers for a multitudeoforganictransformationshasbeentheultimateobjective.From theseresearchactivities,ahostofstereochemicalmodelshaveevolved,such as the Felkin–Anh model for carbonyl addition and the Zimmermann– Traxleraldolstereochemicalmodelforaldoldiastereoselection. vi Foreword The development of modern aldol reaction methods has evolved through a succession of pivotal discoveries that have advanced the whole field of stereoselectivesynthesis: A. Development of enolization strategies for the formation of (E) and (Z) enolates. B. Development of kinetic diastereoselective aldol addition variants through the discovery of optimal metal architectures [B(III), Ti(IV), Sn(II)]. C. Discovery of aldol reaction variants such as the Lewis acid catalyzed additionofenolsilanestoaldehydes(Mukaiyamaaldolvariant). D. Developmentofchiralenolatesexhibitingexceptionalpi-faceselectivities. E. DevelopmentofchiralmetalcomplexesasLewisacidaldolcatalysts. Thistwo-volumeseriesonaldoladditionreactionmethodologybringsto- gether an up-to-date discussion of all aspects of this versatile process. The readerwillgainanappreciationfortheroleofmetalenolatearchitecturein aldoldiastereoselectivities(Vol.I;Chapters1–3)andfortheutilityofchiral metal complexes in the catalysis of the Mukaiyama aldol reaction (Vol. II; Chapters 1–3, 5). In Vol. II; Chapter 6, enantioselective catalytic processes incorporating both enolization and addition are surveyed, as is the exciting progress being made in the use of chiral amines as aldol catalysts (Vol. I; Chapter4).Thishighlyactiveareaofresearchwillcontinuetodevelopever moreversatilechiralcatalystsandstereochemicalcontrolconcepts. Studentsandresearchersinthefieldofasymmetricsynthesiswillgreatly profit from the contributions of this distinguished group of authors who havesoinsightfullyreviewedthistopic. May2004 DavidA.Evans HarvardUniversity vii Contents Volume 1 Preface xvii ListofContributors xix 1 FundamentalsandTransition-stateModels.AldolAdditionsofGroup 1and2Enolates 1 ManfredBraun 1.1 Introduction 1 1.2 TheAcidorBase-mediated‘‘Traditional’’AldolReaction 2 1.3 TheAldolAdditionofPreformedEnolates–Stereoselectivityand Transition-stateModels 9 1.4 StereoselectiveAldolAdditionofLithium,Magnesiumand SodiumEnolates 25 1.4.1 AdditionofChiralEnolatestoAchiralCarbonylCompounds 26 1.4.1.1 a-SubstitutedEnolates 26 1.4.1.2 a-UnsubstitutedEnolates 32 1.4.2 AdditionofAchiralEnolatestoChiralCarbonylCompounds 41 1.4.3 AdditionofChiralEnolatestoChiralCarbonylCompounds 49 1.4.4 AdditionofAchiralEnolatestoAchiralCarbonylCompoundsin thePresenceofChiralAdditivesandCatalysts 51 1.5 Conclusion 52 References 53 2 TheDevelopmentofTitaniumEnolate-basedAldolReactions 63 ArunK.Ghosh,M.Shevlin 2.1 Introduction 63 2.2 AdditionsofEnolatestoKetones 65 2.3 AdditionofEnolatesWithouta-SubstituentstoAldehydes 66 2.3.1 StereoselectiveAcetateAldolReactionsUsingChiral Auxiliaries 67 2.3.2 StereoselectiveAcetateAldolReactionsInvolvingChiralTitanium Ligands 69 viii Contents 2.3.3 AlternativeApproachestoAcetateAldolAdducts 70 2.4 AdditionofEnolateswitha-SubstituentstoAldehydes 72 2.4.1 SynDiastereoselectivity 74 2.4.1.1 SynthesisofsynAldolsinRacemicForm 75 2.4.1.1.1 ReactionsofKetones 75 2.4.1.1.2 ReactionsofEstersandThiolEsters 77 2.4.1.1.3 AldolReactionsofAldehydeHydrazones 78 2.4.1.2 SynthesisofOpticallyActivesynAldolsUsingChiral Auxiliaries 80 2.4.1.2.1 AminoAcid-derivedOxazolidinoneandRelatedAuxiliaries 80 2.4.1.2.2 Camphor-derivedChiralAuxiliaries 84 2.4.1.2.3 AminoindanolandAminoAcid-derivedChiralAuxiliaries 87 2.4.1.2.4 OtherChiralAuxiliaries 90 2.4.1.3 SynthesisofOpticallyActivesynAldolsUsingChiralTitanium Ligands 92 2.4.1.4 SynthesisofOpticallyActivesynAldolswithChiralEnolates 95 2.4.2 AntiDiastereoselectivity 98 2.4.2.1 SynthesisofantiAldolsinRacemicForm 98 2.4.2.2 SynthesisofOpticallyActiveantiAldolsbyUseofChiral Auxiliaries 99 2.4.2.2.1 AminoindanolandRelatedChiralAuxiliaries 99 2.4.2.2.2 OxazolidinethioneandOxazolidineseloneChiralAuxiliaries 103 2.4.2.3 SynthesisofOpticallyActiveantiAldolsbyUseofChiral TitaniumLigands 104 2.5 NaturalProductSynthesisviaTitaniumEnolateAldol Reactions 105 2.5.1 LactoneNaturalProducts 105 2.5.1.1 Tetrahydrolipstatin 106 2.5.1.2 MyxopyroninsAandB 106 2.5.1.3 CallystatinA 107 2.5.1.4 AI-77-B 108 2.5.2 MacrolideNaturalProducts 110 2.5.2.1 Epothilone490 110 2.5.2.2 CryptophycinB 110 2.5.2.3 AmphidinolideT1 111 2.5.2.4 Rapamycin 112 2.5.2.5 Spongistatins1and2 113 2.5.3 MiscellaneousNaturalProducts 114 2.5.3.1 Tautomycin 114 2.5.3.2 CrocacinC 115 2.5.3.3 StigmatellinA 116 2.5.3.4 DenticulatinB 117 2.5.3.5 MembrenoneC 119 2.6 TypicalExperimentalProceduresforGenerationofTitanium Enolates 120 2.6.1 ExperimentalProcedures 120 Contents ix 2.6.2 AlternativeApproachestoTitaniumEnolateGeneration 121 2.7 Conclusion 121 References 122 3 BoronandSiliconEnolatesinCrossedAldolReaction 127 TeruakiMukaiyamaandJun-ichiMatsuo 3.1 Introduction 127 3.2 CrossedAldolReactionsUsingBoronEnolates 127 3.2.1 DiscoveryofAldolReactionMediatedbyBoronEnolates 127 3.2.2 NewMethodforDirectGenerationofBoronEnolates 129 3.2.3 RegioselectivityonGenerationofBoronEnolates 130 3.2.4 StereoselectiveFormationof(E)or(Z)BoronEnolates 131 3.2.5 syn-SelectiveAsymmetricBoronAldolReactions 134 3.2.6 anti-SelectiveAsymmetricAldolReaction 135 3.3 CrossedAldolReactionsUsingSiliconEnolates 137 3.3.1 DiscoveryofSiliconEnolate-mediatedCrossedAldol Reactions 137 3.3.2 LewisAcid-catalyzedAldolReactionsofSiliconEnolates 143 3.3.3 Non-catalyzedAldolReactionsofSiliconEnolates 147 3.3.4 LewisBase-catalyzedAldolReactionsofTrimethylsilyl Enolates 148 3.3.5 DiastereoselectiveSynthesisofPolyoxygenated Compounds 149 3.3.6 AsymmetricAldolReactionsUsingChiralTin(II)LewisAcid Catalysts 150 3.3.6.1 StoichiometricEnantioselectiveAldolReaction 151 3.3.6.2 CatalyticEnantioselectiveAldolReaction 154 References 155 4 Amine-catalyzedAldolReactions 161 BenjaminList 4.1 Introduction 161 4.2 AminocatalysisoftheAldolReaction 162 4.2.1 IntermolecularAldolizations 163 4.2.1.1 AldehydeDonors 164 4.2.1.2 KetoneDonors 166 4.2.2 IntramolecularAldolizations 167 4.2.2.1 EnolexoAldolizations 167 4.2.2.2 EnolendoAldolizations 171 4.3 AsymmetricAminocatalysisoftheAldolReaction 173 4.3.1 IntramolecularAldolizations 173 4.3.1.1 EnolendoAldolizations 173 4.3.1.2 EnolexoAldolizations 177 4.3.2 IntermolecularAldolizations 179 4.3.2.1 KetoneDonors 179 x Contents 4.3.2.2 AldehydeDonors 193 References 196 5 Enzyme-catalyzedAldolAdditions 201 Wolf-DieterFessner 5.1 Introduction 201 5.2 GeneralAspects 202 5.2.1 ClassificationofLyases 202 5.2.2 EnzymeStructureandMechanism 204 5.2.3 PracticalConsiderations 207 5.3 PyruvateAldolases 208 5.3.1 N-AcetylneuraminicAcidAldolase 208 5.3.2 KDOAldolase 216 5.3.3 DAHPSynthase 217 5.3.4 KDPGAldolaseandRelatedEnzymes 218 5.4 DihydroxyacetonePhosphateAldolases 221 5.4.1 FruA 222 5.4.2 TagA 224 5.4.3 RhuAandFucA 224 5.4.4 DHAPSynthesis 227 5.4.5 Applications 230 5.4.6 AldolTransferEnzymes 246 5.5 TransketolaseandRelatedEnzymes 247 5.6 2-Deoxy-D-ribose5-PhosphateAldolase 250 5.7 GlycineAldolases 254 5.8 RecentDevelopments 257 5.9 SummaryandConclusion 258 References 260 6 Antibody-catalyzedAldolReactions 273 FujieTanakaandCarlosF.Barbas,III 6.1 Introduction 273 6.2 GenerationofAldolaseAntibodies 273 6.2.1 AntibodyasCatalystScaffold 273 6.2.2 GenerationofAldolaseAntibodiesthatOperateviaanEnamine Mechanism 274 6.2.2.1 ReactiveImmunizationwiththeSimpleDiketoneDerivative 275 6.2.2.2 CombiningReactiveImmunizationwithTransition-state Analogs 277 6.2.2.3 ReactiveImmunizationwithotherDiketones 279 6.3 AldolaseAntibody-catalyzedAldolandRetro-aldol Reactions 279 6.3.1 Antibody38C2-catalyzedAldolReactions 280 6.3.2 Antibody38C2-CatalyzedRetro-aldolReactionsandtheir ApplicationtoKineticResolution 283

Description:
Synthesis challenges associated with the macrolide antibiotics have motivated the development of the aldol addition reaction, understanding of which has advanced considerably since the reaction was first described in 1848. This two-volume set addresses all aspects of the enormous variety of aldol ch
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.