Article Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study HussainArif1,NidaRehmani1,MohdFarhan1,AamirAhmad2,*andSheikhMumtazHadi1,* Received:14September2015;Accepted:30October2015;Published:9November2015 AcademicEditor:WilliamChi-shingCho 1 DepartmentofBiochemistry,FacultyofLifeSciences,AligarhMuslimUniversity,Aligarh202002,UP, India;[email protected](H.A.);[email protected](N.R.);[email protected](M.F.) 2 KarmanosCancerInstitute,WayneStateUniversitySchoolofMedicine,Detroit,MI48201,USA * Correspondence:[email protected](A.A.);[email protected](S.M.H.); Tel.:+1-313-576-8315(A.A.&S.M.H.);Fax:+1-313-576-8389(A.A.&S.M.H.) Abstract: Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) andgalangin(GN).Usingsinglecellalkalinegelelectrophoresis(cometassay), weestablishedthe relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of theflavonoids. Keywords: flavonoids; cometassay; structureactivityrelationship; moleculardocking; Isothermal TitrationCalorimetricMeasurements;hydroxylgrouppositions 1. Introduction Development of cancer is a complex process that involves factors that are important in the significantstepsofinitiation,promotionandprogression,resultingintheuncontrolledproliferation andgrowthofcancercells. Itisnowbelievedthatdietaryfactorsfromvariousplantscanmodulate the phenomenon of carcinogenesis, thus relating the food stuffs to benefits beyond the basic nutritional requirements [1–3]. Among such dietary constituents, plant polyphenols are considered to be the most effective in cancer chemoprevention in humans [4,5]. Flavonoids can be classified under 14 different categories such as flavonols, flavones, flavanones, and others [6,7]. Structurally, flavonoids are C6–C3–C6 compounds consisting of two benzene rings, joined by the C3 aliphatic chainwithaheterocyclicpyranring[8]. Flavonoidsareasubclassofplantpolyphenolsthatinclude flavonolslikemyricetin,fisetin,quercetin,kaempferolandgalangin. Themechanismbywhichthese anticancer compounds are able to inhibit proliferation and induce apoptosis in cancer cells is not veryclearlyunderstoodandhasbeeninvestigatedwithprofoundinterest. Inrecentyears,anumber Int.J.Mol.Sci.2015,16,26754–26769;doi:10.3390/ijms161125992 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2015,16,26754–26769 of reports have suggested that a number of these flavonoids including myricetin, fisetin, apigenin quercetin and kaempferol induce apoptotic cell death in cancer cell lines [9–12]. One particularly interestingobservationisthatanumberoftheseflavonoidsinduceapoptosisandaffecttumorigenesis incancercellsbutnotinnormalcells[13,14]. Previous reports from our laboratory have established that many classes of plant-derived Int. J. Mol. Sci. 2015, 16, page–page polyphenoliccompounds,includingflavonoids,canbringaboutoxidativestrandbreakageinisolated quercetin and kaempferol induce apoptotic cell death in cancer cell lines [9–12]. One particularly DNAorcellularDNAeitheraloneorinthepresenceoftransitionmetalionssuchascopper[15,16]. interesting observation is that a number of these flavonoids induce apoptosis and affect It is well established that copper is an important and the most redox active metal ion when tumorigenesis in cancer cells but not in normal cells [13,14]. compared to the other metal ions that are present in biological systems [17]. Copper is found in Previous reports from our laboratory have established that many classes of plant-derived chromaptionly,pchloensoelliyc acossmopcoiautnedds, winitchludDinNgA flabvaosneosi,dps,a rctainc ublrairnlgy athboeugt uoaxnidianteivbe asstera[n1d8 ]b.reMakoasgte flianv onoids possessisboloatthed pDroNoAx iodra cnetllualsarw DeNllAa seitahnetri oaxloindea notr pinr othpee rptrieessen[1ce9 –o2f 1t]r.anEsiatirolnie mr,ewtale iopnrso psuocshe dast h at the prooxidcaonpptecr y[1to5,t1o6x].i cIt iasc wtieolnl esotafbfllisahveodn tohiadt scomppiegrh ist abne imapvoretraynt iamndp tohret amnotstm reedcohxa ancitsivme ,mleetaald iionng to the when compared to the other metal ions that are present in biological systems [17]. Copper is found anticancer and apoptosis-inducing ability [5,22]. We proposed that such prooxidant mechanism in chromatin, closely associated with DNA bases, particularly the guanine base [18]. Most flavonoids against cancer cells involves mobilization of endogenous copper ions [5]. Among the metal ions, possess both prooxidant as well as antioxidant properties [19–21]. Earlier, we proposed that the theconpceronotxriadtaiontn coyftoitrooxnici sactthioenh oigf hfleasvtoinnoicdesl lms,igwhht ebree aa svceoryp pimerpoarntadntz imncecahraenitshme, mleaadjoinrgm teot athlse present in the naunctilceaunsce[r1 a8n,2d3 ]a.poCpotopspise-irnidsukcinnog wabniltitoy p[5o,2s2se].s Ws he igprhoepsotsreedd tohxat ascutcivh itpyrowoxhidicahntf amceilcihtaanteissmi ts rapid recyclinagg,aiinnstt chaencperre cseellns cinevooflvceos mmpoboiuliznadtisons uocf henadsogpelnaonuts pcooplypperh ieonnso [l5s].a Anmdomngo ltehce umlaetralo ixoyngs,e tnhe, leading concentration of iron is the highest in cells, whereas copper and zinc are the major metals present in to generation of reactive oxygen species (ROS) such as the hydroxyl radical. It may be mentioned the nucleus [18,23]. Copper is known to possess highest redox activity which facilitates its rapid that chromatin-bound copper can be mobilized by copper chelators such as 1,10-phelanthroline to recycling, in the presence of compounds such as plant polyphenols and molecular oxygen, leading cause internucleosomal DNA fragmentation [24]. A number of studies suggest that serum [25,26], to generation of reactive oxygen species (ROS) such as the hydroxyl radical. It may be mentioned tissue[2th7a]t acnhrdomcealtliunl-aborucnodp pcoeprpleerv cealns baer empoabriltiizceudl abryl ycohpipgehr icnhevlaatroirosu ssuccha nasc e1r,1s0[-2p8h]e.laSnuthcrholainme teoc hanism is not dcaeupseen indteenrntuoclneorsoemceapl tDoNrAo rfrmagimtoecnhtaotinodnr [i2a4].m Ae dnuiamtebder pofr osgturdaimes msuegdgecset ltlhadt esaetrhum[2 [92]5.,26O], ver the years, wtisesuhea [v27e] avnadli cdealltueldar ocouprphery lpevoetlhs easries pwarititchulcaorlnys hiidgehr ianb vlearisouucsc ceasnsce[r3s, 5[2,18]7. ,S2u2c,h3 0a] .meScphaenciisfimc ally, we is not dependent on receptor or mitochondria mediated programmed cell death [29]. Over the years, have shown that oxidative cellular DNA breakage by polyphenols involves mobilization of nuclear we have validated our hypothesis with considerable success [3,5,17,22,30]. Specifically, we have copper[30]. Moreover,overloadofcopperinlymphocytesresultsinincreasedpolyphenol-mediated shown that oxidative cellular DNA breakage by polyphenols involves mobilization of nuclear cellularDNAdegradation[31].Finally,wehavealsosuccessfullydemonstratedthatpolyphenolscan copper [30]. Moreover, overload of copper in lymphocytes results in increased polyphenol-mediated inhibitcgerloluwlatrh DoNfAm duelgtirpadleatcioann c[3e1r].t yFpineasllyin, wcue lhtuavree ;atlshoi ssuecffceescstfuisllyre ddeumcoendstsriagtendi fithcaatn ptloylyipnhtehneolps resence ofcoppcearns ipnehcibifiitc gcrhoweltaht oorf sm,wulittihplec hcealnacteor rtsyopefsi rionn cualntudrez;i nthcisr eelfafetcivt eisl yreidnuecffeedc tsiivgneif[i3c2an–t3l4y ].in the Plapnretspenocley opfh ceonppoelsr sipneccliufidc icnhgelafltoarvso, wnoitihd cshaelraetorras poifd irloynm anedt azbinocl irzeeladtivienlya inniemffeaclticveel [l3s2a–n34d]. thus have Plant polyphenols including flavonoids are rapidly metabolized in animal cells and thus have poor bioavailability [35]. However, as there is considerable literature on the anticancer properties poor bioavailability [35]. However, as there is considerable literature on the anticancer properties of flavonoids, it is reasonable to assume that flavonoids can be exploited as lead compounds for of flavonoids, it is reasonable to assume that flavonoids can be exploited as lead compounds the synftohr etshies syonfthneosvise olf cnoomvepl cooumnpdosunwdist hwiethn ehnahnacnecdedb biiooaavvaaiillaabbiliiltiyt.y T.akTinagk itnhgis itnhtios coinntsoidecroantisoind, eration, we assewses eadsstehsseedc htehme icchaelmbiacsail sboafsist hoef ctyhteo tcoyxtioctoaxcict ivaicttyiviotyf dofi ffdeirfefenrtenflt afvlaovnooniodidss( m(myyrriicceettiinn,, fisetin, quercetfiinse,tikna, eqmueprcfeetrionl, ,kgaeamlapnfgerionl), gaanldangeivna) luanadte edvatlhueatesdtr uthcet usrtreu-catcutriev-iatcytivrietyla trieolantisohnisphip(S A(SARR))o f these of these compounds. For example, we show that the number and position of hydroxyl groups compounds. For example, we show that the number and position of hydroxyl groups in the B-ring in the B-ring of flavonoid skeleton (Figure 1a) is important in determining the cellular DNA offlavonoidskeleton(Figure1a)isimportantindeterminingthecellularDNAdegradingcapacityof degrading capacity of these compounds. The structures of various flavonoids used in this study are thesecompounds. ThestructuresofvariousflavonoidsusedinthisstudyareshowninFigure1b. shown in Figure 1b. (a) Figure 1. Cont. Figure1.Cont. 2 26755 Int.J.Mol.Sci.2015,16,26754–26769 Int. J. Mol. Sci. 2015, 16, page–page (b) Figure 1. (a) Basic flavonoid structure showing the A and B rings and the conventional numbering of Figure1.(a)BasicflavonoidstructureshowingtheAandBringsandtheconventionalnumberingof ccaarrbboonn aattoommss aanndd ((bb)) ssttrruuccttuurree ooff vvaarriioouuss flflaavvoonnooiiddss uusseedd iinn tthhiiss ssttuuddyy.. 2. Results and Discussion 2. ResultsandDiscussion 22..11.. CCeelllluullaarr DDNNAA BBrreeaakkaaggee bbyy FFllaavvoonnooiiddss iinn IInnttaacctt aanndd PPeerrmmeeaabbiilliizzeedd LLyymmpphhooccyytteess aass MMeeaassuurreedd bbyy CCoommeett AAssssaayy CCoommeett aassssaayy ((ssiinnggllee--cceellll ggeell eelleeccttrroopphhoorreessiiss)) iiss wweellll kknnoowwnn ttooooll ffoorr tthhee qquuaannttiifificcaattiioonn ooff DDNNAA ddaammaaggee iinn ceclellululalar rsyssytestmems. s[.36[]3.6 A]. mAodimfioedd icfioemdect oamsseaty,a usssainyg, aulskianlginea lckoanlidnietiocnosn,d mitaiodnes i,t pmoasdsiebliet ptoo sdseibtelectt othde esteinctglteh-estrsainngdl eb-srteraaknsd absr ewaeklsl aass wtheell aalskathlienea-llkaabliilne es-liatebsi leins iDteNsAin [D37N].A In[3 t7h].is Iansstahyis, athsesa yt,wtoh esitnwgoles-sintrgalne-ds trbarnedakbsr etahkast tahraet acrloescelloys eolyppoopspeods, edsh,oswho wupu pasa sa addoouubblele ssttrraanndd bbrreeaakk.. IInn oouurr pprreevviioouuss wwoorrkk,, wwee wwereere abalbel etot odedmemonosntrsatrtaet tehtaht attheth ceomcoemt eatssaasys acyanc abne ubseeuds teod mtoeamsueraes uthree tcheelluclealrl uDlaNrAD dNeAgraddeagtrioand aitnidonuciendd buyc epdolbyyphpeonloylps hinen houlsmiann hpuermipahnerpael rliypmheprhaolclyytmesp [h3o8c].y Ttehsis[ 3h8a]s. Tbeheisn hcaosnfbiremenedc obnyfi rrmepeodrtbs yfrroempo rottshefrro lmabootrhaetorrliaebs oarsa tworeilels [a3s9]w wehlle[r3e9 c]owmheetr eascsoamy ewtaass suasyedw atos uevseadluatotee vraelaucattiveer eaocxtyivgeeno xyspgeecniessp e(cRieOsS()R-mOSed)-imateeddi atDedNAD NbArebarkeaagkea gienidnudcuecde dbbyy eessttrrooggeenn--lliikkee ccoommppoouunnddss,, ddiieetthhyyllssttiillbbeessttrrooll,, ddiiaaddzzeeiinn aanndd ggeenniisstteeiinn.. HHeerree,, wwee uusseedd tthhee ccoommeett aassssaayy ttoo tteesstt DDNNAA bbrreeaakkaaggee bbyy 110000 µµMM ccoonncceennttrraattiioonnss ooff MMNN,, FFNN,, QQNN,, KKLL aanndd GGNN iinn iissoollaatteedd llyymmpphhooccyytteess.. AAss cclleeaarr ffrroomm TTaabbllee1 1,,w weeo bosbesrevrevdeda par opmroimneinntenintc irnecarseeaisne thine GthNe –G,NKL–,– ,KQLN–,– Q,FNN––, aFnNd–M aNnd– mMeNdi–amteeddDiaNteAd bDrNeaAk abgree,aaksasgheo, wasn bshyoiwncnr ebayse dinccoremaesetdta iclos.mIett istasielse.n Itth aist tsheeenh igthhaets tthleev ehligohfeDsNt Alevdeel goraf dDatNioAn idsegcaraudsaedtiobny ism ycariucseetidn bfoyl lomwyerdicebtiyn fifsoeltlionw,eqdu ebryce tfiins,etkina,e mqupefercroetlina,n dkageamlapnfegrinol. aAndcc ogradliannggitno. oAucrcohrydpinogth teos ios,upr ohlyyppohtehneosliss,m pooblyilpizheencohlrso mmaotbinilibzeo ucnhdrocmoaptpine rbdoiurencdt lyc,oprepseurl tdinirgecintlyc,e rlleuslualrtiDngN iAn bcerellauklaarg eD.NWAe ,btrheearkeafgoere. ,Wtees,t ethdetrheefoereff,e tcetsotefds atmhee ecfofenccte notfr astaimones coofnflceanvtornatoiiodnss oonf pflearvmoneaobidilsiz oedn lpyemrmpehaobciylitzeesd( Tlyamblpeh1o)c.ytWese (Tuasebdle p1e).r mWeea buisleizde dpelrymmepabhioliczyetde slybmecpahuosceytpeesr mbeecaabuisleiz pateiromneaalbloilwizastifoonr aalldoiwresc tfoern tar ydiarnecdt ienntterrya catniodn inotfeflraacvtoionno iodfs flwavitohntohiedsc ewllitnhu tchleei ,cerells nuultcinlegi, irnessuigltniinfigc ainn tslyigninifcirceaansteldy DinNcrAeasberdea DkaNgAe. bAresaskeaegne.i nAsth seeetanb ilne tthhies tianbdleee tdhiiss ifnoduenedd tios bfoeutnhde tcoa sbee. tThaeb lceas1e.c lTeaabrllye 1su cglegaersltys tshuagtgtehsetsl etnhgatth thofe cloemngettht aoilf wcoams gert etaatielr winaps egrrmeaeatebri liizne dpelyrmmepahboilciyzteeds ,laysmcpohmopcayrteeds, taosi nctoamctpcaerlelsd, ttho uisntfaucrtt hceerllssu, pthpuosr tfinugrththeer nsoutpiopnortthiantgt ethstec onmotpioonu nthdast intetsetr accotmbeptoteurnwdsit hinnteurcalceti ibneattepre rwmietha bniluizceledi siny stae mpe.rWmeeaablsiolizoebds esryvsetdemth. atWine baolstho ionbtascetrvaendd pthearmt eina bbiloiztehd icnetlalcstt haendra tpeeorfmDeNabAilibzreeda kcaeglles wthaes grarteea toefs tDfoNrAm ybrriecaektiang,ef owllaosw gerdeabtyesfits efotirn ,mqyureircceetitnin, ,fkoalleomwpefde rboyl afnisdetgianl,a qnugeinrcreetsinp,e cktaiveemlyp.ferol and galangin respectively. 26756 3 Int.J.Mol.Sci.2015,16,26754–26769 Int. J. Mol. Sci. 2015, 16, page–page TTaabbllee 11.. AA ccoommppaarriissoonn ooff DDNNAA bbrreeaakkaaggee iinndduucceedd bbyy vvaarriioouuss flflaavvoonnooiiddss iinn iinnttaacctt llyymmpphhooccyytteess aanndd ppeerrmmeeaabbiilliizzeedd llyymmpphhooccyytteess aass aa ffuunnccttiioonn ooff ccoommeett ttaaiill lleennggtthhss.. VVaalluueess rreeppoorrtteedd aarree ˘±SSEEMM ooff tthhrreeee iinnddeeppeennddeenntt eexxppeerriimmeennttss.. pp << 00..0011 bbyy ccoommppaarriissoonn wwiitthh ccoonnttrrooll ((uunnttrreeaatteedd cceellllss)) ffoorr eeaacchh ccoommppoouunndd.. Comet Tail Length (µM) Flavonoids (100 µM) CometTailLength(µM) Flavonoids(100µM) Intact Cells Permeabilized Cells IntactCells PermeabilizedCells Control (No Flavonoid) 3.95 ± 0.19 4.06 ± 0.20 Control(NoFlavonoid) 3.95˘0.19 4.06˘0.20 Myricetin 25.06 ± 1.25 28.90 ± 1.44 Myricetin 25.06˘1.25 28.90˘1.44 Fisetin 20.45 ± 1.02 25.03 ± 1.25 Fisetin 20.45˘1.02 25.03˘1.25 Quercetin 17.74 ± 0.88 23.50 ± 1.17 Quercetin 17.74˘0.88 23.50˘1.17 Kaempferol 16.03 ± 0.80 20.66 ± 1.03 Kaempferol 16.03˘0.80 20.66˘1.03 Galangin Galangin 14.8154 ±.8 05.7˘4 0.74 19.44˘109..9474 ± 0.97 2.2. Formation of Complexes of Flavonoids 2.2. FormationofComplexesofFlavonoids Figure 2 shows the effect of addition of calf thymus DNA to MN, FN, QN, KL and GN at an Figure 2 shows the effect of addition of calf thymus DNA to MN, FN, QN, KL and GN at equimolar base pair ratio of DNA vs. flavonoids (1:1). The mixture was excited at specific an equimolar base pair ratio of DNA vs. flavonoids (1:1). The mixture was excited at specific wavelengths provided in legends. It is seen that there is an enhancement of the emission spectra of wavelengthsprovidedinlegends. Itisseenthatthereisanenhancementoftheemissionspectraof aallll tthhee fifivvee flflaavvoonnooiiddss iinn tthhee pprreesseennccee ooff DDNNAA.. HHoowweevveerr,,w weed diiddn noottn noottiicceea as shhififtti ninλ λmax ooff eemmiissssiioonn.. max This suggests a simple mode of binding of flavonoids to DNA. ThissuggestsasimplemodeofbindingofflavonoidstoDNA. FFiigguurree 22.. EEffffeecctt ooff iinnccrreeaassiinngg nnaattiivvee DDNNAA bbaassee ppaaiirr mmoollaarr rraattiioo oonn tthhee fflluuoorreesscceennccee eemmiissssiioonn ssppeeccttrraa ooff FFllaavvoonnooiiddss.. FFllaavvoonnooiiddss wweerree eexxcciitteedd aatt ddiiffffeerreenntt wwaavveelleennggtthhss ((MMNN == 338800 nnmm,, FFNN == 336655 nnmm,, QQNN == 337700 nnmm,, KKLL == 336655 nnmm,, GGNN == 336655 nnmm)) iinn tthhee pprreesseennccee ooff iinnccrreeaassiinngg nnaattiivvee DDNNAA bbaassee ppaaiirr mmoollaarr ((11::11)) aanndd tthhee eemmiissssiioonn ssppeeccttrraa wweerree rreeccoorrddeedd.. 22..33.. EEffffeecctt oof fRReaeactcitvive eOOxyxgyegne nScSacvaevnegnegrse rosno tnhet hFelaFvloanvooindso-iIdnsd-Iuncdedu cDedNDA NBrAeaBkaregaek iang Peeirnmeabilized Lymphocytes PermeabilizedLymphocytes In order to confirm that the flavonoid-induced lymphocyte DNA breakage results from ROS geneIrnatioornd,e wr eto hcaovne fisrtmuditehda tththe eefflfeacvto onfo siodm-ined sucacevdenlgyemrsp hofo cRyOteS DonN cAombreeta tkaailg leenrgesthu lftosrfmroamtioRn ObSy gpelannetr aptoiolynp,hweenohlasv [e5]s.t uTdabieled 2t hseumeffmecatriozfesso tmhee osbcsaevrevnagtieornsso ffrRomOS aonn excpomereimtteanilt lwenhgetrhe fwoerm teasttieodn tbhye effects of catalase, SOD and thiourea on flavonoid-induced DNA degradation in permeabilized lymphocytes. As expected, all the flavonoids induced significant DNA damage, and resulted in 26757 4 Int.J.Mol.Sci.2015,16,26754–26769 plant polyphenols [5]. Table 2 summarizes the observations from an experiment where we tested the effects of catalase, SOD and thiourea on flavonoid-induced DNA degradation in permeabilized lymphocytes. As expected, all the flavonoids induced significant DNA damage, and resulted in increased tail lengths of comets, compared to control cells (p < 0.01). The three scavengers tested (catalase, SOD and thiourea) were found to particularly inhibit flavonoid-induced DNA breakage very effectively, as suggested by reduced comet tail length. Catalase and SOD are scavengers of H O andsuperoxide,respectively,whilethioureascavengeshydroxylradicals.Fromtheexperiment 2 2 presentedhere,wecansafelyinferthatROSisprimarilyinvolvedinthecellulardamagecausedby flavonoidsandthatthemainROSinvolvedintheprocessarethesuperoxideanionsandthehydroxyl radicals. ItisworthmentioningthatsuperoxideanionspontaneouslyleadstotheformationofH O . 2 2 H O , in turn, leads to the generation of hydroxyl radicals through a process that is dependent 2 2 on the oxidation of reduced transition metals [40]. It is also well recognized that the hydroxyl radicals interact with DNA in such proximity that a complete scavenging of hydroxyl radicals is notachievable[41]. Table2.Effectofscavengersofreactiveoxygenspeciesonflavonoid-inducedcellularDNAbreakage inpermeabilizedcells.*p<0.05,comparedwithcontrol(flavonoidonly)cells.Datarepresent˘SEM ofthreeindependentexperiments. IntactCells PermeabilizedCells Treatment CometTailLength% Inhibition(µM) CometTailLength% Inhibition(µM) Control 3.156˘0.17 - 3.25˘0.16 - Myricetin(100µM) 25.03˘1.25 - 31.56˘1.57 - +SOD(100µg/mL) 11.26˘0.56* 55.0 13.28˘0.76* 57.9 +Catalase(100µg/mL) 12.46˘0.62* 50.2 15.05˘0.80* 52.3 +Thiourea(1mM) 14.08˘0.70* 43.7 16.86˘0.84* 46.5 Fisetin(100µM) 22.96˘1.14 - 27.04˘1.35 - +SOD(100µg/mL) 12.20˘0.61* 46.8 14.24˘0.71* 47.3 +Catalase(100µg/mL) 12.76˘0.63* 44.4 14.64˘0.73* 45.8 +Thiourea(1mM) 13.04˘0.65* 43.2 15.05˘0.75* 44.3 Quercetin(100µM) 20.32˘1.01 - 24.54˘1.22 - +SOD(100µg/mL) 10.46˘0.52* 48.5 11.23˘0.56* 54.2 +Catalase(100µg/mL) 11.06˘0.55* 45.5 13.42˘0.67* 45.3 +Thiourea(1mM) 14.80˘0.74* 27.1 14.95˘0.74* 39.07 Kaempferol(100µM) 17.63˘0.88 - 21.54˘1.07 - +SOD(100µg/mL) 9.50˘0.47* 46.1 10.36˘0.51* 51.9 +Catalase(100µg/mL) 10.44˘0.52* 40.7 10.45˘0.52* 51.4 +Thiourea(1mM) 11.05˘0.55* 37.3 12.45˘0.62* 42.2 Galangin(100µM) 14.40˘0.72 - 18.44˘0.92 - +SOD(100µg/mL) 8.55˘0.32* 40.6 9.65˘0.63* 47.6 +Catalase(100µg/mL) 9.40˘0.37* 34.7 11.32˘0.59* 38.6 +Thiourea(1mM) 10.15˘0.50* 29.5 10.55˘0.53* 42.7 2.4. EffectofSpecificChelatorsofMetalsonFlavonoid-InducedDNABreakageinIntactand PermeabilizedLymphocytes Nextweusedthespecificchelatorsofseveralmetals(suchasthechelatorsthatselectivelybind to copper, iron and zinc) and evaluated their effect, if any, on flavonoid-induced DNA degradation in whole as well as permeabilized cells. We observed a clear inhibition of DNA degradation in whole cells when we used neocuproine. Neocuproine is a Cu(I) chelator that is cell membrane permeable (Table 3). However, we did not see any inhibition when we used bathocuproine. Bathocuproine is a water soluble analog of neocuproine, but is membrane-impermeable. Similarly, no inhibition was observed when we used desferrioxaminemesylate (Fe(II)-specific chelator) and histidine (a zinc-specific chelator). In permeabilized lymphocytes, it was observed that both the Cu(I) chelators, neocuproine and bathocuproine, could inhibit DNA breakage because membrane permeability was no longer a determining factor. Iron and zinc chelators were still found to be ineffectiveinaffordingprotection. 26758 Int. J. Mol. Sci. 2015, 16, page–page Table 3. Effect of chelators of metals on flavonoids-induced cellular DNA degradation in lymphocytes. Values shown in this table represent flavonoid-induced cellular DNA breakage in whole and permeabilized lymphocytes measured as a percentage of the control (DNA breakage in the absence of chelators). Data represent ±SEM of three independent experiments. * p < 0.05, compared to Int.J.Munolt.reSacit.e2d0 1w5,h1o6,le2 6l7y5m4–p2h67o6c9ytes (comet tail length = 3.43 ± 0.13). ** p < 0.05, compared to untreated permeabilized lymphocytes (comet tail length = 3.85 ± 0.17). Table 3. Effect of chelators of metaWlshoonle Lflyavmopnhooidcsy-tiensduced cePlleurlmareaDbNiliAzedd eLgyrmadpahtoiocnyteins lymphocytes.DVoaselu es shown in thisCtaobmleetr eTpariel sent oflfa vCoonnotirdo-linducedCocmelleutl TaraiDl NA broefa Ckaognetrionl Length % (µM) Length % (µM) wholeandpermeabilizedlymphocytesmeasuredasapercentageofthecontrol(DNAbreakageinthe absencMeoyfriccheetilant o(2r0s)0. µDMat)a represent3˘1.S2E4M ± 1o.f56th *r eeindepe-n dentexpe3r7im.9e0n ±t s1..8*9p *<* 0.05,comp- ared +Neocuproine (200 µM) 21.06 ± 1.12 32.5 23.04 ± 1.15 39.2 tountreatedwholelymphocytes(comettaillength=3.43˘0.13). **p<0.05,comparedtountreated +Bathocuproine (200 µM) 29.86 ± 1.50 4.41 22.50 ± 1.12 40.6 permeabilizedlymphocytes(comettaillength=3.85˘0.17). +Histidine (200 µM) 30.63 ± 1.55 1.95 37.73 ± 1.88 0.44 +Desferioxaminemesylate (200 µM) 30.04 ± 1.53 3.84 37.15 ± 1.85 1.97 WholeLymphocytes PermeabilizedLymphocytes Dose Fisetin (200 µM) CometTai2l9L.e8n0g t±h 1%.49 * ofControl-( µM) Com36e.t0T4a i±l L1e.n8g0t h**% ofCon-t rol(µM) M+yNrieceoticnu(p20r0oµinMe) (200 µM) 31.24˘210..5367* ± 0.91 -31.6 327.39.05˘4 ±1. 819.1**7 34.6-8 +N+eBoacuthproocinuep(2r0o0inµeM ()200 µM) 21.06˘281..8124 ± 1.39 32.35.22 2232..0343˘ ±1 1.1.511 383.09.42 +Bathocuproine(200µM) 29.86˘1.50 4.41 22.50˘1.12 40.6 +Hi+stHidiinseti(d20i0nµe M(2)00 µM) 30.63˘291..4550 ± 1.47 1.915.34 3376..7030˘ ±1 1.8.880 0.01.414 +D+Desfeesrifoexraimoxinaemmeisnyelamtee(2s0y0laµtMe )(200 µM3)0 .04˘291..1531 ± 1.45 3.824.31 3375..1358˘ ±1 1.8.576 1.18.937 Fisetin(200µM) 29.80˘1.49* - 36.04˘1.80** - +NeocQupureoirncee(t2i0n0 µ(2M0)0 µM) 20.372˘6.03.931 ± 1.40 * 31.6- 332.33.544 ±˘ 11..6176 ** 3-4 .68 +Bathocuproine(200µM) 28.84˘1.39 3.22 22.33˘1.11 38.04 +Neocuproine (200 µM) 18.54 ± 0.86 29.5 21.96 ± 1.09 34.13 +Histidine(200µM) 29.40˘1.47 1.34 36.00˘1.80 0.11 +Desferi+oBxaamthinoecmuepsyrloatien(e20 (02µ0M0 )µM) 29.11˘251..6459 ± 1.31 2.321.43 2351..3483˘ ±1 1.7.607 351.7.823 Quercetin(200µM) 26.33˘1.40* - 33.34˘1.66** - +Histidine (200 µM) 26.04 ± 1.35 1.10 33.30 ± 1.66 0.11 +Neocuproine(200µM) 18.54˘0.86 29.5 21.96˘1.09 34.13 +D+eBsaftehroicouxparominien(e2m00eµsMy)late (200 µM2)5 .69˘261..0310 ± 1.34 2.413.25 3212..4839˘ ±1 1.0.764 13.35.47 2 +Histidine(200µM) 26.04˘1.35 1.10 33.30˘1.66 0.11 Kaempferol (200 µM) 21.76 ± 1.18 * - 30.23 ± 1.51 ** - +Desferioxaminemesylate(200µM) 26.00˘1.34 1.25 32.89˘1.64 1.34 Ka+eNmpefoecroulp(2r0o0inµeM ()200 µM) 21.76˘161..1583* ± 0.72 -24.03 320.02.34˘4 ±1. 511.0**2 32.3-8 +Neocuproine(200µM) 16.53˘0.72 24.03 20.44˘1.02 32.38 +Bathocuproine (200 µM) 21.28 ± 1.15 2.20 19.70 ± 0.98 34.83 +Bathocuproine(200µM) 21.28˘1.15 2.20 19.70˘0.98 34.83 +Hi+stHidiinseti(d20i0nµe M(2)00 µM) 21.68˘211..6178 ± 1.17 0.306.36 3300..1199˘ ±1 1.5.050 0.01.133 +Desferioxaminemesylate(200µM) 21.52˘1.17 1.10 30.07˘1.50 0.52 +Desferioxaminemesylate (200 µM) 21.52 ± 1.17 1.10 30.07 ± 1.50 0.52 22..55.. SSttooiicchhiioommeettrryy ooff CCuu((IIII)) RReedduuccttiioonn bbyy FFllaavvoonnooiiddss RReeddooxx rreeccyycclliinngg ooff CCuu((IIII))//CCuu((II)) iiss kknnoowwnn ttoo bbee aann iimmppoorrttaanntt ffaaccttoorr iinn tthhee iinndduuccttiioonn ooff ccooppppeerr--mmeeddiiaatteedd DDNNAA bbrreeaakkaaggee [[2222,,3300]].. TThheerreeffoorree, ,wwee nneexxtt aasssseesssseedd tthhee rreellaattiivvee eeffffiicciieennccyy ooff rreedduuccttiioonn ooff CCuu((IIII)) bbyy MMNN,, FFNN,, QQNN,, KKLL aanndd GGNN ththrorouugghh stsotoicichhioiommeetrtircic stsutuddieise.s. JJoobbpplloottss ooff aabbssoorrbbaannccee vveerrssuuss ((CCuu((IIII))))//((ffllaavvoonnooiiddss)) ((FFiigguurree 33)) iinnddiiccaattee tthhaatt aallll ffllaavvoonnooiiddss wweerree aabbllee ttoo rreedduuccee CCuu((IIII)) ttoo CCuu((II)).. HHoowweevveerr,, iitt iiss aallssoo eevviiddeenntt tthhaatt mmyyrriicceettiinn wwaass tthhee mmoosstt eeffffiicciieenntt rreedduucceerr ooff CCuu((IIII)) aammoonngg aallll tthhee tteesstteedd flflaavvoonnooiiddss wwhheerreeaass ggaallaannggiinn wwaass tthhee lleeaasstt eefffificciieenntt.. FFiigguurree 33.. SSttooiicchhiioommeettrryy ooff FFllaavvoonnooiidd––CCuu((IIII)) iinntteerraaccttiioonnss.. TThhee ccoonncceennttrraattiioonn ooff mmyyrriicceettiinn,, ffiisseettiinn,, qquueerrcceettiinn,, kkaaeemmppffeerrooll aanndd ggaallaannggiinn wwaass 1100 µµMM iinn tthhee pprreesseennccee ooff 00..33 mmMM bbaatthhooccuupprrooiinnee ((1100 mmMM TTrriiss––HHCCll)).. AAllll tthhee ppooiinnttss aarree rreepprreesseennttaattiivvee ooff ttrriipplliiccaattee ssaammpplleess aanndd mmeeaann vvaalluueess aarree ppllootttteedd.. 2.6. IntracellularGenerationofH O /ROSbyFlavonoids 2 2 6 It has been reported that polyphenols can auto-oxidize under invitro conditions resulting in generation of H O radicals and quinone, which can potentially enter cellular nuclei, thus causing 2 2 damage to many molecules [42]. This interaction can further generate extraneous ROS accounting forevenfurtherdamagetotheintegrityofDNA.Inanattempttoexcludethispossibility,wecarried 26759 IInntt.. JJ.. MMooll.. SSccii.. 22001155,, 1166,, ppaaggee––ppaaggee 22..66.. IInnttrraacceelllluullaarr GGeenneerraattiioonn ooff HH22OO22//RROOSS bbyy FFllaavvoonnooiiddss IItt hhaass bbeeeenn rreeppoorrtteedd tthhaatt ppoollyypphheennoollss ccaann aauuttoo--ooxxiiddiizzee uunnddeerr iinn vviittrroo ccoonnddiittiioonnss rreessuullttiinngg iinn ggeenneerraattiioonn ooff HH22OO22 rraaddiiccaallss aanndd qquuiinnoonnee,, wwhhiicchh ccaann ppootteennttiiaallllyy eenntteerr cceelllluullaarr nnuucclleeii,, tthhuuss ccaauussiinngg ddaammInaat.ggJee.M ttoool. mSmciaa.2nn0yy15 ,mm16oo,2lle6e7cc5uu4–ll2ee6ss7 6[[94422]].. TThhiiss iinntteerraaccttiioonn ccaann ffuurrtthheerr ggeenneerraattee eexxttrraanneeoouuss RROOSS aaccccoouunnttiinngg ffoorr eevveenn ffuurrtthheerr ddaammaaggee ttoo tthhee iinntteeggrriittyy ooff DDNNAA.. IInn aann aatttteemmpptt ttoo eexxcclluuddee tthhiiss ppoossssiibbiilliittyy,, wwee ccaarrrriieedd oouutt ooouuutrro ueexxrppeeexrrpiiemmrieemnnettn fftoofrro rtthhtheee gggeeennneeerrraaatttiiiooonnn ooofff HHH2O2OO22 bbbyyyfl ffallvaaovvnooonnidooisiddissn iitnnh etthhineec uiinnbccauutibobnaattmiiooennd immumeedd.iiuuWmme..a WWlsoee aallssoo 2 2 uusseeddu s tteaadnnntnaiinccn aaiccciiaddc iiidnn ioonuuorru eerxxeppxeeprreiirmmimeenennttaatall lssseeettt---uuuppp,,, aaa pppooosssiiitttiiivvveee cccooonnntrttorrolollf offroorrH HH2O22OO2 2p2 rpporrdoouddcuuticcottniioo[nn4 3 [[]44.33A]].. s AAsses essneeeenn iinn FFiigguuinrreeF i44g,,u ttraaenn4nn,iitcca naancciiicdda ceeiffdffeeeccfttfieivvceteillvyye lggyeegnneeenrreaarttaeetses sHHH222OOO222.. .OOOuuurrr ttteeesssttt cccooommmpppouoonuudnnsddwss ewwreeercrelee accrllleeyaanrrlloyyt annsooett f faaessc teeivffffeeeccttiivvee pprrooddpruuoccdeeurrscse roosffo fHHH222OOO222 aaasss tattnaannninnciiaccc iadaccbiidudt wbbuuettc owwuleed scctoiolluuolldbds essrttviilelll Hoo2bbOss2eeprrvvroeed uHHct22iOOon22 bppyrrflooaddvuuoccnttoiiooidnns mbbyyy riffclleaatvvinoo,nnooiiddss mmyyrrfiiicsceeetttiiinnn,,a ffniidsseeqttiiunne raacnneddti n qq.uuHeerr2ccOeet2tiinnp..r oHHd22uOOct22i oppnrroobddyuukccattiieoomnnp bbfeyyr okklaaaeenmmdppgffaeelrraoonllg aainnnddw ggasaallmaanneggasiinnu r wwedaassto mmbeeeaaassluumrreoedsdt ttoo bbee aallmmnooessgtt linngeeibggllleiig,giiwbbhlleee,,n wwcohhmeennp accrooemdmptpoaartrheeedd otttooh ettrhheete sootttehhdeeflrr attveeosstnteeoddid ffsllaaavvnoodnntoohiieddtssa naannniddc atthchieed .ttaaTnnhnnuiiscc, aathccieiddse.. TTrehhsuuulsst,,s tthheessee rreessuuslluttsps pssuourpptpproeosrrutt lrrtesessduuellsttcssr ddibeeessdccrriiinbbeeTdadb iilnne T1Taawbbhlleee r11e wwthhheeeorrreed ttehhreeo oofrrcddeleelrur looaffr ccDeeNlllluuAllaabrrr eDDaNNkaAAge bbbrryeeaaflkkaaavggoeen bobiyyd sffllaawvvaoosnnooiiddss MN>FN>QN>KL>GN. wwaass MMNN >> FFNN >> QQNN >> KKLL >> GGNN.. Wealsoevaluatedthelengthofcomettailasafunctionofincreasingflavonoidsconcentrations. WWee aallssoo eevvaalluuaatteedd tthhee lleennggtthh ooff ccoommeett ttaaiill aass aa ffuunnccttiioonn ooff iinnccrreeaassiinngg ffllaavvoonnooiiddss ccoonncceennttrraattiioonnss.. Again tannic acid was used as internal control. The results shown in Figure 5 clearly show that AAggaaiinn ttaannnniicc aacciidd wwaass uusseedd aass iinntteerrnnaall ccoonnttrrooll.. TThhee rreessuullttss sshhoowwnn iinn FFiigguurree 55 cclleeaarrllyy sshhooww tthhaatt exposure to flavonoids resulted in the formation of comet tails, which were found to positively eexxppocoossruurrereela ttteoo wfflliaathvvoothnneooiiidndcssr erraeesssiuunlgltteecddo n iicnne nttthhraeet iffooonrrmmofaattthiiooennfl aoovffo cncooommidsee.tt Tttaaaiinllsns,,i cwwahhciiidcc,hhh wwoweerereev effroo,uuwnnadds nttooot ppvooerssyiittiivveellyy ccoorrrreeefllfaaetcteeti vwweiititnhh ctthahuees iiinnngccrrDeeaaNssiiAnnggd accmoonnaccgeeenn, ttarrsaattviiooisnnu aooliffz etthhdeeb ffyllaaivvnoocrnneooaiisddinssg.. TTcaoanmnnneiitcc taaaiccliiddle,,n hhgoothww,eepvvaeerrtri,,c uwwlaaarssl ynnooattt vveerryy eeffffeetcchttieivvhee i giinnh eccsaatuudssoiinnsegg tDDesNNteAAd. ddTaahmmisaaggshee,o, waasss vvthiissauutaatllhiizezreeedd i sbbyyn oiinnccclrreeeaaarssciinonrggr ecclaootmmioeentt bttaeatiiwll lleeeennnggHtthh,,O ppaarrpttriioccduuullaacrrtilloyyn aatt tthhee 2 2 hhiigghhaeenssdtt cddeoollssueela rtteeDssttNeeddA.. dTTahhmiissa gssehhoobwwecssa uttshheaattth ttehhmeerroees tiisse fnnfeooc tcicvlleeeaagrre cncooerrrarrteeollarattoiioofnnH 2bbOeett2wwdeeiedennn oHHt22cOOa22u spperroothddeuumccttoiioosntn aanndd cceelllluuDllaaNrr A DDdNNaAAm dadgaaemm.aaggee bbeeccaauussee tthhee mmoosstt eeffffeeccttiivvee ggeenneerraattoorr ooff HH22OO22 ddiidd nnoott ccaauussee tthhee mmoosstt DDNNAA ddaammaaggee.. FFiigguuFrirgeeu 44re.. AA4. ccAoommcoppmaaprriiassrooisnno nooffo ftthhtheee rrraaattteee ooofff HHH222OOO222 fffooorrrmmmaaatittoiioonnnb ybbyyta ttnaannnicnniiaccc iaadcc,iimdd,,y mmricyyerrtiiincce,ettfiiinsne,, t iffniiss,eeqttuiinne,,r cqqeuutienerr,cceettiinn,, kkaaeemkmappemffeeprroofellr aaonnladdn ggdaagllaaalnnaggniignnin iinnin tththheee iiinnncccuuubbbaaatttiiiooonnn m mmeeedddiuiiuummma saadss eddteeerttmeerrimmneiidnneebddy FbbOyy XFFOOasXXsa aay.ssssaayy.. FFiigguuFrirgeeu 5r5e.. 5AA. ccAoommcoppmaarrpiiassrooinsno nooffo fDDDNNNAAA bbbrrreeeaaakkkaaagggeee iiinnnddduuuccceeedddb ybbyyt a tntaannnicnniiaccc iaadcc,iiddm,,y mrmicyyerrtiiincce,ettfiiinnse,, tiffniiss,eeqttiiunne,,r cqqeuutienerr,cceettiinn,, kkaaeemkmappemffeeprroofellr oaalnnaddn dgggaaallalaannngggiiinnn iiinnnh uhhmuummanaapnne rppipeehrriiepprhahleelrryaamll pllyhymomcpypthheoosccayysttaeefssu naacsst iaao nffouufnncccottmiiooennt tooaiffl lcceoonmmgteehtts .ttVaaaiilll ulleeesnnggtthhss.. VVaalluureeepsso rrreeteppdooarrtrteeedd˘ aaSrrEeeM ±±SSoEfEtMMhr eooeff ittnhhdrreeepeee iinnndddeeenppteeennxpddeeernnimtt eeexxnpptsee.rriimmeennttss.. 2676770 Int.J.Mol.Sci.2015,16,26754–26769 2I.n7t.. JT. Mheorl.m Socid. y20n1a5m, 1i6c,s poafgFe–lapvagoen oid–ctDNABinding-IsoThermalCalorimetricStudies(ITC) 2.7. TThheerrmmooddynyanmamicsic ofp Falaravmoneotiedr–sctoDfNflAa vBoinndoiindg-cIsoom Tphleerxmeasl CwailtohrimcteDtrNicA Stuwdeierse (IaTsCse)s sed by fitting the integrated heats as per the one binding site model shown in Table 4. Enthalpy changes for Thermodynamic parameters of flavonoid complexes with ctDNA were assessed by fitting the binding of five flavonoids to ctDNA were negative, indicating an exothermic binding process winitthegrealetecdtr ohsetaattsic asi npteerr athctei oonnse. binFduirnthg esri,tet mheodneelg sahtoivwene innt rToapbyle t4e.r Emnst,haTlp∆yS ˝ch=ang´e2s. 0fo8r kbJi¨nmdionlg´ 1o,f ´fi8v.e3 4flkaJv¨omnooli´d1s, t´o 1ct4D.6N¨kAJ¨ wmeorle´ 1n,e´ga1t7iv.2e8, iknJd¨micaotli´n1g aannd ex´o1t9h.e0r7mkiJc¨ bminodl´in1gf oprroGcNes,sK wLi,thQ eNle,cFtrNosatantdic interactions. Further, the negative entropy terms, T∆S° = −2.08 kJ·mol−1, −8.34 kJ·mol−1, −14.6·kJ·mol−1, MN, respectively, indicate the binding of these flavonoids is predominately enthalpy driven. It can −17.28 kJ·mol−1 and −19.07·kJ·mol−1 for GN, KL, QN, FN and MN, respectively, indicate the binding of also be seen that for all flavonoids tested, both enthalpy as well as entropy have negative values, these flavonoids is predominately enthalpy driven. It can also be seen that for all flavonoids tested, which suggests an essential role of hydrogen bonding and van der Waals force in the binding of flbaovtohn eonidthsatlpoyc taDs NwAel.l aDsu ernintrgopthye hianvteer naecgtiaotnivpe rvoacleusess,, twhehihcihg hsuerggneesgtsa taivne esvsaelnuteisal orfol∆e Go˝f hsyudgrgoegstesn bonding and van der Waals force in the binding of flavonoids to ctDNA. During the interaction that the formation of flavonoid–ctDNA complexes will be much more spontaneous in nature as cpormocpeasrse,d thtoe thhieghceorm pnleegxaetsivwe hvicahlueesx hoibf it∆lGo°w esrugngeegsattsi vtehavta ltuhees foofrm∆Gat˝io.n Coofn sfildaveroinnogidth–cetD∆NG˝A vcaolmuepslefoxresd iwffeilrle bnet flmauvcohn omidosr,ei tscpaonntbaenceoonucsl uind endattuhraet masy croicmetpinarheads ttoh ethheig choemstpnleexgeasti vweh∆icGh˝ evxahliubeit lower negative values of ∆G°. Considering the ∆G° values for different flavonoids, it can be (´30.01kJ¨mol´1)andthereforewillformstrongerinteractionswithctDNAascomparedtotherest concluded that myricetin has the highest negative ∆G° value (−30.01 kJ·mol−1) and therefore will form ofthetestedflavonoids. stronger interactions with ctDNA as compared to the rest of the tested flavonoids. Table 4. The binding constant/stoichiometry and thermodynamic parameters for the binding of mTyarbiclee ti4n. ,Tfihsee tibni,nqduinegrc ectoinns,tkaanet/mstpofiecrhoilomanedtryg aalanndg itnhetormcotDdNynAa,maisc dpeatrearmmienteerds wfoitrh thITeC baintd2i5ng˝ Co.f “mn”y,ripcoestisnib, lfeisnetuinm, bqeureorfcebtiinnd, kinagemsiptefse;roKl aa,nbdin gdainlagngcoinn stota ncttD; ∆NHA,, ∆asS daentder∆mGin,esdta wnditahr dITcCh aantg 2e5s °oCf. e“nnth”,a lppoys,seinbtlero npuymanbderG oifb bb’isnfdrienege nsietregsy; Kfoar, pbienrdminogle coofnrsetsapnet;c t∆ivHe, fl∆aSv oannodi d∆bGo, usntadntdoacrtdD cNhAan.ges of enthalpy, entropy and Gibb’s free energy for per mole of respective flavonoid bound to ctDNA. FlavFolnaoviodnoidKa(KMa(´ M1)−1) nn ∆∆HH(k(kJJ//mmooll)) ∆S∆(SJ/(mJ/molo/lk/k)) ∆G∆ (kGJ(/kmJ/oml)o l) Myricetin 1.9ˆ102 74.62 ´49.21 ´64.43 ´30.01 Myricetin 1.9 × 102 74.62 −49.21 −64.43 −30.01 Fisetin 0.9ˆ102 66.50 ´43.01 ´58.18 ´25.67 Fisetin 0.9 × 102 66.50 −43.01 −58.18 −25.67 Quercetin 0.8ˆ102 63.32 ´39.81 ´49.76 ´24.98 KaemQpufeerrocletin 0.60ˆ.81 ×0 2102 5613..4332 −´3931.8.716 −4´92.786.8 9 −24´.9283 .15 GaKlaanegminpferol 0.30ˆ.61 ×0 2102 4541..6473 −´3122.7.265 −2´8.78.91 1 −23´.1250 .13 Galangin 0.3 × 102 44.67 −22.25 −7.11 −20.13 Figure 6. Molecular docked structure of myricetin with B-DNA. (A) Surface view interaction of Figure 6. Molecular docked structure of myricetin with B-DNA. (A) Surface view interaction of myricetin with B-DNA; (B) Hydrogen bonding interactions (6) and distance in Å of myricetin with myricetinwithB-DNA;(B)Hydrogenbondinginteractions(6)anddistanceinÅofmyricetinwith dodecamer duplex of sequence (CGCGAATTCGCG)2 (PDB ID: 1BNA). dodecamerduplexofsequence(CGCGAATTCGCG) (PDBID:1BNA). 2 2.8. Molecular Docking Studies 2.8. MolecularDockingStudies As evident from the results (Figures 6–10 and Table 5), myricetin (Figure 6) forms six hydrogen Asevidentfromtheresults(Figures6–10andTable5),myricetin(Figure6)formssixhydrogen bonds with nitrogenous bases of B-DNA (G-12, G-4 and G-2) resulting in more negative Hex binding bondswithnitrogenousbasesofB-DNA(G-12,G-4andG-2)resultinginmorenegativeHexbinding energy (−6.13 kcal/mol). On the other hand, fisetin (Figure 7) forms only four hydrogen bonds with energy(´6.13kcal/mol). Ontheotherhand,fisetin(Figure7)formsonlyfourhydrogenbondswith B-DNA (A-5, G-4 and C-11) as compared to myricetin. This lesser hydrogen bonding resulted in B-DNA(A-5,G-4andC-11)ascomparedtomyricetin.Thislesserhydrogenbondingresultedinlower lower negative binding energy (−5.56 kcal/mol). Quercetin (Figure 8) possesses five hydroxyl groups, less than myricetin and greater than fisetin, but it shows the formation of only three hydrogen bonds with nitrogenous bases of B-DNA (G-2, G-4 and G-10). The reason for this may be 26761 that a larger portion of the quercetin molecule lies away from the minor groove, as preventing the 8 Int.J.Mol.Sci.2015,16,26754–26769 negativebindingenergy(´5.56kcal/mol). Quercetin(Figure8)possessesfivehydroxylgroups,less than myricetin and greater than fisetin, but it shows the formation of only three hydrogen bonds with nitrogenous bases of B-DNA (G-2, G-4 and G-10). The reason for this may be that a larger Int. J. Mol. Sci. 2015, 16, page–page portionofthequercetinmoleculeliesawayfromtheminorgroove,aspreventingtheproximityofthe majorityofitshydroxylgroupstoDNAnitrogenousbasesasrevealedbydockingstudies(Figure8B) Int.p J.r Moxoil.m Sciit.y 2 0o1f5 ,t 1h6e, pmagaej–opraigtey of its hydroxyl groups to DNA nitrogenous bases as revealed by docking hence,relasttuivdeielys (lFeisgsubrein 8dBi)n hgeenncee,r greylaitsivoeblyt aliensse db.inKdainegm epnfeergroy li(sF oigbutarinee9d). aKnademgaplfaernogl i(nFi(gFuirgeu 9r)e a1n0d) form only twporogaxanilmdaniotgyinn oe (fF htihgyeud rmreo a1gj0oe)r inftoyrb moof noitdns l(hys y)tdwwrooi xathynld ng orintorueo phgsye dtnoro oDguNesnAb b anosinterdso(gs()eA wn-oi5tuhsa nbniatdrsoeCsg ea-n9s o)rueasvn ebdaalse(edGs b(-A1y0 -d5)o arcnekdsinp Cge- c9t) ively, resultinsgtuiandnidee sv( Ge(F-n1i0gl)uo rrwees pe8erBctb)i vihneeldyn,i crnee,gs ureletnlianetgir vigney leyv( eKlenLs lso =wbie´nr d5bii.nn2gd4 inekgnc eearnlge/yrmg yiso (Klo,LbG t=a Ni−n5e.=2d4.´ kKc5aa.le0/mm1opklf,c eGarNol/l =m( F−5iog.0lu)1r akesc a9cl)/o mamnoldp) aasr edto galcaonmgpina r(Fedig utor em 10y)r ifcoertmin .o Tnlhye rtwefoo raen, dfo ornmea htiyodnr oogf eonn blyo nodn(es )h wyidthro ngietnro bgoennodu ws bitahs ensi t(rAo-g5e nanodu sC b-9a)s es myricetin. Therefore,formationofonlyonehydrogenbondwithnitrogenousbases(A-6andA-7)of and(A (G-6- 1a0n) dre sApe-7ct)i voefl yB, r-eDsuNltAin, gc ionn efviremn slo wtheer bleinasdti nsgt aebnielritgyy (oKf Lg =a −la5n.2g4i nkc awl/imtho lB, G-DNN =A −5 a.0m1 kocnagl/smt oall)l afsi ve B-DNA,confirmstheleaststabilityofgalanginwithB-DNAamongstallfiveflavonoids.Again,these comflapvaornedo idtos . mAygraiicne,t itnh.e sTeh reerseufoltrse ,a rfoe rimn actoionnfo romf iotnyl yw iothn et hhey rderloagtievne bceolnludl awr iDthN nAit rborgeaeknaogues cbaapsaecsi ty resultsa(rAeb-6iyn athcnoed n fiAfvoe-7r f)ml aovifto ynBwo-DidiNtsh Auts,h ecdeo.nr efilramtisv ethcee lleluaslta rstDabNiliAty borfe agaklaagngeicna wpaitchi tBy-DbyNtAh eamfivonegflsta valol nfoivied sused. flavonoids. Again, these results are in conformity with the relative cellular DNA breakage capacity by the five flavonoids used. Figure 7. Molecular docked structure of fisetin with B-DNA. (A) Surface view interaction of fisetin Figure7. MoleculardockedstructureoffisetinwithB-DNA.(A)Surfacevie winteractionoffisetin with B-DNA; (B) Hydrogen bonding interactions (4) and distance in Å of fisetin with dodecamer with B-DFiNgduuArpe; l7e(.xB Mo)fo Hsleeyqcuudleranorc gdee o(nCckGbeCdo GnstAdruiAncTtguTrCien GotCef rGfais)ce2 tt(iiPonD nwBsi tI(hD4 :)B 1-aBDnNNdAA)d.. (iAst)a Snucrefaicne vÅiewo finfitesreatcitnionw oitfh fisdeotind ecamer duplexowfitshe qBu-DeNncAe; ((BC)G HCyGdrAogAeTnT bConGdCinGg )int(ePrDacBtioInDs :(14B) NanAd )d.istance in Å of fisetin with dodecamer 2 duplex of sequence (CGCGAATTCGCG)2 (PDB ID: 1BNA). Figure 8. Molecularly docked structure of quercetin with B-DNA. (A) Surface view interaction of quercetin with B-DNA; (B) Line pose of quercetin showing the majority of its structure away from Figtuhree m 8i.n Moro glercouolvaer lnyu dcolecokteidde sst; r(uCc)t uHrye dorfo gqeune rbcoetnidni nwgi tihn tBer-DacNtioAn. s( A(3)) Saundrf adcies tavniecwe iinn tÅe roafc tqiouner coef tin Figure 8q.uewMrcitehot ildneo cwdueiltcahar mBly-eDrd NdouAcpk; l(eeBxd) o Lsf itsnreueq cupteounsrece eo (foC fqGuqCeurGceeArtcAineT tsiThnCoGwwCiintGgh) 2t Bh(Pe- DDmBNa IjAoDr:.i t1y(BA No)fA iSt)su. srtfrauccetuvrei eawwaiyn tfreormac tion of quercetitnhew mitinhoBr -gDroNovAe; n(uBc)leLoitnideesp; o(Cse) Hofydqruoegrecne btionndshinogw inintegratchtieonms a(3jo) raintdy doifstiatsncset rinu cÅtu orfe qauwercaeytinfr omthe minorgwroitohv deondueccalmeoetri dduepsl;e(xC o)f Hseyqudernocgee (nCGboCnGdAiAnTgTiCnGteCraGc)2t i(oPnDsB( I3D): a1nBdNAd)i.s tanceinÅofquercetinwith dodecamerduplexofsequence(CGCGAATTCGCG)9 (PDBID:1BNA). 2 9 26762 Int.J.Mol.Sci.2015,16,26754–26769 Int. J. Mol. Sci. 2015, 16, page–page Int. J. Mol. Sci. 2015, 16, page–page FFiigguurree 99.. MMooleleccuulalarrlyly ddoocckkeedd ssttrruuccttuurree ooff kkaaeemmppffeerrooll wwiitthh BB--DDNNAA.. ((AA)) SSuurrffaaccee vviieeww iinntteerraaccttiioonn ooff Figure 9. Molecularly docked structure of kaempferol with B-DNA. (A) Surface view interaction of kkaaeemmppffeerrooll wwiitthh BB--DDNNAA;; (B(B))H Hyyddroroggenenb obnodnidnigngin itnertearcaticotniosn(s2 )(2a)n danddis tdainstcaenicneÅ ino fÅk aoefm kpafeemroplfweriothl kaempferol with B-DNA; (B) Hydrogen bonding interactions (2) and distance in Å of kaempferol wwdoiittdhhe ddcaoomddeeeccraadmmueeprrl eddxuuppoflleesxxe qoouff essneeqqceuuee(CnnccGeeC ((CCGGGACCAGGTTAACAAGTTCTTGCC)GG2CC(PGGD))22B ((PPIDDD:BB1 BIIDDN:: A11BB).NNAA)).. Figure 10. Molecularly docked structure of galangin with B-DNA. (A) Surface view interaction of Figure 10. Molecularly docked structure of galangin with B-DNA. (A) Surface view interaction of gFailgaunrgein1 0w. itMh oBle-DcuNlaArl;y (Bd)o cHkyeddrsotgruenct ubroendofingga lianntegrianctwioinths B(1-)D aNnAd. d(Ais)taSnucref aince Åv ioewf gianlatenrgaicnti ownitohf galangin with B-DNA; (B) Hydrogen bonding interactions (1) and distance in Å of galangin with dgoadlaencgaimnewr dituhpBle-Dx NofA se;q(Bue)nHcey d(CroGgCenGAboAnTdTinCgGiCnGte)r2a (cPtDioBn sID(1: )1BanNdAd).i stance in Å of galangin with ddooddeeccaammeerr dduupplleexx ooff sseeqquueennccee ((CCGGCCGGAAAATTTTCCGGCCGG))2 ((PPDDBB IIDD:: 11BBNNAA)).. 2 Table 5. Hydrogen bonds and binding energy data obtained from molecular docking procedure of Table 5. Hydrogen bonds and binding energy data obtained from molecular docking procedure of five docked ligands with B-DNA. fTivaeb ldeo5c.keHdy ldigraongdens wboitnhd Bs-DanNdAb.i ndingenergydataobtainedfrommoleculardockingprocedureof fivedockCedomligpaonudnsdwsit hBB-iDnNdiAn.g Energy (kcal/mol) Number of Hydrogen Bonds Compounds Binding Energy (kcal/mol) Number of Hydrogen Bonds Myricetin −6.13 6 MCyormicpeotiunn ds Bindin−g6E.1n3e rgy(kcal/mol) Numberof6H ydrogenBonds Fisetin −5.56 4 Fisetin −5.56 4 QuMerycreicteinti n −5.5´5 6.13 3 6 QueFricseettiinn −5.5´5 5.56 3 4 Kaempferol −5.24 2 KaeQmuperfceertoinl −5.2´4 5.55 2 3 Galangin −5.01 1 GKaalaenmgpifne rol −5.0´1 5.24 1 2 Galangin ´5.01 1 The principle conclusions of the above experiments may be stated as follows: (i) The number The principle conclusions of the above experiments may be stated as follows: (i) The number and positions of hydroxyl groups in the flavonoid skeleton (Figure 1a) is important in determining and pTohseitipornins coifp lheycdornocxlyuls giornosuposf itnh ethaeb oflvaevoenxopiedr ismkeenlettsomn a(Fyigbuerset a1tae)d isa ismfoplolortwans:t i(ni) dTehteernmuimnibnegr the degree of cellular DNA breakage. Solid double headed arrows in Figure 1a also indicate the three tahned dpegorseitei oonf sceolfluhlyadr rDoNxyAl gbrroeuakpasgien. Sthoelidfl advoounbolied hsekaedleedto anrr(oFwigsu rine F1aig)uisrei m1ap aolrstoa nintdinicadteet ethrme tihnrineeg most probable group pairs that can form chelates with copper (3–4, 4–5 and 3’–4’) [44]. For mthoestd epgrroebeaobflec eglrluoluapr DpNairAs bthreaatk acagne. foSromlid cdhoeluabteles hweaitdhe dcoaprproewr s(3i–n4,F i4g–u5r ea1nad a3ls’–o4i’)n d[i4c4a]t.e Ftohre stereoelectronic reasons, a 4–5 complex cannot be formed from a 3–4 complex; (ii) In addition to the sttherreeeoemleocsttropnriocb raebalseognrso, ua p4–p5a cirosmthpaletxc caannfnoortm bec hfoerlamteesd wfriothmc ao p3–p4e rco(3m–p4,le4x–; 5(iai)n Idn 3a’d–d4’i)tio[4n4 ]t.o tFhoer above three copper complexing positions, the other hydroxyl groups in the skeleton may also asbteorveeo etlhercetreo nciocprpeears ocnosm,pale4x–i5ngc opmopslietixoncsa,n nthoet boethfeorr mhyeddrofrxoyml garo3u–4psc oinm pthleex ;sk(ieil)eItnona dmdaityi oanlstoo contribute to the DNA breakage capability as these may also form a quinone-like structure once ctohnetraibbouvtee tthor etheec oDpNpAer bcroemakpalegxei ncgappaobsiiltiitoyn ass, tthheesoet hmerayh yadlsroo xfyolrmgr oau qpusininonthe-eliskkee lsetrtounctumraey oanlcseo inside the cell. All this will likely contribute to the generation of H2O2 in the cytoplasm as well as in itcnhoseni dntreui bctlhueetue cste.o lIlnt.h AtehlDils t NchoAisn btwerxieltal, k liitak giesel yicm acppoaonbrtrtiailbintuyt tnaeso ttto ht oteh sfeeo mrggeaenyte tarhalestoi pofneor rommf eHaab2qOiuli2it nyino o ntfhe t-ehl iceky entuostpcrllueacastrmu pr aeosro ewn cceoelmli napssli edinxe ttthoh ees mncuealcllll. emuAsol.ll eItnchu tihsleiwss [ci4lol5nl]it.k eIext ltiy,s i tca olissno itm rtiobp uboteret natnoott etnhdoe tt hgtoaet nf otehrraeg teditoe tnghreoe fpe Heorf2m Ofleu2aoibnrielitsthcyee oncfcy etth oeepn nlhauasncmlceeaamrs pewnoetr le(l Fcaiosgmuinrpelt eh2x)e to small molecules [45]. It is also to be noted that the degree of fluorescence enhancement (Figure 2) of various flavonoids upon binding to DNA follows the same pattern as the capacity of flavonoids to of various flavonoids upon binding to DNA foll2o6w76s 3the same pattern as the capacity of flavonoids to 10 10
Description: