ebook img

Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time PDF

34 Pages·2015·3.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time

RESEARCHARTICLE Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea ClaudioStalder1*,AgostinaVertino2,AntoniettaRosso3,AndresRüggeberg1, ClaudiusPirkenseer1,JorgeE.Spangenberg4,SilviaSpezzaferri1,OsvaldoCamozzi1, SachaRappo1,IrkaHajdas5 1 DepartmentofGeosciences,UniversityofFribourg,Fribourg,Switzerland,2 DepartmentofEarthand EnvironmentalSciences,UniversityofMilano-Bicocca,Milano,Italy,3 DepartmentofBiological,Geological andEnvironmentalSciences,UniversityofCatania,Catania,Italy,4 InstituteofEarthSurfaceDynamics, UniversityofLausanne,Lausanne,Switzerland,5 IonBeamPhysics,EidgenössischeTechnische HochschuleETHZürich,Zürich,Switzerland *[email protected] Abstract OPENACCESS Cold-watercoral(CWC)ecosystemsoccurworldwideandplayamajorroleintheocean's Citation:StalderC,VertinoA,RossoA,Rüggeberg carbonatebudgetandatmosphericCO balancesincetheDanian(~65m.y.ago).However 2 A,PirkenseerC,SpangenbergJE,etal.(2015) theirtemporalandspatialevolutionagainstclimaticandoceanographicvariabilityisstill Microfossils,aKeytoUnravelCold-WaterCarbonate MoundEvolutionthroughTime:Evidencefromthe unclear.Forthefirsttime,wecombinethemainmacrofaunalcomponentsofasedimentcore EasternAlboranSea.PLoSONE10(10):e0140223. fromaCWCmoundoftheMelillaMoundsFieldintheEasternAlboranSeawiththeassoci- doi:10.1371/journal.pone.0140223 atedmicrofaunaandwehighlighttheimportanceofforaminiferaandostracodsasindicators Editor:SigalAbramovich,BenGurionUniversityof ofCWCmoundevolutioninthepaleorecord.Abundancesofmacrofaunaalongthecore theNegev,ISRAEL revealalternatingperiodsdominatedbydistinctCWCtaxa(mostlyLopheliapertusa,Madre- Received:June8,2015 poraoculata)thatcorrespondtomajorshiftsinforaminiferalandostracodassemblages.The Accepted:September23,2015 perioddominatedbyM.oculatacoincideswithaperiodcharacterizedbyincreasedexportof refractoryorganicmattertotheseafloorandratherunstableoceanographicconditionsatthe Published:October8,2015 benthicboundarylayerwithperiodicallydecreasedwaterenergyandoxygenation,variable Copyright:©2015Stalderetal.Thisisanopen bottomwatertemperature/densityandincreasedsedimentflow.Themicrofaunalandgeo- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits chemicaldatastronglysuggestthatM.oculataandinparticularDendrophylliidaeshowa unrestricteduse,distribution,andreproductioninany highertolerancetoenvironmentalchangesthanL.pertusa.Finally,weshowevidencefor medium,providedtheoriginalauthorandsourceare sustainedCWCgrowthduringtheAlleröd-Younger-DryasintheEasternAlboranSeaand credited. thatthisperiodcorrespondstostablebenthicconditionswithcold/denseandwelloxygenated DataAvailabilityStatement:Allrelevantdataare bottomwaters,highfluxesoflabileorganicmatterandrelativelystrongbottomcurrents withinthepaperanditsSupportingInformationfiles. Funding:ThisworkwasfundedbytheSwiss NationalScienceFoundationwithgrants 200020_153125and200020_131829forCS(http:// Introduction www.snf.ch/fr/Pages/default.aspx).Thefundershad noroleinstudydesign,datacollectionandanalysis, Althoughcold-watercorals(CWCs)areknownsincecenturies,theybecameamajorresearch decisiontopublish,orpreparationofthemanuscript. "hot"topiconlyinthelasttwodecades.Extensivestudies(e.g.,[1,2,3])havehelpedtoconstrain theirgeographicaldistributionandtheiroccurrenceonthegeologicaltimescalebutstilllittleis CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. knownabouttheeffectsthatenvironmentalchangeshaveonCWCmounddevelopment. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 1/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Frame-buildingCWCspeciessettlemainlyonhardtopographichighs(e.g.,[1,3–6]),subverti- calwallsandoverhangs[6–8]wherearelativelystronghydrographicregimepreventscorals fromsedimentsmothering[9]andprovidethemwithfood(e.g.,[10,11]).Recently,aquarium culturesoflivingCWCspeciescollectedfromtheNorthAtlanticandtheMediterraneanSea andtheirδ13Candδ15NvaluesfromcoraltissueshaverevealedthatCWCsareabletofeedon awiderangeoffoodsourcesincludingfreshmacrozooplankton,fecalpellets,degradedphyto- detritus,dissolvedorganicmatterandbacteria(e.g.,[11–14]). Comprehensivestudies(e.g.,[1,15,16])havedemonstratedthatthedistributionofCWCsis largelydrivenbythechemo-physicalpropertiesofthesurroundingwatermasswhere,temper- atures,salinitiesanddissolvedoxygencontentsusuallyrangewithin4–14°C,31.7–38.8and 2.6–7.2mll-1,respectively.Large-scalewatermassescharacterizationsinactiveCWCsettings fromtheCelticandNorwegianshelvesanddistributedoverawidebathymetricrange(140– 850mwaterdepth)haveshownthatlivingcoralsthrivewithinawaterdensitygradientof sigma-theta(σθ)=27.35to27.65kgm-3[17].IntheMediterraneanSea,livingCWCcolonies havebeenfoundinwaterdensitiesof(σθ)=29.07to29.13kgm-3[7]. TheinterpretationofCWCpaleorecordsisusuallydifficultbecauseofthelargefluctuations inthesedimentationratesandthefrequenthiatusescausedbystrongbottomcurrents(e.g., [18,19]).Furthermore,inmostcasesCWCsedimentsconsistentirelyofbiogenicfragmentsof differentsizeandpreservationthatcomplicatesthepaleo-environmentalinterpretationofthe sedimentaryrecordandspecificattributiontoepisodesofCWCgrowth,totemporarygrowth interruptionsortothedemiseoftheCWCreef/moundinthepast.Nevertheless,itisessential tounderstandtheresponseoffossilCWCtoclimateandoceanographicchangestopredict theirfutureandtoevaluatehowmuchtheirexistencewillinfluencethetotalcarbonatebudget andtheatmosphericCO onEarth[20]. 2 Duringthelasttwodecades,onlyfewstudiesonlive(stained)anddead(fossil)benthicfora- miniferaandostracodsassociatedtoCWCecosystemshavebeenreportedfromtheNorwegian shelf[21–25],thePorcupineSeabightandRockallTrough[26–30],theGulfofCadizandthe AlboranSea[31,32],theIonianSea[33],theTuscanArchipelago[34]andNovaScotia[35]. Severalofthosestudies(e.g.,[24,27,29])allowedgainingfurthercomprehensiononthedistri- butionofspecifictaxaaccordingtosedimentaryfaciesandmicrohabitatsalongCWCmounds andreefs.FreiwaldandSchönfeld[22]showedevidenceforpredationofHyrrokinsarcophaga onliveCWCpolypswhereasMargrethetal.[27]proposedtheepibenthicspeciesDiscanoma- linacoronataasapotentialbioindicatorforlivingCWCreefs. Comparedtostudiesonmicroorganisms(foraminiferaandostracods),onlyfewofnumer- ousstudiesonlivemacro-andmeiofaunafromCWCsettingsfocusedonthefossildistribution (e.g.,[36,33,37]).Boththeskeletonisedbenthicmicroandmacrofaunastudiesassociatedto CWCshaveclearlyshownthatforaminifera,ostracodsandmacrofaunamayprovideapower- fulpaleoproxytounderstandlateralvariabilityandevolutionofCWCdevelopmentthrough time(e.g.,[25–27,33,36]). Weintegratestudiesonrecentbenthicmacro-andmicrofaunafromaCWCmoundofthe easternAlboranSeaandtheirabundanceduringthelast13ka,withspecialemphasisonscler- actinians,bryozoans,foraminiferansandostracodstorelatetheirevolutionthroughtimeand theirresponsetopaleoceanographymodifications.Forthefirsttimewehavecross-correlated bioticandgeochemicalproxiestointerprettheevolutionofaCWCmound. GeologicalandOceanographicSettings TheAlboranSeainthewesternMediterraneanSeaisa~400kmlongand~200kmwidebasin withwaterdepthsnotexceeding2000m(Fig1)thatexhibitsacomplexseafloormorphology PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 2/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 3/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig1.A.Mapshowingthemajorstudyareasoflive(stained)anddead(fossil)benthicforaminiferaandostracodsassociatedtocold-watercoral ecosystems:theNorwegianshelf[21–25],thePorcupineSeabightandRockallTrough[26–30],NovaScotia[35],theGulfofCadizandAlboran Sea[31,32],theIonianSea[33]andtheTuscanArchipelago[34].B.BathymetricmapoftheAlboranSeashowingthesurface-watercirculation withtheeastern(EAG)andwesternAlborangyres(WAG),theAlboranRidge(AR)andtheSouthAlboranBasin(SAB).Theredstarshowsthe locationofcoreTTR17-401G(251mwaterdepth)andthegreenstarsthelocationandwaterdepthsofadjacentcoresdiscussedinthisstudy:1,KS8230 (795m);2,TTR12-293G(1840m);3,GeoB13731-1(362m);4,TTR17-MS419G(410m);5,TTR17-MS411G(370m);6,MD95-2043(1841m).Thedashed areasindicatethelocationandwaterdepthofcold-watercoralsamplesfromtheAlboranSeadatedwith14CandU/Th(<20kaBP):A,MelillaMoundsField [42];B,NWCabliersBank[43]andC,SEIberianMargin[44] doi:10.1371/journal.pone.0140223.g001 withseveralsub-basins,ridgesandseamounts[38].OurstudyareaislocatedintheSouth AlboranBasin(SAB),whichisaNW-SEtrendingtectonicallycontrolledbasinboundingthe southernflankoftheAlboranRidge[39].ItsformationstartedinthelateCretaceousasacon- sequenceofcrustalextensioninasettingofoverallconvergenceoftheAfricanandEurasian plates[40].ThisNorth-SouthconvergencewasreactivatedinthelatestTortonian[41].After post-Messiniantimes,activecompressionalstructuressuchastheAlboranRidge(Fig1)or strike-slipfaultssuchastheNektorfaultwereproduced[39]. TheMelillaMoundsField(MMF)islocatedinthesoutheasternAlboranSea(westernMed- iterraneanSea)southeasttotheCapeTresForcas(Fig1).Thesubmarinemorphologyofthe MMFischaracterizedbycarbonatemounds(Fig1),whichcoverasurfaceof~100km2within awaterdepthrangeof250–600m[45].SimilarlytothemoundsinthenorthAtlantic,the moundsoftheMMFformelongatedanddomedbiogeniccarbonatebuildupswithadiameter rangingfrom48mto476m,upto100mhighabovetheseafloor,displayingamaximum lengthof3000mandmostlyburiedbya1–12mthickfine-grainedsedimentarycover[42,45]. RadiocarbondatingsuggeststhattheCWCsoftheMMFstartedtodevelopduringthelate Pleistoceneonunconformitiesandlandslides[42].Basedonvideosurvey,onlyafewliving CWCcoloniesstilloccurintheMMFnowadays[46]. Fromanoceanographicpointofview,theAlboranSeabasinisapeculiarbasinstrongly influencedbywaterexchangebetweentheAtlanticOceanandtheMediterraneanSea.Three mainwatermassescharacterizethemodernwatermassconfigurationintheAlboranSea.The upper~150–200mofthewatercolumnareoccupiedbyModifiedAtlanticWater(MAW) (salinity=~36.2g/kg,T=~15°C)flowingfromtheAtlanticOceanthroughtheStraitof GibraltartowardstheAlgerianBasin[47,48].TheMAWistransformedintheeasternMediter- raneanSeabetweenRhodesandCyprusintotheLevantineIntermediateWater(LIW)[47,49]. Itoccursinwaterdepthsof200–600m,withasalinityof~38.4g/kgandameantemperature of~13.3°C[47].TheWesternMediterraneanDeep-Water(WMDW;salinity=~38.4g/kg,T= ~12.8°C),formedintheGulfofLions(SEFrance)flowsbelowtheLIWinthedeepestpartof theAlboranBasin[47,50].TheWMDWflowstowardstheAtlanticOceanandistopographi- callyforcedtoshoalat~300mwaterdepthwhenpassingthesillofGibraltar[51].TheMedi- terraneanOutflowWater(MOW),whichflowsintotheAtlanticOceanalongtheIberian margin,iscomposedofLIWandWMDW[52]. IntheAlboranSea,theinflowingMAWformstwoanticyclonicgyresof~100kmindiame- ter:theWesternAlboranGyre(WAG)andtheEasternAlboranGyre(EAG)(Fig1)[53].The twogyresareroughlysituatedoverthewesternandeasternAlboranbasinswithrespective maximumdepthsof1200and1800m.BothareseparatedfromeachotherbytheAlboran Ridge[54].TheWAGandEAGdonothaveverystablepositionsorbehavioursgiventhe strongseasonalvariationsinthesurfacecirculationoftheSAB[55].Insummer,bothgyresare ratherconstant,butduringwintertheWAGoftenmigrateseastwardsandtheEAGevendisap- pearsduetohigherMAWinflowandMOWoutflow.Furthermore,strongerwesterlywinds [56]developajetalongtheAfricancoastinsteadofthegyre[54]. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 4/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution ThemodernAlboranSeaisgenerallyoligotrophicwiththeexceptionoftwoareasofhigh primaryproductivity[57].ThefirstareaissituatedonthenorthernlimboftheWAG,where westerlywindscausetheupwellingofnutrient-richsubsurfacewatersandleadtoproduction ratesofupto200gCm-2yr-1[58,59].Thesecondelevatedprimaryproductivitycentreis locatedalongtheAlmeria-OranFrontandistriggeredbythedensitycontrastbetweenMAW andresidentMediterraneansurfacewaterwithincreasedsalinity[57,60]. MaterialandMethods The560cmlongsedimentcore401GwasrecoveredintheMelillaMoundsField(MMF)ata waterdepthof251m(35°19.273'N,02°34.001'W)(Fig1)duringtheTraining-Through- ResearchTTR17cruisein2008[61].Itconsistsofalternatinglayersofclayeytosandymud bearingCWCfragmentsupto10cmlongandotherbenthicmacrofaunalcomponents.The gravitycorewassampledeach20cmforgeochemicalandmicropaleontologicalinvestigations. Sampleswereprocessedfollowingstandardproceduresforforaminiferalpreparation(see [62,63]).Approximately10gofdrybulksedimentpersamplewaswashedthroughthreemesh sieves(63,125and250μm)andatleast200specimensperfractionwerecountedandgluedon plummer-cellsforarchive.Iftheresiduecontainedmorethanthetargetnumberof300benthic foraminiferainasinglefraction,itsvolumewassplitwithadrysplitter.Iftheresiduecontained lessthan300specimens,allspecimenswerecounted.Wedecidedtofocusonspecimenslarger than125μm(S1Table)toexcludesmallerforms,whichareoftendisplacedbyredeposition [64],andtomakethedatacomparabletootherbenthicforaminiferalstudiesinadjacentareas (e.g.,[65–68]).Theplanktonicforaminiferaandostracodswereidentifiedonthe fraction>250μmfollowingsimilarprocedures(S2andS3Tables).Theplanktonictobenthic (P/B)ratiohasbeencalculatedbasedonthe>250μmsizefractiontoavoidoverestimationof theratioduetotheredepositionofsmallerspecimens. QuantitativeanalysesofbenthicforaminiferawereperformedwiththeSoftwarePRIMER6 [69].Thedatasetwasdouble-squareroottransformedtolimitthecontributionofmostabun- dantandubiquitousspecies[70]andtheBray-Curtis(dis)SimilarityTermAnalysiswascalcu- lated[71].ThesamesimilaritymatrixusedforBray-Curtis(dis)similaritieswasusedalsoto obtainthenon-metricMultiDimensionalScaling(nMDS)plot[72]. Allrecognizableentirespecimensandskeletalfragmentslargerthan1mmwerecounted andidentifiedtothelowestpossibletaxonomiclevel(familytospecies,withexceptionofAster- ozoaandDecapodaidentifiedatsubphylumandorderlevel,respectively)(S4–S6Tables). Moreover,duetothesmallsizeofimportantbryozoanspeciesbelongingtoCandidaeandCri- sia,observationsonpresence/absenceofbryozoantaxawereperformedalsoonthe0.5–1mm sedimentgrainfraction. InordertooutlinethemainresultsofthemacrofaunaanalysisinFig2therelativeabun- danceofthetwodominanttaxonomicgroups(Scleractinia,Bryozoa)collectedinthesediment fraction1–10mmarepresented.Twomainsubgroups(“erectrigidCheilostome”and“erect rigidTubuliporina”,Fig2,S5Table)wereselectedamongbryozoans.Theyincludethemost representativespeciesintermsofabundanceandabundancevariationalongthecore. RadiocarbondatingwasperformedattheEidgenössischeTechnischeHochschule(ETH) Zürichusingtheacceleratormassspectrometry(AMS)technique.Fromselectedsamples,ben- thicforaminiferawerepickeduntilatleast5–10mgofpurecarbonatewereobtained.Thespe- ciesDiscanomalinacoronatalivesattachedtoahardsubstrateandisassociatedtotheCWC ecosystem[27]andwaschosenwhereverpossible.Alternatively,theepibenthicforaminifera Cibicideslobatuluswaspicked.Specimenswerecleanedinultrasoundstoremoveeventualcon- tamination.Coralfragments(25–50mg)usedforradiocarbondatingwereselectedaccording PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 5/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig2.Distributionofmainmacrofaunalcomponents,benthicforaminifera,benthicforaminiferaassemblages(BFA)andostracodsincoreTTR17- 401G.ThechronologyofthecoreisbasedonAMS14Cagesofforaminiferaandcoralsandtheplanktonicforaminiferalturnover(PFT),expressedasa maximumage.Therelativeabundanceofcoralsandbryozoansisexpressedaspercentageofthetotalnumberofcountedmacrofaunaspecimensper sample.Therelativeabundanceofallmacrofaunalspecimenspersample(blackdottedline)isexpressedaspercentageofthetotalnumberofcounted specimensinthecore.Therelativetaxonomicrichnesspersample(reddottedline)isexpressedaspercentageofthetotalnumberofmacrofaunataxafound inthecoreanddoesnotincludescleractiniantaxa.Benthicforaminiferalspeciesrichness(SR)isexpressedasthetotalnumberofspeciesfoundineach sample.Thedashedlinesdisplaychangesinthebenthicforaminiferalassemblages. doi:10.1371/journal.pone.0140223.g002 totheirpreservationandfurthertreatedbystandardchemicalleachingprocedures.Table1 summarizesthescleractinianspeciesusedfortheAMS14Cdating.Theyweredissolvedincon- centratedphosphoricacid[73]andtheextractedcarbondioxidewasconvertedintographite asdescribedby[74].Allagesarecorrectedfor13Cand,assumingareservoiragecorrectionof 400years,the14Cageswereconvertedtocalendaryears(cal.yrBP;P=AD1950)usingthe Marine13calibrationcurve[75]andsoftwareOxCalV4.2.4[76].Allagesarereportedaskilo- yearsbeforepresent(kaBP;Table1). ThestableisotopeanalyseswereperformedattheStableIsotopesLaboratoryoftheUniver- sityofLausanne.Carbonandoxygenstableisotopecompositionofbenthic(Cibicideslobatu- lus)andplanktonic(Globigerinabulloides)foraminifera(Table2)weredeterminedwiththe ThermoFisherScientificcarbonatepreparationdeviceandGasBenchIIconnectedtoaDelta PlusXLisotoperatiomassspectrometer(IRMS).Between5and15specimensofeachspecies werepickedinthe>250μmandcleanedtwiceinanultrasonicbath.Thestablecarbonand oxygenisotopicratiosarereportedindelta(δ)notationaspermil(‰)deviationrelativeto ViennaPeeDeeBelemnite(VPDB)standard.Thestandardizationoftheδ13Candδ18Ovalues relativetotheVPDBscalewasdonebycalibrationofthereferencegasandworkingstandards withIAEAstandards.Analyticaluncertainty(1σ),monitoredbyreplicateanalysesofthe PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 6/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Table1. Radiocarbon14Cagesofsediment(benthicforaminifera)andcold-watercorals. Allagesarecorrectedforareservoirageof400years. Core Coredepth Material SampleID] 14C-age 1σerror 2σrangecal.age Medianprobabilityage (cm) (years) (±years) (yearsBP,P=AD1950) (yearsBP) TTR17–401G 0 Fo–Lobatula ETH-55620 1055 28 552–671 611 TTR17–401G 0 CWC–Mo ETH-55621 5073 30 5316–5536 5426 TTR17–401G 80 CWC–Mo ETH-57100 5466 28 5746–5912 5829 TTR17–401G 200 CWC–Mo ETH-57101 10302 35 11168–11483 11326 TTR17–401G 240 CWC–Mo ETH-57102 10476 35 11362–11862 11612 TTR17–401G 260 Fo–Coronata ETH-55622 11146 56 12558–12763 12660 TTR17–401G 260 CWC–Lo ETH-55623 10770 39 12036–12448 12242 TTR17–401G 420 Fo–Coronata ETH-55624 11432 57 12731–13076 12903 TTR17–401G 420 CWC–Lo ETH-55625 11231 39 12610–12824 12717 TTR17–401G 560 Fo–Lobatula ETH-55626 11675 65 12987–13316 13151 TTR17–401G 560 CWC–Lo ETH-55627 11553 40 12880–13166 13023 Fo=Foraminifera;CWC=Cold-watercorals,Mo=Madreporaoculata,Lo=Lopheliapertusa doi:10.1371/journal.pone.0140223.t001 internationalcalcitestandardNBS-19andthelaboratorystandardsCarraraMarblewasnot greaterthan±0.05‰forδ13Cand±0.1‰forδ18O.Stablecarbonisotopecompositionofthe organiccarbon(δ13C )wasdeterminedbyflashcombustiononaCarloErba1108elemental org analyzer(EA)connectedtoaThermoFisherScientificDeltaVIRMSthatwasoperatedinthe continuousheliumflowmodeviaaConfloIIIsplitinterface(Table2).Thereproducibilityof theEA-IRMSmeasurementisbetterthan±0.1%.Theaccuracyofanalyseswasassessedusing internationalreferencestandards. Totalorganiccarbon(TOC)content(inweight%)wasdeterminedatthelaboratoryofSedi- mentGeochemistryattheUniversityofLausanneonabout100mgbulksedimentusingthe Rock-Eval6technologyandfollowingthestandardrockpyrolysis[77,78].TheHydrogenIndex (HI),expressedinmgHC/gTOC,displaysthetotalamountofpyrolyzedhydrocarbonsresult- ingfromthecrackingofnon-volatileorganicmatter(HI=S x100/TOC)andtheOxygen 2 Index(OI,inmgCO /gTOC)whichaccountsfortheamountofCO generatedduringthe 2 2 pyrolysisofthekerogen(OI=S x100/TOC),bothnormalizedtoTOC.Additionalparameter 3 providedbytheRock-Eval6istheMineralCarbon(MINC),whichrepresentsthepercentage ofcarbonderivedfrominorganicsources.AllRock-EvaldataaregiveninTable2. Results Chronology Thechronologyofthecoresisconstraintby7AMS14CdatingonCWCfragmentsand4on benthicforaminiferacoupledtothedistributionofplanktonicforaminifera(Fig2,Table1). DiscrepanciesbetweencoralandbenthicforaminiferaagesareacommonfeatureinCWC mounds(e.g.,[19,26,42]).Coralagesindicatethetimeswhentheorganismslivedwhileages frombenthicforaminiferarepresentthesedimentationhistoryoftheCWCmound.However, bothcanbeusedforpaleoceanographiccomparisonsbutinterpretationsshouldberelatedto theorganism.TheradiocarbondatingrevealsthatcoreTTR17-401Gcoversthetimespan0.6– 13.1kaBP,thusreachingbacktothetransitionfromtheAllerödinterstadialtotheYounger- Dryas(YD)coldevent(12.9–11.5kaBP).Thecalculatedlinearsedimentationrates(LSR)indi- catethatthesedimentationwasshiftingbetweenextremevaluesof611cm/kafromthebaseto 260cm,and20.55cm/kafrom260cmtothetopofthecore. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 7/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Table2. GeochemicaldataofcoreTTR17-401G. Areshowntotalorganiccarbon(TOC),mineralcarbon(MINC),hydrogenindex(HI),oxygenindex(OI), planktonic(Globigerinabulloides)andbenthic(Cibicideslobatulus)δ18Oandδ13C,δ13C andgrain-sizedistribution. org Rock-Evalpyrolysis Stableisotopes(‰VPDB) Grain-size(%) Depth TOC MINC HI OI δ13C δ13C δ18O δ13C δ18O >250μm 250– 125– <63μm org lobatula lobatula bulloides bulloides (cm) [% [%wt.] [mg [mg 125μm 63μm wt.] HC/g CO /g 2 TOC] TOC] 0 0.7 5.76 99 278 -22.2 0.1 1.3 -0.8 0.6 58.29 1.11 0.68 39.91 20 1.07 3.71 102 212 -21.8 0.9 1.4 -1.1 0.8 15.61 0.33 0.92 83.14 40 0.98 3.8 84 211 -22.2 0.4 0.9 -0.5 0.8 14.05 0.83 1.83 83.3 60 0.86 5.34 90 224 -21.7 0.4 1.1 -1.2 0.6 50.58 0.41 1.49 47.52 80 1.03 3.74 95 224 -21.7 0.9 1.1 -0.6 0.9 14.55 0.61 2.42 82.41 100 1.14 3.95 90 191 -21.4 0.2 1.1 -0.5 0.9 31.77 0.87 0.77 66.59 120 1.05 3.73 98 221 -21.6 0.9 1.6 -0.7 1 14.52 0.98 1.09 83.41 140 0.93 4.52 92 213 -22 1 1.6 -0.5 0.9 45.58 0.92 0.5 53 160 0.98 3.23 82 220 -21.9 0.1 1.6 -1.1 0.7 1.28 0.46 0.74 97.52 180 0.97 3.43 86 219 -21.9 0.6 1.5 -1.1 0.6 41.42 0.79 1.8 55.99 200 0.87 5.11 78 202 -21.9 0.3 1.2 -1.4 0.4 38.87 0.92 3.72 56.5 220 0.95 4.35 102 195 -21.3 0.4 2.5 1.3 1.5 5.92 1.43 2.89 89.76 240 0.98 4.26 119 180 -21.1 1.2 2.5 0.6 2.3 42.82 0.73 5.25 51.19 260 0.71 7.03 112 243 -20.7 0.9 2.5 0.1 2.5 67.92 0.92 3.36 27.8 280 0.87 5.97 110 183 -20.8 0.9 2.7 0 2.2 54.34 1.28 2.01 42.37 300 0.8 6.7 105 220 -21.1 0.9 2.7 0.3 2.5 53.58 1.07 2.39 42.96 320 1.11 4.79 131 168 -21.2 1.1 2.9 -0.6 2.3 25.25 1.04 3.47 70.24 340 0.82 5.5 136 225 -21.3 0.8 2.6 0.4 2.5 48.8 1.19 2.59 47.41 360 0.92 5.51 119 186 -21.1 1 2.7 -0.7 1.7 25.66 2.96 5.36 66.02 380 0.85 4.83 124 187 -20.8 0.8 2.7 -0.5 2.6 12.53 2.93 10.03 74.51 400 0.99 4.71 112 179 -21.2 1 2.9 0.1 2.4 6.96 2.87 8.48 81.69 420 0.58 6.3 96 239 -21 0.8 2.6 -0.6 1.3 23.69 5.78 12.13 58.4 440 0.88 4.43 111 178 -21.4 0.9 2.8 -0.7 2.2 8.85 0.82 3.68 86.65 460 0.99 4.3 115 182 -21 1 2.7 0.5 2.6 15.49 1.18 2.65 80.67 480 0.96 4.09 119 177 -21 1.1 2.7 0.2 2.6 6.59 1.39 2.85 89.18 500 1.06 4.28 132 171 -21.2 0.7 2.8 -0.8 2.4 8.51 0.5 2.36 88.63 520 1 4.24 159 186 -21.2 0.2 2.6 -1 2.3 1.8 0.68 2.48 95.04 540 0.94 4.69 127 164 -21.5 -0.3 2.5 -1.1 1.8 2.7 0.84 2.95 93.51 560 0.68 5.79 117 199 -21 0.7 2.4 -1.1 1.9 4.97 1.31 5.5 88.23 doi:10.1371/journal.pone.0140223.t002 ThedatedCWCfragmentsyieldagesrangingfrom5.4atthetopofthecoreto13kaatits base(Fig2).Apparently,theCWCsstoppedgrowing5.4kaatthecoretop,whichhasasedi- mentageof0.6ka.Thisindicatesthepresenceofahiatusclosetothecoretopwithpossible erosionofsediments.Becauseoftheagedifferencesbetweencoralsandsediments,thesedi- mentrecordofcoreTTR17-401Gwillthereforebeexpressedinallfiguresversuscoredepth andnotversusage. Thedistributionofplanktonicforaminiferainthecoreshowstheoccurrenceoftwomajor intervals,thefirstlastingfrom560to200cmanddominatedbyNeogloboquadrinaincompta andthesecondfrom200cmtothetopanddominatedbyGloborotaliainflata(Figs2and3). Thisplanktonicforaminiferalturnover(PFT)hasbeenwelldescribedintheAlboranSeaby Rohlingetal.[79]andassumedtohaveoccurredaround8kaBP.Aroundthiscoredepth PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 8/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig3.Multi-proxyrecordfromcoreTTR17-401G.Aredisplayedthelithologywithmainmacrofaunalcomponents,radiocarbonagesofsediment (foraminifera),grain-sizedistribution(<63μm),totalorganiccarbon(TOC),δ13C ,δ13Candδ18Oofbenthicandplanktonicforaminifera.Benthic org foraminiferalassemblages(BFA)areshownaccordingtotheleveloftheBray-CurtiesSimilarity:BFAniandBFAgi(39%)andBFA1-BFA4(54%).Dashed lineindicatestheturnoverintheplanktonicforaminiferalassemblage(PFA)atca.8kaBP[79].Freshwaterpulses1–4correspondtopossiblefreshening eventsofthe(sub-)surfacewaters. doi:10.1371/journal.pone.0140223.g003 anotherhiatusoccurredasindicatedbythedifferentagesbetweensediment(8ka)andcorals (~11ka)(Fig2). Stablecarbonandoxygenisotopesinforaminifera Theplanktonicδ18Ovaluesdecreasetowardsthetopofthecoreandrangebetween0.4and 2.6‰(Fig3,Table2).IntheN.incomptadominatedinterval,theplanktonicδ18Ovalues(1.3– 2.6‰)arehigherthanduringtheG.inflatainterval(0.4–1‰).IntheintervaldominatedbyN. incompta,theplanktonicδ18Ovaluesvarybetween2.2and2.6‰,exceptforsamples540–560, 420,360and220cmshowingrelativelylargenegativeexcursionsof1.9,1.8,1.3,1.7and1.5‰ respectively(Fig3,Table2). Thebenthicδ18Ocurveshowsasimilarpatternastheplanktonicδ18Ocurvewithhigher valuesof2.4–2.9‰intheintervaldominatedbyN.incomptacomparedtolowervaluesinthe G.inflatainterval(0.9–1.6‰)(Fig3,Table2).Highestvaluesof2.9‰arereachedduringthe earlyYD(12.6–12.9kaBP).IntheG.inflataintervalbenthicδ18Ovaluesshowadecreasein twosteps,onefrom120–200cm(1.2–1.6‰)andanotheronefrom40–100cm(0.9–1.1‰)fol- lowedbyanincreaseinthelast20cm(1.3–1.4‰)(Fig3).Therelativelylargenegativeexcur- sionsobservedintheplanktonicδ18Ovaluescoincidewithdecreasesinthebenthicδ18O,from PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 9/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution whichthemostprominentoccursatthetransitionfromtheintervaldominatedbyN.incompta toG.inflatawithadecreaseof-1.1‰intheplanktonicand-1.3‰inthebenthicδ18O. Theplanktonicandbenthicδ13Cdisplayvaluesrangingfrom-1.4to1.3‰and-0.3to1.2‰ respectivelyandshowroughlyasimilarevolutionthroughoutthecore.Thehighestplanktonic δ13Cvaluewasmeasuredintheinterval220–480cmwherethevaluesaregenerallyofamagni- tudehigherthanfortheloweranduppersamples(Fig3).At200cm,theplanktonicδ13C decreaseof-2.7‰coincideswiththetransitionfromtheN.incomptatotheG.inflatainterval (Fig3).Similarly,higherbenthicδ13Cweremeasuredfrom480cmto240cm,wherevalues dropfrom1.2to0.4‰,thusslightlybeforetheplanktonicδ13C(Fig3).Theinterval240–480 cmischaracterizedbyextremelystablebenthicδ13Csignalcomparedtomeasuredinthelower andupperpartsofthecore. Sedimentcharacterization:Rock-Evalpyrolysisandstablecarbon isotopesofTOC TheTotalOrganicCarbonshowsvaluesrangingfrom0.58–1.14%(Fig3,Table2).TOCvalues tendtodecreasefromthebaseto260cmwiththreemarkedminimaat560,420and260cm (Fig3).TOCvaluesincreasefrom240cmtoamaximumof1.14%at100cmbeforedecreasing againintheuppermostpartofthecore(Fig3).TheTOCcontentdisplaysapositivecorrelation tothemudfraction(Fig3). TheMineralCarboncontentishigher(4.71–7.03%)intheinterval260–420cmcompared totheintervals440–560cm(4.09–5.79%)and0–240cm(3.23–5.76%).TheMINCshowsarel- ativelystrongnegativecorrelationtotheP/Bratio(Fig4). TheHydrogenandOxygenIndexvaryfrom78–158mgHC/gTOCand164–278mgCO /g 2 TOCrespectively(Fig5;Table2).ArelativelycleartrendcanberecognizedwithhigherHI andlowerOIintheintervaldominatedbyN.incomptaandlowerHIandhigherOIinthe intervaldominatedbyG.inflata(Fig5;Table2).Thevaluesofδ13C rangefrom-22.2‰(0 org cm)to-20.7‰(260cm).Theδ13C followsasimilartrendastheHIwithhighervalues org (-21.5–-20.7‰)intheN.incomptaintervalandlowervalues(-22.2–-21.4‰)intheG.inflata interval(Fig3,Table2).Highestδ13C valuesaremeasuredwithininterval260–420cm(Fig org 3).Theδ13C signalfollowswelltheplanktonicδ18Oandδ13Csignalwithmarkedminimaat org 540,440,340and200cm. Micropaleontology CoreTTR17-401Gischaracterizedbyaconspicuousdistributionofthelarge(>250μm) planktonicandbenthicforaminifera(S1andS2Tables).Thetargetvalueof200benthicspeci- mensperfractioncouldbereachedonlyinthesamplesfrom260–420cmwheremostofthe samplesweresplit.Inallothersamples,allspecimensoftheresiduewerecountedandamini- mumwasobtainedat500cm(8specimens)andamaximumat540cm(110specimens).The planktonicforaminiferashowedanoppositetrendwithlowestscores(71–202specimens) between220and520cmandthetargetvaluereachedonlyat380cm(S2Table).Theplank- tonicforaminiferacontributiontothetotalforaminiferafaunaiswelldocumentedintheP/B ratio(Fig4). Benthicforaminifera–univariatedistribution Intotal,138benthicforaminiferaspecies(unstained)belongingto84generahavebeenidenti- fiedincoreTTR17-401G(S1Table).Speciesrichness(SR)variesfrom34at500cmto61at 220cm.ThemostcommonspeciesfoundinthiscoreareBuliminaaculeata,Buliminamargin- ata,Cassidulinalaevigata,C.lobatulus,Cibicidesrefulgens,Cibicidesungerianus(groupedas PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 10/34

Description:
Cold-water coral (CWC) ecosystems occur worldwide and play a major role Although cold-water corals (CWCs) are known since centuries, they indicated by the occurrence of moats at their base, visible on seismic profiles [45].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.