Microstructural characterisation and corrosion studies of excimer laser-treated aluminium alloy AA2024-T351 A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Science School of Materials 2013 Zakria Aburas Table of Contents List of Figures…………………………………………………………………...8 List of Tables………………………………………………………….….….…..26 Abstract……………………………………………………………….….288 Declaration……………………………………………………………….……..30 Copyright statement………………………………………………….…..….…31 Acknowledgement…………………………………………………….………..32 Abbreviations………………………………………………………………...…33 List of Publications…………………………………………………………..…38 Chapter 1 Introduction……………………………………………………..….39 1.1 Research motivation and rational………………………………………..…39 1.2 Aims and objectives………………………………………………….…..….40 1.3 Outline of the thesis…………………………………………………….…...41 1.4 References………………………………………………………….…….…..43 Chapter 2 Literature Review Part I: aluminium alloys and their corrosion properties..……………………………………………………..…...45 2.1 Introduction.................................................................................................45 2.2 Aluminium and aluminium alloys...............................................................45 .2.2.1 Effect of additional elements on aluminium properties……......….......46 2.2.1.1 Aluminium copper alloys…….…………….....…………….……..46 2.2.1.2 Aluminium manganese alloys…………..……...............……...…..47 2.2.1.3 Aluminium silicon alloys…………………..…….…………..……..47 2.2.1.4 Aluminium magnesium alloys……………..........…..………….…..47 2.2.1.5 Aluminium zinc alloys.………………………....................…...…..48 2.2.1.6 Miscellaneous Aluminium alloys…………………….........….……48 2.2.2 Alloy classification................................................................................48 2.3 Metallurgy of AA2xxx aluminium alloys…………………….…..........….…49 2 Table of Contents 2.3.1 Phase diagram of Al-Cu alloys…………………………............…….. 49 2.3.2 Heat treatment …………………………………................................... 50 2.3.3 Microstructure of 2xxx aluminium alloys…………………..…...…… 52 2.3.3.1 Constituent intermetallic particles (IMP)…………..................…. 52 2.3.3.2 Dispersoids …………………………………….…..........……….. 52 2.3.3.3 Precipitates…………………………………………............….…. 53 2.3.4 Precipitation hardening………………………………….………......… 53 2.3.4.1 Precipitation of Al Cu phase in Al Cu alloys……………………. 53 2 - 2.3.4.2 Precipitation of Al CuMg……………………………………….... 55 2 2.3.5 Mechanical properties enhancement and tempering designation…..… 58 2.3.5.1 Annealing………………………..……………………………...…. 58 2.3.5.2 Work hardening…………………......…………………………….. 59 2.3.5.3 Alloy temper designation……………………………………..….. 59 2.4 Aluminium alloy 2024………………………..…...................................…. 60 2.4.1 Chemical composition…..…………………..………….……………… 60 2.4.2 Microstructure development in Al-Cu alloys..………………………….. 61 2.5 Fundamentals of corrosion…..……..……...............................................….. 62 2.5.1 Electrochemical reactions……………….…….................................….. 62 2.5.2 Electrochemical polarisation ….……………………...........………..… 65 2.5.3 Corrosion behaviour of pure aluminium….......................................... 67 2.5.4 Corrosion behaviour of aluminium alloys…….................................... 67 2.5.5 Pitting corrosion…………...............................................……….….. 69 2.5.5.1 Stages of pitting corrosion ………….……………………..…….. 69 2.5.5.2 Influence of surface oxide film……………………….....………... 70 2.5.5.3 Influence of alloy composition……………………........………… 70 2.5.5.4 Effect of electrolyte concentration……..................……………… 71 2.5.5.5 Pit chemistry………...…………………………............……….… 71 2.5.5.6 Effect of variation of pH……………………………...………….. 72 2.5.5.7 Effect of temperature……………….…………………........…….. 73 2.5.6 Effects of intermetallic particles in AA2024-T3 alloy on corrosion Properties.…………..………………...………………………...…........ 73 2.5.6.1 Al-Cu-Fe-Mn………………….……………………........…….….. 74 2.5.6.2 -phase (Al Cu)……......… …...………..........…………….…….. 74 2 2.5.6.3 S-phase (Al CuMg)…... …………...…………………….........…… 74 2 2.5.7 Intergranular corrosion (IGC)………....................................…...….… 76 2.5.8 Exfoliation corrosion…….…............................................….……...… 77 2.5.9 Stress corrosion cracking (SCC)………….....................................…… 77 2.5.10 Other forms of corrosion……………...................................………… 78 2.6 References..…………………………………………………………………… 79 Chapter 3 Literature review Part II - laser surface engineering……………... 89 3.1 Introduction................................................................................................ 89 3.2 Lasers............................................................................................................ 89 3 Table of Contents 3.3 Categories of lasers............................................................................................ 90 3.3.1 Solid-state lasers......................................................................................... 90 3.3.2 Gas-state lasers........................................................................................... 91 3.3.3 Semiconductor lasers.................................................................................. 91 3.3.4 Laser classification...................................................................................... 91 3.4 Main types of lasers used in material processing………..…………..…….……. 92 3.4.1 CO lasers; the gas laser............................................................................... 92 2 3.4.2 Nd:YAG lasers............................................................................................. 92 3.4.3 Excimer lasers……………………………………………….……………… 93 3.5 Laser beam interaction with materials.................................................................... 96 3.5.1 Beam absorption......................................................................................... 96 3.5.2 Laser-induced heating/melting process........................................................ 99 3.6 Laser surface engineering................................................................................... 99 3.6.1 Laser processing parameters....................................................................... 100 3.6.2 Various physical processes in laser surface engineering............................... 100 3.6.2.1 Heating................................................................................................. 101 3.6.2.2 Melting................................................................................................. 101 3.6.2.3 Vaporization........................................................................................ 102 3.7 Laser surface melting.......................................................................................... 102 3.8 Morphological formation by rapid solidification theory.................................... 103 3.8.1 Introduction................................................................................................ 103 3.8.2 Solidification variables................................................................................ 104 3.8.3 Influence of convection on the homogeneity of the LSM melt-pool............. 105 3.8.4 Constitutional undercooling theory............................................................. 106 3.8.5 Rapid solidification of microstructure formation based on constitutional under-cooling.............................................................................................. 110 3.9 Solidification microstructure of aluminium alloys after LSM............................. 116 3.10 Previous work on corrosion behaviour of LSM in aluminium alloys............... 123 3.10.1 LSM thick-layer melting of aluminium alloys using a long-pulse or cw- lasers………………………………………………..……..………...……... 124 3.10.2 LSM thin-film melting of aluminium alloys using short-pulsed lasers……………………………………………..……………………….... 126 3.11 References….…………………………………………..……………………..... 129 4 Table of Contents Chapter 4- Experimental procedure and characterization techniques…........... 137 4.1 Introduction …………………………………...…..................................……... 137 4.2 Materials…………………………………………………..................…..……... 137 4.3 Sample preparation for LSM…………………..…........................….……..….. 137 4.4 Laser surface melting…………………………...………................................... 138 4.4.1 The laser…………………..…………….………...................................…. 138 4.4.2 Surface conditions prior to LSM ………….………............……….…….. 140 4.4.3 Laser processing parameters….……………………….…........…….……. 140 4.5 Anodising………….……….………………………………............……...……. 142 4.6 Microstructural characterisation......……………...…………...................……. 143 4.6.1 Sample preparation for metallographic examination…………….............. 143 4.6.2 Optical microscopy (OM)………….………………...........................…… 143 4.6.3 Scanning electron microscopy (SEM)…….………….......................……. 144 4.6.3.1 Samples prepared for SEMs……..……………….........................…. 144 4.6.3.2 Background and details on the types of microscopes used ................ 144 4.6.4 Transmission electron microscopy (TEM)……………............................. 146 4.6.4.1 Sample preparation for TEM….………………….........……….……. 146 4.6.4.2 Transmission electron microscope (TEM).……….......…...………… 147 4.6.5 Electron backscattered diffraction (EBSD)..…..……….........……..……… 148 4.6.6 X-ray diffraction (XRD)…….…………….……………..............…..…….. 149 4.6.7 ADE Phase shift microXam white light interferometer 150 4.6.8 Scanning kevin probe force microscopy (SKPFM)……..…...……......….. 151 4.6.9 Residual stress analysis………………….…................................….……. 152 4.7 Corrosion tests….………………………………............………….…….…….. 153 4.7.1 Electrochemical measurement…………………………...............…..……. 153 4.7.1.1 Sample preparation…..…………………………….............………… 153 4.7.1.2 Polarization…………………………………............................….….. 154 4.7.2 Immersion tests………………………………..........……………..………. 154 4.7.3 EXCO test…………………………..………................................……..… 154 4.7.3.1 Solution preparation….……..…….……...................……………..… 154 4.7.3.2 Sample preparation……..……………............……………..………... 154 4.7.3.3 Corrosion exposure…………..…….....................................…….….. 155 4.8 Nano-indentation measurements……........………………………..…………… 155 4.9 References……………………………………………………………………….. 156 5 Table of Contents Chapter 5 Microstructural characterization of as-received AA2024-T351 alloy………………………………………………………………….. 157 5.1 Introduction……..…………………………………..........…………………… 157 5.2 Microstructure of as-received AA2024-T351 alloy…………………………... 157 5.2.1 Constituent intermetallic particles……………………………....………... 157 5.2.1.1 Distribution…….…………………………………………………….. 157 5.2.1.2 EDX analysis of IMPs……….……………………………...……….. 158 5.2.1.3 XRD analysis….................................................................................. 161 5.2.2 θ-phase………….……………………………………………......……….. 162 5.2.3 S-phase……................................................................................................ 163 5.2.4 Al-Cu-Mn-Fe-(Si) particles……................................................................ 165 5.2.5 Dispersoids and grain boundary precipitates………………...…………… 169 5.3 Grain boundary precipitations………………………………....................…… 171 5.4 Surface potential of as-received AA2024-T351 alloy………..............………. 178 5.5 Conclusions……………..…………………………………………………….. 184 5.6 References...………………………………..……………………………….. 186 Chapter 6- Microstructural characterization of excimer laser-melted AA2024- T351alloy………………………….…………………......... 188 6.1 Introduction………….……………………………………............…………... 188 6.2 Influence of laser operating condition on surface melting................................ 188 6.2.1 Effect of surface conditions ………………………...…………………..... 189 6.2.2 Effect of laser operating parameters………………….................……….. 191 6.3 Surface morphology of excimer LSM-treated AA2024-T351 alloy……......... 193 6.3.1 Single laser shot…………….………………..............…………………... 193 6.3.2 Overlapping effect…………………….………..……………………….... 194 6.3.3 Surface roughness measurement………..........……………………….…. 195 6.4 SEM/EDX analysis……………………………............…………………….... 200 6.5 XRD phase analysis…...................................................................................... 203 6.6 Solute band formation…………………….................……………………….. 205 6.7 Defects in the melted layer ……………………..............…………………….. 211 6.7.1 Melted layers……...... ..........................................................................…. 211 6.7.2 Overlapped regions…..................................................................….…….. 212 6.8 Surface potential measurement by SKPFM………...........................………… 213 6.9 Residual stress measurement………...........................................................….. 215 6.10 Hardness measurement by nano-indentation….........................................….. 217 6.11Conclusions…………………..................................................................……. 217 6.12 References…………………………………………………………………… 219 Chapter 7 Corrosion behaviour of AA2024-T351 alloy before and after laser treatment…………………………………………..………….. 220 7.1 Introduction…………..............………………………………………….….… 220 7.2 Electrochemical behaviour................................................................................. 220 6 Table of Contents 7.2.1 As-received alloy....…………………………………………………….…… 220 7.2.2 Laser-melted alloy …………………………...........………………………... 221 7.2.2.1 In deareated 0.1 M NaCl solution………………………………….…... 221 7.2.2.2 In areated 0.1 M NaCl solution………………………….….………. 222 7.3 Immersion test in 0.1 M NaCl solution for 24 hours…...............….………….. 226 7.4 EXCO immersion testing ……………………………..........…….………….….. 232 7.4.1 As-received alloy……................................................................................. 232 7.4.2 Laser-melted alloy…..………….........………………….…………….….. 236 7.5 Conclusions ………………................…………………………………….…. 240 7.6 References…………………………………………………………………….. 242 Chapter 8- Evaluation of laser surface melting as a pre-treatment method prior to anodising of AA2024-T351 alloy…………………….…..... 244 8.1 Introduction………………………….............…………………………….….. 244 8.2 Anodising of AA2024-T351 alloy.… ……………...................………….….. 244 8.3 Characterization of the anodic films……………………......……………..….. 245 8.3.1 Anodised AA2024-T351 alloy without LSM pre-treatment…..……….... 245 8.3.2 Anodised AA2024-T351 with LSM as pre-treatment…........………..….. 249 LSM with 10 pulses………..……...............…………………………….. 250 LSM with 25 pulses…….................................................................…..… 252 LSM with 50 pulses……………………....................……...……………. 255 8.4 Electrochemical investigation of anodised AA2024-T351…........................... 262 8.4.1 Potentiodynamic behaviour in deaerated 0.1 M NaCl solution…............. 262 8.4.2 Potentiodynamic behaviour in aerated 0.1 M NaCl solution……..........… 266 8.5 Immersion test in 0.1 M NaCl for 24 hours…………...............................…… 267 8.5.1 Anodised AA2024-T351 alloy without LSM………................………….. 267 8.5.2 Anodised AA2024-T351 alloy with 25 pulses LSM……..................….... 272 8.5.3 Anodised AA2024-T351 alloy with 50 pulses LSM…..................………. 273 8.6 Immersion test in EXCO solution for 6 hours…….....……………………..…. 275 8.6.1 Anodised AA2024-T351 alloy without LSM…………………………..… 275 8.6.2 Anodised AA2024-T351alloy with 10 pulses LSM……..........……..…… 277 8.6.3 Anodised AA2024-T351 alloy with 25 pulses LSM………….....…..…… 280 8.6.4 Anodised AA2024-T351 alloy with 50 pulses LSM………………..…….. 285 8.7 Conclusion……...……………………………………………….……………… 287 8.8 References………………………………………………………….……………. 289 Chapter 9 Conclusions and future work…………...……...…………………….. 9.1 Conclusions………………………………………………………………….... 290 9.1.1Original microstructure of AA2024-T351 alloy..…………….................. 290 9.1.2 Microstructural characteristics of laser-melted AA2024-T351 alloy…….. 291 9.1.3 Corrosion behaviour of AA2024-T351 alloy before and after LSM..…..... 292 9.1.4 Effect of LSM on anodising of AA2024-T351 alloy..………………….... 292 9.2 Suggestions for future work……………………………………………….... 294 Word count: 69580 7 List of Figures Figure 2.1: Al-Cu phase diagram showing the presence of various phases with respect to temperature and solid solubility [19] .............................. 50 Figure 2.2: Figure 2.2: The left part of the Al-Cu phase diagram illustrates the three steps of solution-heat-treatment, quenching and ageing. On the right, sketches of the microstructure that result from the three steps we shown [19]……………………..………………...……… 51 Figure 2.3: Al-Cu phase diagram showing the metastable GP1 zone, θ'' and θ' solvuses [29]..……………….……………………..……………… 53 Figure 2.4: (a) Structure and morphology of θ", θ' phases and θ phase (Al2Cu) where, Al atoms are indicated by white dots and Cu atoms by black dots, (b) shape of θ" phase in the aluminum matrix; the circular dotted line indicates an area strained by θ" phase and (c) TEM micrograph of a fine and uniform dispersion of θ' precipitates in Al-1.7Cu-0.01Sn alloy; the needle shaped θ' phases are nucleated on spherical shaped Sn particles.[29]…................... 55 Figure 2.5: Isothermal part of Al-Cu-Mg phase diagram at 190°C, α=Al, θ = Al Cu, S= Al CuMg, T=Al CuMg . The thick solid line defines 2 2 6 4 the α/α +S phase boundary at 500°C [29].……..……………… 56 Figure 2.6: Al CuMg precipitate particles in an AA2xxx (Al-Cu-Mg) alloy. 2 (a) Dark field scanning transmission electron image showing lath and needle shapes [2]. (b) bright field TEM micrograph of S-phase with electron differaction pattern [44]……………..……………..... 57 Figure 2.7: (a) and (b) proposed models for S''-phases, (c), (d) and (e) proposed models for S-phase [41]..…….………….….........…..…. 57 Figure 2.8: Anodic and cathodic polarization curve [6]……..….………...……. 63 Figure 2.9: Pourbaix diagrams for the Al-H O system at 25 C [71]…….…..… 64 2 Figure 2.10: Schematic diagram of polarization behaviour of a metal [74, 75]…… 66 8 List of Figures Figure 2.11: Schematic diagram for pit propagation mechanism of aluminium alloy in chloride solution, adapted from reference [103]….………... 72 Figure 2.12: Schematic illustration of corrosion mechanism of Al CuMg phase 2 in Al alloys [118]..……….………………………………………...... 75 Figure 2.13: Schematic demonstration of Al MgCu phase corrosion 2 mechanism during the immersion of AA2024 in chloride solution [119]………......………….………………………………………….. 76 Figure 2.14: Schematic diagrams of four stages in the initiation of stress- corrosion cracks which takes place in an intergranular corrosion cracking form. σ denotes the direction of applied stress and the fourth stage is propagation stage [131, 132]………………..……….. 78 Figure 3.1: Basic components of a laser system…..…………….………..…... 89 Figure 3.2: Stimulated emission [2]…..……...……………...…..…………....... 90 Figure 3.3: Excimer (KrF) energy levels [7]..………………….……...……...... 94 Figure 3.4: Temporal pulse width at half maximum, measurement of pulse duration [8]….…..……………………………….……..…………... 95 Figure 3.5: Comparison of the domain of laser interaction between excimer and CO lasers [11]......................................................................... 96 2 Figure 3.6: (a) Metal surface reflection with respect to laser wavelength, (b) metal reflectivity with respect to surface temperature [1]……..….. 97 Figure 3.7: Description of laser materials processing map against power density and interaction time [19]…....……….…………………..…. 101 Figure 3.8: Schematic diagram of the convective flow working as a mixer in the melt pool [44]………...…………………………………............ 105 Figure 3.9: Constitutional super-cooling, with super cooling arisen from compositional effects. (a) Profile of the composition across the solid/liquid interface. (b) Liquid temperature ahead of solidification front follows line T . The constitutional super- L cooling arises when T lies under the critical gradient [51]. (c) L Constitutional diagram for a solute which lowers the freezing point of the solvent [34]....……………………...…………..…....... 107 9 List of Figures Figure 3.10: A planer front breaks down as protrusions form on it and grow faster as result of constitutional super-cooling forming columnar [51]………………....……………………………………………..... 109 Figure 3.11: Illustration of (a) planar growth and (b) cellar growth in a constitutional super-cooling process [51]......………...……...……. 109 Figure 3.12: Morphology transitions from cellular to dendrites: (a) cellular, (b) cellular-dendrites, (c) columnar and (d) branched columnar dendrites [42].................................................................................. 110 Figure 3.13: Range of growth rates in normal and in rapid solidification processing [55]………...….…………………………..………….… 112 Figure 3.14: A schematic illustration of the sequence of morphologies resulting for the solidification process, where the transformation of microstructure is a function of the solidification rates [60]……….. 113 Figure 3.15: Schematic interface response function diagram for plane front growth T and dendritic growth T . Various microstructures P D growth with respect to the increase of growth velocity, between V c and V cells/dendrites grow at higher temperature with stable a growth. Between V and V , a banded structure grows because a Tmax of oscillatory instability. These microstructures can be determined by the maximum growth temperature criterion [55, 61]. Letters P, C, D and B indicates the morphologies planar, cellular, dendrite and banded respectively. ………….............................……………….. 113 Figure 3.16: The banded microstructure in Al-Cu alloy system [63, 64]….….….. 115 Figure 3.17: SEM images showing the effect of variation of growth rate on the resulting microstructure from the rapid solidification process caused by 3 kW CW Nd:YAG LSM of AA2014-T351alloy [4, 48]... 118 Figure 3.18: SEM image of a cross section of the LSM layer of AA2014 alloy showing the cellular layer in the overlapped region [4]..…............. 119 Figure 3.19: (a) SEM cross-sectional view of the melted layer by CW CO 2 LSM, (b) Magnified view of the melted layer showing a cellular dendrite structure [87]…...…………………………………..……… 119 Figure 3.20: Typical microstructure images of cell spacing variation with melted layer thickness caused by different types of pulsed lasers in LSM on 2024-T3 alloy [77]…………...………………….……... 120 10
Description: