ebook img

Mission-Based Multidisciplinary Design Optimization Methodologies for Unmanned Aerial Vehicles ... PDF

288 Pages·2017·18.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mission-Based Multidisciplinary Design Optimization Methodologies for Unmanned Aerial Vehicles ...

UNIVERSIDADE DA BEIRA INTERIOR Engenharia Mission-Based Multidisciplinary Design Optimization Methodologies for Unmanned Aerial Vehicles with Morphing Technologies Pedro Filipe Godinho Lopes Fernandes de Albuquerque Tese para obtenção do Grau de Doutor em Engenharia Aeronáutica (3º ciclo de estudos) Orientador: Prof. Doutor Pedro Vieira Gamboa Co-orientador: Prof. Doutor Miguel Ângelo Silvestre Covilhã, Setembro de 2017 ii À minha querida Mãe. iii iv Abstract One of the most challenging aspects of aircraft design is to synthesize the mutual inter- actionsamongdisciplinesinordertoachieveenhanceddesignsolutionsfromtheearlieststages of the design process. The complexity of the aircraft physics and the multiple couplings be- tweendisciplinescomplicatesthistask. Theadvanceofdesigntoolsandoptimizationmethods alongsidewiththecomputer’sexponentialincreaseindatahandlingcapacityispavingtheway forthedevelopmentofcomprehensivemultidisciplinarydesigncodesthatgraduallycontribute toaparadigm change,leadingtoa revolutioninthedesign methodologies. Theresearchworkpresentedinthisthesisfeaturestwounmannedaerialvehiclesprelim- inary design optimization methodologies - a Parametric Design Analysis and a Multilevel Design Optimization. Aspecificcodehasbeendevelopedforeachmethodology,withlow-fidelitymod- els being used for the main design disciplines, namely the aerodynamics, propulsion, weight, static stability and dynamic stability. To increase the usability of the codes a graphical user interfaceforboth programshasalsobeen developed. The first methodology is called Parametric AiRcRaft design OpTimization (PARROT) and relies on a parametric study that optimizes the wing layout for one of two different goals: surveillance mission or maximum payload. Whereas in the former the goal is to maximize the flight range or endurance, the latter’s objective is to maximize the useful payload lifted. Con- straints include the take-off distance, climb rate, bank angle, cruise velocity, among others. The results have shown to be in line with some experimental benchmarking data and to allow the user to easily evaluate the impact of varying two key design variables (wing mean chord and wingspan) on multiple performance metrics, thus significantly contributing to help the de- signer’sdecision-makingprocess. ThesecondmethodologyiscalledMulTidisciplinarydesignOPtimization(MTOP)andadopts the Enhanced Collaborative Optimization (ECO) architecture, together with a gradient-based optimization algorithm. As the goal is to minimize the energy consumption for the specified missionprofile,itresultsinanunconstrainedsystemproblemwhichaimstoassurecompatibil- ity between subspaces and dully constrained subspace level problems, which aims to minimize the energy consumption. Instead of each subspace representing the traditional design disci- plines(e.g. aerodynamics,structures,stability,etc),theauthorhaschosentomakeadifferent subspace out of each flight stage (e.g. take-off, climb, cruise, etc). The main reason for this choice was the inclusion of morphing technologies as part of the optimization process, namely a variable span wing (VSW), a variable camber flap (VCF) and a variable propeller pitch (VPP). Thesoftwarefinaloutputisthecombinationofdesignvariablesthatbettersuitstheobjective function subjected to the design constraints. The results have shown how the selection of the optimumcombinationofmorphing/adaptivetechnologieshighlydependsonthemissionprofile. Moreover, the morphing mechanisms weight has a strong impact on the overall performance, whichisnoteasilygraspedwithoutanoptimizationmethodologyliketheonepresented. Globally,thesetwomethodologiesfosteramoreefficientandeffectivepreliminarydesign stagebyfeedingthedesigner’sdecision-makingprocesswithalargesetofrelevantdata. v Keywords Multidisciplinary,Multilevel,Parametric,Design,Optimization,Morphing, UnmannedAerial Vehicle,Mission-based vi Resumo Um dos aspetos mais desafiantes do projeto de aeronaves é a gestão das múltiplas in- terações entre disciplinas, com vista à obtenção de soluções de projeto otimizadas desde os primeirosestágiosdoprojetodeaeronaves. Acomplexidadedafísicaaeronáuticaeosmúltiplos acoplamentos entre disciplinas complicam esta tarefa. Com o desenvolvimento de ferramen- tas de projeto e metodologias de otimização aliadas ao aumento exponencial da capacidade de processamento dos computadores e o desenvolvimento de abrangentes códigos de otimiza- ção multidisciplinar estão a contribuir para uma mudança de paradigma, que se espera vir a revolucionarosatuais processosdeprojetoaeronáutico. Estainvestigaçãoincluiduasmetodologiasdeotimizaçãodeprojetopreliminardeveículos aéreos não-tripulados - uma otimização paramétrica e uma otimização multinível. Foi desen- volvido um código para cada metodologia, tendo sido utilizados modelos de baixa-fidelidade para as várias disciplinas de projeto, nomeadamente aerodinâmica, propulsão, peso, estabili- dadeestáticaedinâmica. Paraaumentarolequedeutilizadores,foidesenvolvidouminterface gráficoparaambos osprogramas. Aprimeirametodologiadenomina-seParametricAiRcRaftdesignOpTimization(PARROT) esegueumaabordagemparamétricaqueotimizaageometriadaasaparaumdedoisobjetivos: missão de vigilância ou máximo peso. Enquanto na primeira o objetivo passa por otimizar o alcance ou autonomia, na segunda o foco passa por maximizar o peso útil sustentado. Con- strangimentos incluem a distância de descolagem, a velocidade de subida, o ângulo de pran- chamento, a velocidade cruzeiro, entre outros. Os resultados mostraram estar em linha com resultadosexperimentaisdereferênciaeaindapermitiraoutilizadoravaliaroimpactodavari- ação de duas variáveis-chave (corda média aerodinâmica e envergadura) em diversas métricas dedesempenho,destaformacontribuindosignificativamenteparaauxiliaroprocessodecisório doengenheirode projeto. A segunda metodologia chama-se MulTidisciplinary design OPtimization (MTOP) e adota a arquitetura Enhanced Collaborative Optimization (ECO), juntamente com um algoritmo de otimização do tipo gradiente. Uma vez que o objetivo passa por minimizar a energia con- sumida para um perfil de missão específico, cinge-se a um problema de otimização não con- strangidoaoníveldosistema,asoluçãodoqualvisaacompatibilidadeentresubespaços,eum problemadevidamenteconstrangidocomoobjetivodeminimizaraenergiaconsumidaaonível dos subespaços. Ao invés de cada subespaço representar as disciplinas tradicionais de projeto (e.g. aerodinâmica,estruturas,estabilidade,etc),oautordecidiucriarumsubespaçodiferente para cada estágio da missão (e.g. descolagem, subida, cruzeiro, etc). A principal razão para estaescolhafoiainclusãodemetodologiasadaptativascomopartedoprocessodeotimização, nomeadamente uma asa de envergadura variável (VSW), um perfil alar com curvatura variável atravésdeumflap(VCF)eumhélicedepassovariável(VPP).Oresultadofinaléacombinação devariáveisquemelhorseadequaàfunçãoobjetivo,sujeitosaosconstrangimentosdeprojeto. Osresultadosmostraramqueaseleçãodacombinaçãodetecnologiasadaptativasadequadaestá altamente dependente do tipo de missão. Além disso, o peso das tecnologias adaptativas tem um elevado impacto que não é facilmente percecionado sem uma metodologia de otimização comoaque éapresentada. Globalmente, estas duas metodologias contribuem para um projeto preliminar mais efi- vii caz e eficiente, alimentando a tomada de decisão do projetista com muita informação rele- vante. Palavras-chave Multidisciplinar,Multinível, Paramétrico,Projeto,Optimização,Tecnologiasadaptativas, VeículoAéreoNão-tripulado,Missão viii Contents Abstract v Resumo vii ListofFigures xv ListofTables xvii Acknowledgements xix 1 Introduction 1 1.1 Backgroundand Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 GreaterResearchProject . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 AircraftDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 ConceptualDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 PreliminaryDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 DetailedDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.4 DesignOptimizationPrograms . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4.1 WorkScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 ThesisStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 State-of-the-artReview 9 2.1 MultidisciplinaryDesign Optimization . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 IntroductiontoNumerical OptimizationConcepts . . . . . . . . . . . . . 10 2.1.2 MonolithicOptimizationArchitectures . . . . . . . . . . . . . . . . . . . 11 2.1.2.1 Simultaneous AnalysisandDesign(SAND) . . . . . . . . . . . . . 12 2.1.2.2 Individual DesignFeasible(IDF) . . . . . . . . . . . . . . . . . . 13 2.1.2.3 Multidisciplinary Feasible(MDF) . . . . . . . . . . . . . . . . . 13 2.1.3 DistributedOptimizationArchitectures . . . . . . . . . . . . . . . . . . 14 2.1.3.1 Concurrent SubspaceOptimization(CSSO) . . . . . . . . . . . . 14 2.1.3.2 Analytical TargetingCascading (ATC) . . . . . . . . . . . . . . . 15 2.1.3.3 Collaborative Optimization(CO) . . . . . . . . . . . . . . . . . 16 2.1.3.4 Enhanced CollaborativeOptimization(ECO) . . . . . . . . . . . 17 2.1.3.5 Bi-level IntegratedSystemSynthesis(BLISS) . . . . . . . . . . . 18 2.1.3.6 Bi-level IntegratedSystemSynthesis-2000(BLISS-2000) . . . . . 18 2.1.3.7 Exact andInexactPenaltyDecomposition(EPDandIPD) . . . . . 19 2.1.3.8 MDO ofIndependentSubspaces(MDOIS) . . . . . . . . . . . . . 20 2.1.3.9 Quasiseparable Decomposition(QSD) . . . . . . . . . . . . . . . 21 2.1.3.10 AsymmetricSubspace Optimization(ASO) . . . . . . . . . . . . 21 2.1.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 OptimizationAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Gradient-BasedAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 HeuristicMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ix 2.3 Morphing Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Airfoil Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Planform Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.3 Out-of-plane Morphing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.4 PropulsionMorphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.5 Combinations ofMorphing . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 AnalysisModels 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 ProgrammingLanguages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Disciplinary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1.1 2DAerodynamicCoefficients . . . . . . . . . . . . . . . . . . . 35 3.3.1.2 3DAerodynamicCoefficients . . . . . . . . . . . . . . . . . . . 36 3.3.2 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2.1 ElectricMotor . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2.2 CombustionEngine . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2.3 PropellerModel . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3.1 StructuralWeight . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3.2 EnergyWeight . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Static Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.4.1 LongitudinalStaticStability . . . . . . . . . . . . . . . . . . . 54 3.3.4.2 LateralandDirectional StaticStability . . . . . . . . . . . . . . 57 3.3.5 Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.1 Take-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.2 Flight Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.2.1 ClimbandDescent . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4.2.2 LeveledFlight- CruiseandLoiter . . . . . . . . . . . . . . . . 72 3.4.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 ParametricDesign Study 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Maximum Range/EnduranceMission . . . . . . . . . . . . . . . . . . . . 80 4.2.2 Maximum Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Graphical UserInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1 Air CargoChallenge2015 . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.1.1 DesignSpecifications . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.1.2 Resultsand Discussion . . . . . . . . . . . . . . . . . . . . . . 90 4.4.2 Maximum Range/EnduranceMission . . . . . . . . . . . . . . . . . . . . 94 4.4.2.1 DesignSpecifications . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.2.2 Resultsand Discussion . . . . . . . . . . . . . . . . . . . . . . 98 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 x

Description:
alongside with the computer's exponential increase in data handling de processamento dos computadores e o desenvolvimento de abrangentes .. 2.5 Schematic representation of the Collaborative Optimization architecture. either by one organization, some external regulation or some other
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.