ebook img

Microstrip Antennas PDF

85 Pages·2012·3.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microstrip Antennas

International Journal of Antennas and Propagation Microstrip Antennas Microstrip Antennas International Journal of Antennas and Propagation Microstrip Antennas Copyright©2012HindawiPublishingCorporation.Allrightsreserved. Thisisafocusissuepublishedin“InternationalJournalofAntennasandPropagation.”Allarticlesareopenaccessarticlesdistributed undertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro- videdtheoriginalworkisproperlycited. Editorial Board M.Ali,USA Se-YunKim,RepublicofKorea SadasivaM.Rao,USA CharlesBunting,USA AhmedA.Kishk,Canada SembiamR.Rengarajan,USA FelipeCa´tedra,Spain TribikramKundu,USA AhmadSafaai-Jazi,USA Dau-ChyrhChang,Taiwan ByungjeLee,RepublicofKorea SafieddinSafavi-Naeini,Canada DebChatterjee,USA Ju-HongLee,Taiwan MagdalenaSalazar-Palma,Spain Z.N.Chen,Singapore L.Li,Singapore StefanoSelleri,Italy MichaelYanWahChia,Singapore YilongLu,Singapore KrishnasamyT.Selvan,India ChristosChristodoulou,USA AtsushiMase,Japan ZhongxiangQ.Shen,Singapore Shyh-JongChung,Taiwan AndreaMassa,Italy JohnJ.Shynk,USA LorenzoCrocco,Italy GiuseppeMazzarella,Italy M.SinghJitSingh,Malaysia TayebA.Denidni,Canada DerekMcNamara,Canada Seong-YoupSuh,USA AntonijeR.Djordjevic,Serbia C.F.Mecklenbra¨uker,Austria ParveenWahid,USA KaruP.Esselle,Australia MicheleMidrio,Italy YuanxunEthanWang,USA FranciscoFalcone,Spain MarkMirotznik,USA DanielS.Weile,USA MiguelFerrando,Spain AnandaS.Mohan,Australia QuanXue,HongKong VincenzoGaldi,Italy P.Mohanan,India TatSoonYeo,Singapore WeiHong,China PavelNikitin,USA YoungJoongYoon,Korea HonTatHui,Singapore A.D.Panagopoulos,Greece WenhuaYu,USA TamerS.Ibrahim,USA MatteoPastorino,Italy JongWonYu,RepublicofKorea NemaiKarmakar,Australia MassimilianoPieraccini,Italy AnpingZhao,China Contents ModalResonantFrequenciesandRadiationQualityFactorsofMicrostripAntennas,JanEichler, PavelHazdra,MiloslavCapek,andMilosMazanek Volume2012,ArticleID490327,9pages TunableCompactUHFRFIDMetalTagBasedonCPWOpenStubFeedPIFAAntenna,LingfeiMoand ChunfangQin Volume2012,ArticleID167658,8pages SomeRecentDevelopmentsofMicrostripAntenna,YongLiu,Li-MingSi,MengWei,PixianYan, PengfeiYang,HongdaLu,ChaoZheng,YongYuan,JinchaoMou,XinLv,andHousjunSun Volume2012,ArticleID428284,10pages NewConfigurationsofLow-CostDual-PolarizedPrintedAntennasforUWBArrays,GuidoValerio, SimonaMazzocchi,AlessandroGalli,MatteoCiattaglia,andMarcoZucca Volume2012,ArticleID786791,10pages DesignandAnalysisofWidebandNonuniformBranchLineCouplerandItsApplicationinaWideband ButlerMatrix,YuliK.Ningsih,M.Asvial,andE.T.Rahardjo Volume2012,ArticleID853651,7pages IsolationImprovementofaMicrostripPatchArrayAntennaforWCDMAIndoorRepeaterApplications, HongminLeeandJinwonPark Volume2012,ArticleID264618,8pages Series-FedMicrostripArrayAntennawithCircularPolarization,Tuan-YungHan Volume2012,ArticleID681431,5pages VerticalMeanderingApproachforAntennaSizeReduction,LiDeng,Shu-FangLi,Ka-LeungLau, andQuanXue Volume2012,ArticleID980252,5pages MicrostripPatchAntennaBandwidthEnhancementUsingAMC/EBGStructures,R.C.Hadarig, M.E.deCos,andF.Las-Heras Volume2012,ArticleID843754,6pages High-PerformanceComputationalElectromagneticMethodsAppliedtotheDesignofPatchAntenna withEBGStructure,R.C.Hadarig,M.E.deCos,andF.Las-Heras Volume2012,ArticleID435890,5pages AWidebandHigh-GainDual-PolarizedSlotArrayPatchAntennaforWiMAXApplicationsin5.8GHz, AmirRezaDastkhoshandHamidRezaDaliliOskouei Volume2012,ArticleID595290,6pages HindawiPublishingCorporation InternationalJournalofAntennasandPropagation Volume2012,ArticleID490327,9pages doi:10.1155/2012/490327 Research Article Modal Resonant Frequencies and Radiation Quality Factors of Microstrip Antennas JanEichler,PavelHazdra,MiloslavCapek,andMilosMazanek DepartmentofElectromagneticField,FacultyofElectricalEngineering,CzechTechnicalUniversityinPrague,Technicka´2, 16627,Prague,CzechRepublic CorrespondenceshouldbeaddressedtoPavelHazdra,[email protected] Received9August2011;Revised10January2012;Accepted13January2012 AcademicEditor:CharlesBunting Copyright©2012JanEichleretal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of characteristic modes. The resonant frequencies and radiation Q are evaluated. A novel method by Vandenbosch for rigorous evaluation of the radiation Q is employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the resonantfrequencyofarectangularpatchantennawithadominantmodepresentsquitecomplicatedbehaviourincludinghaving aminimumataspecificheight.Similarly,aspredictedfromthesimplewiremodel,theradiationQexhibitsaminimumtoo.Itis observedthatthepresenceofout-of-phasecurrentsflowingalongthepatchantennaleadstoasignificantincreaseoftheQfactor. 1.Introduction Equation (1) is usually treated within the method of moments(MoMs)[8]frameworkand,duetothestructure Evaluation of the basic properties of microstrip patch discretization, the L operator is known as the “complex antennas(MPA)hasbeennumerouslydiscussedinliterature, impedancematrix”[Z]=[R]+ j[X]. see, for example, [1–3]. The two main MPA attributes are ThentheassociatedEuler’sequationtobesolvedis resonant frequency (or frequencies but we will deal mostly withthedominantmode)andtheradiationQfactor.Sofar, XJn=λnRJn. (2) only approximate results and semianalytic equations have been published. To our knowledge, this is the first time Equation (2) is a standard weighted eigenvalue equation that these important characteristics have been studied in a leading to a set of real characteristic eigencurrents Jn and rigorous way. The antennas are treated by using a modal associated eigenvalues λn. Properties of eigenvalues are approach (hence we do not a priori consider any feeding described in [9], at this moment it is important to note to be connected), namely, by the theory of characteristic modes (TCM), [4, 5]. Evaluation of the radiation Q is that λn reflects the amount of net reactive power (thus λn = 0 means resonance). Instead of eigenvalues, the so-called performedbothbytheTCMfromtheeigenvaluesslopeand characteristicanglesαn areintroducedtoshowmorevisible bynovelrigorousequationsderivedbyVandenbosch[6]and behaviorwithfrequency[9].Characteristiccurrentsforma VandenboschandVolski[7]. complete orthogonal set, and hence the total current on a conducting body may be expressed as a linear combination 2.TheTheoryofCharacteristicModes ofthesemodecurrents[10]. Forcompleteness,letusformulatethebasicsofthecharac- teristicmodesforperfectlyconductingbodiesofareaS.The 2.1. Implementation of the Characteristic Modes Theory. scatteredfieldEsisrelatedtotheelectricsurfacecurrentsJby Implementation of the modal decomposition process has theelectricfieldintegralequation(EFIE)[8] beendoneintheMATLAB[11]environmentusingMakarov (cid:2) (cid:3) EFIE codes [12] with the RWG basis functions [13]. This L(J)−Ei =0. (1) tan usage is restricted to arbitrary 3D PEC structures with air 2 InternationalJournalofAntennasandPropagation dielectrics.OurdevelopedTCMtool[14]hasthefollowing T (x,y,z) mainadvantages: 1 (i)ComsolMultiphysics[15]/MATLAB’sPDETooLbox J 1 meshimport, r21=| r 2 − r 1 | Ω (ii) Optional Green’s function for infinite ground plane simulations, J 2 (iii) Single solver/multicore solver/distributed solver y r2 r1 (within a computer network with installed MATLAB). (0,0) T (x,y,z) x 2 3.TheRadiationQFactor Figure1:Distancebetweennonoverlappingcurrentelements[23]. In [6] a novel theory able to rigorously calculate radiated power and stored energies directly from currents flowing In [18], (10) is supposed to be an approximation of the alongtheantennahasbeenpresented.TheradiationQfactor radiationQ,butinresonanceitisactuallyexact. isthenreadilyevaluatedbythedefinition[16]: Sincecharacteristicmodesarenormalizedtoradiateunit Q=2ωmax(cid:4)W(cid:5)m,W(cid:5)e(cid:6). (3) powerPr =1[4],(3)reducesto(cid:4) (cid:6) Pr Q=2ωmax W(cid:5)e,W(cid:5)m . (11) TheequationsforradiatedpowerPr andstoredelectricand ForparallelorseriesRLCcircuit(hence,foronemode),the magneticenergiesW(cid:5)e,W(cid:5)mare “impedanceQZ”equalstheexact“currentQ”[6]: (cid:7) (cid:8)(cid:9) (cid:9) 1 (cid:10) (cid:11) (cid:12) (cid:12) (cid:12) (cid:12) Pr = 8πωε0 Ω1 Ω2 k2J(r1)J(r2)−∇·J(r1)∇·J(r2) Q=QZ = ω20(cid:12)(cid:12)(cid:12)∂∂ωZ(cid:12)(cid:12)(cid:12)= ω20(cid:12)(cid:12)(cid:12)∂∂ωR + ∂∂Xω(cid:12)(cid:12)(cid:12). (12) sin(kr ) × 21 dΩ1dΩ2, r Inserting 21 (4) (cid:2) (cid:4) (cid:6)(cid:3) 1 Z =R+ jX = |I2| Pr+ j2ω W(cid:5)m−W(cid:5)e (13) 1 W(cid:5)e = 16πω2ε0(Ie−IR), (5) validforlosslessantennas[19]andusingthefactthatPr =1, (12)resultsin 1 W(cid:5)m= 16πω2ε0(Im−IR), (6) Q=QX = ω20(cid:12)(cid:12)(cid:12)(cid:12)∂∂Xω(cid:12)(cid:12)(cid:12)(cid:12)= ω20∂∂ω(cid:2)2ω(cid:4)W(cid:5)m−W(cid:5)e(cid:6)(cid:3) where (14) (cid:9) (cid:9) ω ∂λ k (cid:10) (cid:11) = 0 =Q , IR= 2 Ω1 Ω2 k2J(r1)J(r2)−∇·J(r1)∇·J(r2) (7) 2 ∂ω eig ×sin(kr )dΩ1dΩ2, providingthat 21 (cid:4) (cid:6) (cid:9) (cid:9) λ=2ω W(cid:5)m−W(cid:5)e . (15) cos(kr ) Ie = Ω1 Ω2∇·J(r1)∇·J(r2) r2121 dΩ1dΩ2, (8) ItisthereforeconcludedthatthemodalQeigequalstheQXby (cid:9) (cid:9) cos(kr ) definition,anditcanbeproven(usingthereactancetheorem Im=k2 J(r1)J(r2) r 21 dΩ1dΩ2, (9) [20, 21]) that in resonance it also equals the radiation Q Ω1 Ω2 21 definedfromenergiesby(11). wherek isafree-spacewavenumber,Jisthesurfacecurrent density, and r21 is the distance between interacting current 3.2. Software Implementation. The above equations were elements.ThetildedenotesthattheradiationcontributionIR implemented in MATLAB for the RWG triangular mesh hasbeensubtractedfromthestoredenergiesateverypoint wheretwodifferentinteractionsituationsoccur: inspace[17].Itisassumedthatthecurrentsareflowingina vacuum. (a)DistantElements. Whenthetriangularelementsarenot overlapping, current density on triangles may be simply 3.1.TheModalRadiationQ Factor. ThemodalradiationQ approximated as point sources located at the centre of factormaybeevaluatedfromtheslopeofmodaleigenvalues triangles [22], see Figure1. No actual integration is then [18]: needed.Thiscentroidapproachisveryfastwithsatisfactory ω dλ accuracy as will be shown later (however it may fail for Q = 0 . (10) eig 2 dω patcheslocatedveryclosetothegroundplane). InternationalJournalofAntennasandPropagation 3 P3(x3,y3) β z h13 (0,1) P1(x1,y1) A P0 T1(x,y,z) P T1(α,β,γ) 0.01 0 h23 α 0.005 r y 2 h12 (0,0) (1,0) r P2(x2,y2) 0 2H 1 (0,0) x −0.005 y (a) (b) Figure2:Self-termevaluation.(a)Originalproblem,(b)simplex −0.01 x coordinatestransformation[23]. 0.015 0.01 (b)Overlapping(Self)Elements. Asknownfromthemethod 0.005 of moments, the so-called “self” contributions are of great 0 importance when dealing with calculations on discrete −0.005 elements(meshes). −0.01 0.01 0.02 Here, the self-interaction occurs when two triangles are −0.015 −0.02 −0.01 0 overlapping each other. Due to the behavior of integral −0.03 kernels, only rapidly varying term cos(kr )/r has to be 21 21 carefullytreated.Sincek R → 0(R beingthelongestside Figure 3: Model of MPA above infinite ground plane for H = 0 21 21 ofthetriangleT)issatisfied,oneneedsonlytousethefirst 10mm,dominantmodeTM shown. 01 termintheTaylorseriesexpansion.Thedominantsingular staticpartis1/r andtheintegraltobeworkedoutis 21 4.5 (cid:9) (cid:9) 1 I = (cid:13) (cid:14) (cid:15) dxdydx(cid:4)dy(cid:4), (16) 4 T T(cid:4) (x−x(cid:4))2+ y−y(cid:4) 2 Regular 3.5 behaviour whereT =T(cid:4)isatriangulararea.Usingsimplexcoordinates Hz) 3 transforma(cid:16)tion(Figure2),theresultis[23,24] (cid:17) f (Gres 2.5 Min. fres I=−4A2 ln(1−2h12/L)+ln(1−2h13/L)+ln(1−2h23/L) , 2 Min. Q 3 h h h 12 13 23 1.5 (17) 1 where A is the triangle area, hij are the edge lengths (see 0 5 10 15 20 25 30 35 40 45 50 55 60 Figure2),andListheperimeterofthetriangle. H (mm) fr (TCM) 4.Applications:RectangularPatchAntenna fr (analytic equation) Let us first concentrate on a rectangular patch antenna of Figure 4: R50 × 30 resonant frequency of the dominant TM01 dimensionsL = 50mmandW = 30mm(furthernotedas mode.Thedashedredcurveisaquasianalyticalequationfrom[1]. R50×30)placedinairataheightHaboveaninfiniteground plane. Only the dominant TM mode will be studied. The 01 reasonforchoosingapatchwithL/W=/ 1isthatwedonot H/λ < 0.08),theresonantfrequencydecreases“regularly,” res havetodealwithdegeneratedmodes. and quasianalytical formulas (see, e.g., [1, 3]) based on Using the image theory, the radiator in the XY plane the fringing field concept are valid below this range. For at height z = H above an infinite electric ground plane is H ∼= 25mm (H/λ ∼= 0.188) there is absolute minimum res modelledastwopatchesseparatedby2H.Thetotalnumber of the TM resonant frequency. Further on, the resonant 01 oftriangularelementsis676.IntheTCManalyser,aproper frequency rises to reach its maximum for H ∼= 40mm out-of-phasemodeisselected(Figure3). (H/λ ∼= 0.51). Around this specific height the patch also res Theresonantfrequencyofthedominantmodeisshown showstheminimumoftheradiationQ.Theabovedescribed asafunctionofheightH,seeFigure4.Ithasbeenevaluated process repeats periodically. It is yet unclear to the authors from a modal resonant condition for eigenvalues λ = aswhatisthephysicalbackgroundtotheresonantfrequency 2ω(W(cid:5)m − W(cid:5)e) = 0 employing an adaptive frequency discontinuityaroundH/λres∼=0.5. sweep for each height. The behaviour is quite peculiar, The terms 2ωW(cid:5)m,2ωW(cid:5)e, and 2ω(W(cid:5)m − W(cid:5)e) obtained especiallyforgreaterheights.Forlowheights(H <10mmor from (5)–(9) and eigenvalues λ are plotted at Figure5 for 4 InternationalJournalofAntennasandPropagation 20 anapproximateanalyticalsolutionisavailableandin[25]we showedthattheQisledbythefunction 15 es 10 fQ(H)∼= k2H−2sHin(k2H). (18) gi ner fres Afterderiving(18),theconditionisworked-out ctive e 5 tan(k2H)=k2H, (19) a e 0 R and the first nontrivial root of (19) could be approximated as[25] −5 (cid:7) (cid:8) H =∼ 3 − 1 =0.358. (20) −10 λ 8 6π2 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 min f (GHz) Forsinusoidalcurrentsondipolestheminimum(evaluated numerically)occursforH =0.36λ. λ 2ω(We) The minimum of the patch under study is obtained at 2ω(Wm) 2ω(Wm-We) H ∼= 0.4λ, a value that is remarkably close to the simple Figure5:ReactiveenergiesandtheirdifferencesforanR50×30 dipolemodel. patchatheightof25mm. 4.1. Algorithm Convergence. Since no other methods for calculatingmodalQareavailable,Q istakenasareference, eig 50 andtherelativeerrorpercentageisdefinedas: 45 (cid:12) (cid:12) (cid:12) (cid:12) 40 (cid:12)QJ −Qeig(cid:12) relativeerror= ·100, (21) 35 Q eig 30 –) where QJ is calculated from the currents using (11). Four Q ( 25 different heights H were chosen, H = 1mm (0.01λ), H = 20 2mm (0.0185λ), H = 10mm (0.0803λ), and H = 20mm 15 (0.151λ),andtherelativeerrorwasevaluatedasafunctionof 10 totaltriangularelements(includingthemirror),seeFigure7. 5 Allqualityfactorswereevaluatedattheresonantfrequency 0 ofthedominantmodefortheR50×30patch.Asdiscussed 0 5 10 15 20 25 30 35 40 45 50 55 60 earlier,thecentroidapproximationbecamemoreinaccurate H(mm) with low heights H. However, even for the lowest analyzed Q value H = 0.01λ, the relative error is in the order of eig Q a few percent for reasonable mesh density (hundreds of J elements).Furtherimprovementstotheintegrationroutine Figure6:TheradiationQfordominantmodeofanR50×30patch areconsideredforthefuture. asafunctionofheightH. 4.2.FractionalBandwidthoftheR50×30PatchAntenna. It is known that the fractional bandwidth (FBW) is related to H = 25mm as a function of frequency. There is excellent theunloadedQfactorandthedesiredmatchingVSWRlevel. agreementbetweenthedifferenceinstoredenergiesandthe ForVSWR<swehave[26] eigeTnvhaelrueeiss,balostohvoebrytaginoeoddiangareceommepnltetbeelytwdeieffnertehnetemxaanctnQerJ. FBW∼= sQ−√1s [%]. (22) and Q confirming the validity of the proposed algorithm eig via(14),seeFigure6.NotethatQ in(10)doesnotrequire Using a full-wave simulator CST-MWS [27], an R50 × 30 eig the currents to be calculated on the structure while QJ is patchhasbeensimulatedandtheFBWCSTforVSWR<2was evaluatedinarigorouswayfrommodalcurrents(11). calculatedas: From Figure6 it is seen that the radiation Q has a f − f minimumforaspecificheight.Itisdeducedthatthereason FBWCST= 2 f 1, (23) liesinthecancellingoftheradiatedpowerbetweenthetwo 0 out-of-phasecurrents.Similarbehaviourhasbeenobserved where f and f are margins for VSWR < 2 and f is 2 1 0 inthecaseoftwohalf-wavethin-wiredipoleswithopposite the centre frequency. Only very low heights were studied sinusoidalcurrents,separatedbyd=2H,see[25]fordetails. since we used a simple probe feed which introduces an Actuallythesetwoout-of-phasedipolesmayserveasavery inductance component to the total input impedance. The simple model for a patch antenna with a dominant mode. comparison in Figure8 shows good agreement of both Whenthedipolesarereducedtoelementary(Hertzian)ones, fractionalbandwidths.

Description:
New Configurations of Low-Cost Dual-Polarized Printed Antennas for UWB Arrays, Guido Valerio, Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures, . In [6] a novel theory able to rigorously calculate radiated For parallel or series RLC circuit (hence, for one mode), the.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.