International Journal of Antennas and Propagation Microstrip Antennas Microstrip Antennas International Journal of Antennas and Propagation Microstrip Antennas Copyright©2012HindawiPublishingCorporation.Allrightsreserved. Thisisafocusissuepublishedin“InternationalJournalofAntennasandPropagation.”Allarticlesareopenaccessarticlesdistributed undertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro- videdtheoriginalworkisproperlycited. Editorial Board M.Ali,USA Se-YunKim,RepublicofKorea SadasivaM.Rao,USA CharlesBunting,USA AhmedA.Kishk,Canada SembiamR.Rengarajan,USA FelipeCa´tedra,Spain TribikramKundu,USA AhmadSafaai-Jazi,USA Dau-ChyrhChang,Taiwan ByungjeLee,RepublicofKorea SafieddinSafavi-Naeini,Canada DebChatterjee,USA Ju-HongLee,Taiwan MagdalenaSalazar-Palma,Spain Z.N.Chen,Singapore L.Li,Singapore StefanoSelleri,Italy MichaelYanWahChia,Singapore YilongLu,Singapore KrishnasamyT.Selvan,India ChristosChristodoulou,USA AtsushiMase,Japan ZhongxiangQ.Shen,Singapore Shyh-JongChung,Taiwan AndreaMassa,Italy JohnJ.Shynk,USA LorenzoCrocco,Italy GiuseppeMazzarella,Italy M.SinghJitSingh,Malaysia TayebA.Denidni,Canada DerekMcNamara,Canada Seong-YoupSuh,USA AntonijeR.Djordjevic,Serbia C.F.Mecklenbra¨uker,Austria ParveenWahid,USA KaruP.Esselle,Australia MicheleMidrio,Italy YuanxunEthanWang,USA FranciscoFalcone,Spain MarkMirotznik,USA DanielS.Weile,USA MiguelFerrando,Spain AnandaS.Mohan,Australia QuanXue,HongKong VincenzoGaldi,Italy P.Mohanan,India TatSoonYeo,Singapore WeiHong,China PavelNikitin,USA YoungJoongYoon,Korea HonTatHui,Singapore A.D.Panagopoulos,Greece WenhuaYu,USA TamerS.Ibrahim,USA MatteoPastorino,Italy JongWonYu,RepublicofKorea NemaiKarmakar,Australia MassimilianoPieraccini,Italy AnpingZhao,China Contents ModalResonantFrequenciesandRadiationQualityFactorsofMicrostripAntennas,JanEichler, PavelHazdra,MiloslavCapek,andMilosMazanek Volume2012,ArticleID490327,9pages TunableCompactUHFRFIDMetalTagBasedonCPWOpenStubFeedPIFAAntenna,LingfeiMoand ChunfangQin Volume2012,ArticleID167658,8pages SomeRecentDevelopmentsofMicrostripAntenna,YongLiu,Li-MingSi,MengWei,PixianYan, PengfeiYang,HongdaLu,ChaoZheng,YongYuan,JinchaoMou,XinLv,andHousjunSun Volume2012,ArticleID428284,10pages NewConfigurationsofLow-CostDual-PolarizedPrintedAntennasforUWBArrays,GuidoValerio, SimonaMazzocchi,AlessandroGalli,MatteoCiattaglia,andMarcoZucca Volume2012,ArticleID786791,10pages DesignandAnalysisofWidebandNonuniformBranchLineCouplerandItsApplicationinaWideband ButlerMatrix,YuliK.Ningsih,M.Asvial,andE.T.Rahardjo Volume2012,ArticleID853651,7pages IsolationImprovementofaMicrostripPatchArrayAntennaforWCDMAIndoorRepeaterApplications, HongminLeeandJinwonPark Volume2012,ArticleID264618,8pages Series-FedMicrostripArrayAntennawithCircularPolarization,Tuan-YungHan Volume2012,ArticleID681431,5pages VerticalMeanderingApproachforAntennaSizeReduction,LiDeng,Shu-FangLi,Ka-LeungLau, andQuanXue Volume2012,ArticleID980252,5pages MicrostripPatchAntennaBandwidthEnhancementUsingAMC/EBGStructures,R.C.Hadarig, M.E.deCos,andF.Las-Heras Volume2012,ArticleID843754,6pages High-PerformanceComputationalElectromagneticMethodsAppliedtotheDesignofPatchAntenna withEBGStructure,R.C.Hadarig,M.E.deCos,andF.Las-Heras Volume2012,ArticleID435890,5pages AWidebandHigh-GainDual-PolarizedSlotArrayPatchAntennaforWiMAXApplicationsin5.8GHz, AmirRezaDastkhoshandHamidRezaDaliliOskouei Volume2012,ArticleID595290,6pages HindawiPublishingCorporation InternationalJournalofAntennasandPropagation Volume2012,ArticleID490327,9pages doi:10.1155/2012/490327 Research Article Modal Resonant Frequencies and Radiation Quality Factors of Microstrip Antennas JanEichler,PavelHazdra,MiloslavCapek,andMilosMazanek DepartmentofElectromagneticField,FacultyofElectricalEngineering,CzechTechnicalUniversityinPrague,Technicka´2, 16627,Prague,CzechRepublic CorrespondenceshouldbeaddressedtoPavelHazdra,[email protected] Received9August2011;Revised10January2012;Accepted13January2012 AcademicEditor:CharlesBunting Copyright©2012JanEichleretal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of characteristic modes. The resonant frequencies and radiation Q are evaluated. A novel method by Vandenbosch for rigorous evaluation of the radiation Q is employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the resonantfrequencyofarectangularpatchantennawithadominantmodepresentsquitecomplicatedbehaviourincludinghaving aminimumataspecificheight.Similarly,aspredictedfromthesimplewiremodel,theradiationQexhibitsaminimumtoo.Itis observedthatthepresenceofout-of-phasecurrentsflowingalongthepatchantennaleadstoasignificantincreaseoftheQfactor. 1.Introduction Equation (1) is usually treated within the method of moments(MoMs)[8]frameworkand,duetothestructure Evaluation of the basic properties of microstrip patch discretization, the L operator is known as the “complex antennas(MPA)hasbeennumerouslydiscussedinliterature, impedancematrix”[Z]=[R]+ j[X]. see, for example, [1–3]. The two main MPA attributes are ThentheassociatedEuler’sequationtobesolvedis resonant frequency (or frequencies but we will deal mostly withthedominantmode)andtheradiationQfactor.Sofar, XJn=λnRJn. (2) only approximate results and semianalytic equations have been published. To our knowledge, this is the first time Equation (2) is a standard weighted eigenvalue equation that these important characteristics have been studied in a leading to a set of real characteristic eigencurrents Jn and rigorous way. The antennas are treated by using a modal associated eigenvalues λn. Properties of eigenvalues are approach (hence we do not a priori consider any feeding described in [9], at this moment it is important to note to be connected), namely, by the theory of characteristic modes (TCM), [4, 5]. Evaluation of the radiation Q is that λn reflects the amount of net reactive power (thus λn = 0 means resonance). Instead of eigenvalues, the so-called performedbothbytheTCMfromtheeigenvaluesslopeand characteristicanglesαn areintroducedtoshowmorevisible bynovelrigorousequationsderivedbyVandenbosch[6]and behaviorwithfrequency[9].Characteristiccurrentsforma VandenboschandVolski[7]. complete orthogonal set, and hence the total current on a conducting body may be expressed as a linear combination 2.TheTheoryofCharacteristicModes ofthesemodecurrents[10]. Forcompleteness,letusformulatethebasicsofthecharac- teristicmodesforperfectlyconductingbodiesofareaS.The 2.1. Implementation of the Characteristic Modes Theory. scatteredfieldEsisrelatedtotheelectricsurfacecurrentsJby Implementation of the modal decomposition process has theelectricfieldintegralequation(EFIE)[8] beendoneintheMATLAB[11]environmentusingMakarov (cid:2) (cid:3) EFIE codes [12] with the RWG basis functions [13]. This L(J)−Ei =0. (1) tan usage is restricted to arbitrary 3D PEC structures with air 2 InternationalJournalofAntennasandPropagation dielectrics.OurdevelopedTCMtool[14]hasthefollowing T (x,y,z) mainadvantages: 1 (i)ComsolMultiphysics[15]/MATLAB’sPDETooLbox J 1 meshimport, r21=| r 2 − r 1 | Ω (ii) Optional Green’s function for infinite ground plane simulations, J 2 (iii) Single solver/multicore solver/distributed solver y r2 r1 (within a computer network with installed MATLAB). (0,0) T (x,y,z) x 2 3.TheRadiationQFactor Figure1:Distancebetweennonoverlappingcurrentelements[23]. In [6] a novel theory able to rigorously calculate radiated power and stored energies directly from currents flowing In [18], (10) is supposed to be an approximation of the alongtheantennahasbeenpresented.TheradiationQfactor radiationQ,butinresonanceitisactuallyexact. isthenreadilyevaluatedbythedefinition[16]: Sincecharacteristicmodesarenormalizedtoradiateunit Q=2ωmax(cid:4)W(cid:5)m,W(cid:5)e(cid:6). (3) powerPr =1[4],(3)reducesto(cid:4) (cid:6) Pr Q=2ωmax W(cid:5)e,W(cid:5)m . (11) TheequationsforradiatedpowerPr andstoredelectricand ForparallelorseriesRLCcircuit(hence,foronemode),the magneticenergiesW(cid:5)e,W(cid:5)mare “impedanceQZ”equalstheexact“currentQ”[6]: (cid:7) (cid:8)(cid:9) (cid:9) 1 (cid:10) (cid:11) (cid:12) (cid:12) (cid:12) (cid:12) Pr = 8πωε0 Ω1 Ω2 k2J(r1)J(r2)−∇·J(r1)∇·J(r2) Q=QZ = ω20(cid:12)(cid:12)(cid:12)∂∂ωZ(cid:12)(cid:12)(cid:12)= ω20(cid:12)(cid:12)(cid:12)∂∂ωR + ∂∂Xω(cid:12)(cid:12)(cid:12). (12) sin(kr ) × 21 dΩ1dΩ2, r Inserting 21 (4) (cid:2) (cid:4) (cid:6)(cid:3) 1 Z =R+ jX = |I2| Pr+ j2ω W(cid:5)m−W(cid:5)e (13) 1 W(cid:5)e = 16πω2ε0(Ie−IR), (5) validforlosslessantennas[19]andusingthefactthatPr =1, (12)resultsin 1 W(cid:5)m= 16πω2ε0(Im−IR), (6) Q=QX = ω20(cid:12)(cid:12)(cid:12)(cid:12)∂∂Xω(cid:12)(cid:12)(cid:12)(cid:12)= ω20∂∂ω(cid:2)2ω(cid:4)W(cid:5)m−W(cid:5)e(cid:6)(cid:3) where (14) (cid:9) (cid:9) ω ∂λ k (cid:10) (cid:11) = 0 =Q , IR= 2 Ω1 Ω2 k2J(r1)J(r2)−∇·J(r1)∇·J(r2) (7) 2 ∂ω eig ×sin(kr )dΩ1dΩ2, providingthat 21 (cid:4) (cid:6) (cid:9) (cid:9) λ=2ω W(cid:5)m−W(cid:5)e . (15) cos(kr ) Ie = Ω1 Ω2∇·J(r1)∇·J(r2) r2121 dΩ1dΩ2, (8) ItisthereforeconcludedthatthemodalQeigequalstheQXby (cid:9) (cid:9) cos(kr ) definition,anditcanbeproven(usingthereactancetheorem Im=k2 J(r1)J(r2) r 21 dΩ1dΩ2, (9) [20, 21]) that in resonance it also equals the radiation Q Ω1 Ω2 21 definedfromenergiesby(11). wherek isafree-spacewavenumber,Jisthesurfacecurrent density, and r21 is the distance between interacting current 3.2. Software Implementation. The above equations were elements.ThetildedenotesthattheradiationcontributionIR implemented in MATLAB for the RWG triangular mesh hasbeensubtractedfromthestoredenergiesateverypoint wheretwodifferentinteractionsituationsoccur: inspace[17].Itisassumedthatthecurrentsareflowingina vacuum. (a)DistantElements. Whenthetriangularelementsarenot overlapping, current density on triangles may be simply 3.1.TheModalRadiationQ Factor. ThemodalradiationQ approximated as point sources located at the centre of factormaybeevaluatedfromtheslopeofmodaleigenvalues triangles [22], see Figure1. No actual integration is then [18]: needed.Thiscentroidapproachisveryfastwithsatisfactory ω dλ accuracy as will be shown later (however it may fail for Q = 0 . (10) eig 2 dω patcheslocatedveryclosetothegroundplane). InternationalJournalofAntennasandPropagation 3 P3(x3,y3) β z h13 (0,1) P1(x1,y1) A P0 T1(x,y,z) P T1(α,β,γ) 0.01 0 h23 α 0.005 r y 2 h12 (0,0) (1,0) r P2(x2,y2) 0 2H 1 (0,0) x −0.005 y (a) (b) Figure2:Self-termevaluation.(a)Originalproblem,(b)simplex −0.01 x coordinatestransformation[23]. 0.015 0.01 (b)Overlapping(Self)Elements. Asknownfromthemethod 0.005 of moments, the so-called “self” contributions are of great 0 importance when dealing with calculations on discrete −0.005 elements(meshes). −0.01 0.01 0.02 Here, the self-interaction occurs when two triangles are −0.015 −0.02 −0.01 0 overlapping each other. Due to the behavior of integral −0.03 kernels, only rapidly varying term cos(kr )/r has to be 21 21 carefullytreated.Sincek R → 0(R beingthelongestside Figure 3: Model of MPA above infinite ground plane for H = 0 21 21 ofthetriangleT)issatisfied,oneneedsonlytousethefirst 10mm,dominantmodeTM shown. 01 termintheTaylorseriesexpansion.Thedominantsingular staticpartis1/r andtheintegraltobeworkedoutis 21 4.5 (cid:9) (cid:9) 1 I = (cid:13) (cid:14) (cid:15) dxdydx(cid:4)dy(cid:4), (16) 4 T T(cid:4) (x−x(cid:4))2+ y−y(cid:4) 2 Regular 3.5 behaviour whereT =T(cid:4)isatriangulararea.Usingsimplexcoordinates Hz) 3 transforma(cid:16)tion(Figure2),theresultis[23,24] (cid:17) f (Gres 2.5 Min. fres I=−4A2 ln(1−2h12/L)+ln(1−2h13/L)+ln(1−2h23/L) , 2 Min. Q 3 h h h 12 13 23 1.5 (17) 1 where A is the triangle area, hij are the edge lengths (see 0 5 10 15 20 25 30 35 40 45 50 55 60 Figure2),andListheperimeterofthetriangle. H (mm) fr (TCM) 4.Applications:RectangularPatchAntenna fr (analytic equation) Let us first concentrate on a rectangular patch antenna of Figure 4: R50 × 30 resonant frequency of the dominant TM01 dimensionsL = 50mmandW = 30mm(furthernotedas mode.Thedashedredcurveisaquasianalyticalequationfrom[1]. R50×30)placedinairataheightHaboveaninfiniteground plane. Only the dominant TM mode will be studied. The 01 reasonforchoosingapatchwithL/W=/ 1isthatwedonot H/λ < 0.08),theresonantfrequencydecreases“regularly,” res havetodealwithdegeneratedmodes. and quasianalytical formulas (see, e.g., [1, 3]) based on Using the image theory, the radiator in the XY plane the fringing field concept are valid below this range. For at height z = H above an infinite electric ground plane is H ∼= 25mm (H/λ ∼= 0.188) there is absolute minimum res modelledastwopatchesseparatedby2H.Thetotalnumber of the TM resonant frequency. Further on, the resonant 01 oftriangularelementsis676.IntheTCManalyser,aproper frequency rises to reach its maximum for H ∼= 40mm out-of-phasemodeisselected(Figure3). (H/λ ∼= 0.51). Around this specific height the patch also res Theresonantfrequencyofthedominantmodeisshown showstheminimumoftheradiationQ.Theabovedescribed asafunctionofheightH,seeFigure4.Ithasbeenevaluated process repeats periodically. It is yet unclear to the authors from a modal resonant condition for eigenvalues λ = aswhatisthephysicalbackgroundtotheresonantfrequency 2ω(W(cid:5)m − W(cid:5)e) = 0 employing an adaptive frequency discontinuityaroundH/λres∼=0.5. sweep for each height. The behaviour is quite peculiar, The terms 2ωW(cid:5)m,2ωW(cid:5)e, and 2ω(W(cid:5)m − W(cid:5)e) obtained especiallyforgreaterheights.Forlowheights(H <10mmor from (5)–(9) and eigenvalues λ are plotted at Figure5 for 4 InternationalJournalofAntennasandPropagation 20 anapproximateanalyticalsolutionisavailableandin[25]we showedthattheQisledbythefunction 15 es 10 fQ(H)∼= k2H−2sHin(k2H). (18) gi ner fres Afterderiving(18),theconditionisworked-out ctive e 5 tan(k2H)=k2H, (19) a e 0 R and the first nontrivial root of (19) could be approximated as[25] −5 (cid:7) (cid:8) H =∼ 3 − 1 =0.358. (20) −10 λ 8 6π2 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 min f (GHz) Forsinusoidalcurrentsondipolestheminimum(evaluated numerically)occursforH =0.36λ. λ 2ω(We) The minimum of the patch under study is obtained at 2ω(Wm) 2ω(Wm-We) H ∼= 0.4λ, a value that is remarkably close to the simple Figure5:ReactiveenergiesandtheirdifferencesforanR50×30 dipolemodel. patchatheightof25mm. 4.1. Algorithm Convergence. Since no other methods for calculatingmodalQareavailable,Q istakenasareference, eig 50 andtherelativeerrorpercentageisdefinedas: 45 (cid:12) (cid:12) (cid:12) (cid:12) 40 (cid:12)QJ −Qeig(cid:12) relativeerror= ·100, (21) 35 Q eig 30 –) where QJ is calculated from the currents using (11). Four Q ( 25 different heights H were chosen, H = 1mm (0.01λ), H = 20 2mm (0.0185λ), H = 10mm (0.0803λ), and H = 20mm 15 (0.151λ),andtherelativeerrorwasevaluatedasafunctionof 10 totaltriangularelements(includingthemirror),seeFigure7. 5 Allqualityfactorswereevaluatedattheresonantfrequency 0 ofthedominantmodefortheR50×30patch.Asdiscussed 0 5 10 15 20 25 30 35 40 45 50 55 60 earlier,thecentroidapproximationbecamemoreinaccurate H(mm) with low heights H. However, even for the lowest analyzed Q value H = 0.01λ, the relative error is in the order of eig Q a few percent for reasonable mesh density (hundreds of J elements).Furtherimprovementstotheintegrationroutine Figure6:TheradiationQfordominantmodeofanR50×30patch areconsideredforthefuture. asafunctionofheightH. 4.2.FractionalBandwidthoftheR50×30PatchAntenna. It is known that the fractional bandwidth (FBW) is related to H = 25mm as a function of frequency. There is excellent theunloadedQfactorandthedesiredmatchingVSWRlevel. agreementbetweenthedifferenceinstoredenergiesandthe ForVSWR<swehave[26] eigeTnvhaelrueeiss,balostohvoebrytaginoeoddiangareceommepnltetbeelytwdeieffnertehnetemxaanctnQerJ. FBW∼= sQ−√1s [%]. (22) and Q confirming the validity of the proposed algorithm eig via(14),seeFigure6.NotethatQ in(10)doesnotrequire Using a full-wave simulator CST-MWS [27], an R50 × 30 eig the currents to be calculated on the structure while QJ is patchhasbeensimulatedandtheFBWCSTforVSWR<2was evaluatedinarigorouswayfrommodalcurrents(11). calculatedas: From Figure6 it is seen that the radiation Q has a f − f minimumforaspecificheight.Itisdeducedthatthereason FBWCST= 2 f 1, (23) liesinthecancellingoftheradiatedpowerbetweenthetwo 0 out-of-phasecurrents.Similarbehaviourhasbeenobserved where f and f are margins for VSWR < 2 and f is 2 1 0 inthecaseoftwohalf-wavethin-wiredipoleswithopposite the centre frequency. Only very low heights were studied sinusoidalcurrents,separatedbyd=2H,see[25]fordetails. since we used a simple probe feed which introduces an Actuallythesetwoout-of-phasedipolesmayserveasavery inductance component to the total input impedance. The simple model for a patch antenna with a dominant mode. comparison in Figure8 shows good agreement of both Whenthedipolesarereducedtoelementary(Hertzian)ones, fractionalbandwidths.
Description: