RESEARCHARTICLE Microfossils, a Key to Unravel Cold-Water Carbonate Mound Evolution through Time: Evidence from the Eastern Alboran Sea ClaudioStalder1*,AgostinaVertino2,AntoniettaRosso3,AndresRüggeberg1, ClaudiusPirkenseer1,JorgeE.Spangenberg4,SilviaSpezzaferri1,OsvaldoCamozzi1, SachaRappo1,IrkaHajdas5 1 DepartmentofGeosciences,UniversityofFribourg,Fribourg,Switzerland,2 DepartmentofEarthand EnvironmentalSciences,UniversityofMilano-Bicocca,Milano,Italy,3 DepartmentofBiological,Geological andEnvironmentalSciences,UniversityofCatania,Catania,Italy,4 InstituteofEarthSurfaceDynamics, UniversityofLausanne,Lausanne,Switzerland,5 IonBeamPhysics,EidgenössischeTechnische HochschuleETHZürich,Zürich,Switzerland *[email protected] Abstract OPENACCESS Cold-watercoral(CWC)ecosystemsoccurworldwideandplayamajorroleintheocean's Citation:StalderC,VertinoA,RossoA,Rüggeberg carbonatebudgetandatmosphericCO balancesincetheDanian(~65m.y.ago).However 2 A,PirkenseerC,SpangenbergJE,etal.(2015) theirtemporalandspatialevolutionagainstclimaticandoceanographicvariabilityisstill Microfossils,aKeytoUnravelCold-WaterCarbonate MoundEvolutionthroughTime:Evidencefromthe unclear.Forthefirsttime,wecombinethemainmacrofaunalcomponentsofasedimentcore EasternAlboranSea.PLoSONE10(10):e0140223. fromaCWCmoundoftheMelillaMoundsFieldintheEasternAlboranSeawiththeassoci- doi:10.1371/journal.pone.0140223 atedmicrofaunaandwehighlighttheimportanceofforaminiferaandostracodsasindicators Editor:SigalAbramovich,BenGurionUniversityof ofCWCmoundevolutioninthepaleorecord.Abundancesofmacrofaunaalongthecore theNegev,ISRAEL revealalternatingperiodsdominatedbydistinctCWCtaxa(mostlyLopheliapertusa,Madre- Received:June8,2015 poraoculata)thatcorrespondtomajorshiftsinforaminiferalandostracodassemblages.The Accepted:September23,2015 perioddominatedbyM.oculatacoincideswithaperiodcharacterizedbyincreasedexportof refractoryorganicmattertotheseafloorandratherunstableoceanographicconditionsatthe Published:October8,2015 benthicboundarylayerwithperiodicallydecreasedwaterenergyandoxygenation,variable Copyright:©2015Stalderetal.Thisisanopen bottomwatertemperature/densityandincreasedsedimentflow.Themicrofaunalandgeo- accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits chemicaldatastronglysuggestthatM.oculataandinparticularDendrophylliidaeshowa unrestricteduse,distribution,andreproductioninany highertolerancetoenvironmentalchangesthanL.pertusa.Finally,weshowevidencefor medium,providedtheoriginalauthorandsourceare sustainedCWCgrowthduringtheAlleröd-Younger-DryasintheEasternAlboranSeaand credited. thatthisperiodcorrespondstostablebenthicconditionswithcold/denseandwelloxygenated DataAvailabilityStatement:Allrelevantdataare bottomwaters,highfluxesoflabileorganicmatterandrelativelystrongbottomcurrents withinthepaperanditsSupportingInformationfiles. Funding:ThisworkwasfundedbytheSwiss NationalScienceFoundationwithgrants 200020_153125and200020_131829forCS(http:// Introduction www.snf.ch/fr/Pages/default.aspx).Thefundershad noroleinstudydesign,datacollectionandanalysis, Althoughcold-watercorals(CWCs)areknownsincecenturies,theybecameamajorresearch decisiontopublish,orpreparationofthemanuscript. "hot"topiconlyinthelasttwodecades.Extensivestudies(e.g.,[1,2,3])havehelpedtoconstrain theirgeographicaldistributionandtheiroccurrenceonthegeologicaltimescalebutstilllittleis CompetingInterests:Theauthorshavedeclared thatnocompetinginterestsexist. knownabouttheeffectsthatenvironmentalchangeshaveonCWCmounddevelopment. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 1/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Frame-buildingCWCspeciessettlemainlyonhardtopographichighs(e.g.,[1,3–6]),subverti- calwallsandoverhangs[6–8]wherearelativelystronghydrographicregimepreventscorals fromsedimentsmothering[9]andprovidethemwithfood(e.g.,[10,11]).Recently,aquarium culturesoflivingCWCspeciescollectedfromtheNorthAtlanticandtheMediterraneanSea andtheirδ13Candδ15NvaluesfromcoraltissueshaverevealedthatCWCsareabletofeedon awiderangeoffoodsourcesincludingfreshmacrozooplankton,fecalpellets,degradedphyto- detritus,dissolvedorganicmatterandbacteria(e.g.,[11–14]). Comprehensivestudies(e.g.,[1,15,16])havedemonstratedthatthedistributionofCWCsis largelydrivenbythechemo-physicalpropertiesofthesurroundingwatermasswhere,temper- atures,salinitiesanddissolvedoxygencontentsusuallyrangewithin4–14°C,31.7–38.8and 2.6–7.2mll-1,respectively.Large-scalewatermassescharacterizationsinactiveCWCsettings fromtheCelticandNorwegianshelvesanddistributedoverawidebathymetricrange(140– 850mwaterdepth)haveshownthatlivingcoralsthrivewithinawaterdensitygradientof sigma-theta(σθ)=27.35to27.65kgm-3[17].IntheMediterraneanSea,livingCWCcolonies havebeenfoundinwaterdensitiesof(σθ)=29.07to29.13kgm-3[7]. TheinterpretationofCWCpaleorecordsisusuallydifficultbecauseofthelargefluctuations inthesedimentationratesandthefrequenthiatusescausedbystrongbottomcurrents(e.g., [18,19]).Furthermore,inmostcasesCWCsedimentsconsistentirelyofbiogenicfragmentsof differentsizeandpreservationthatcomplicatesthepaleo-environmentalinterpretationofthe sedimentaryrecordandspecificattributiontoepisodesofCWCgrowth,totemporarygrowth interruptionsortothedemiseoftheCWCreef/moundinthepast.Nevertheless,itisessential tounderstandtheresponseoffossilCWCtoclimateandoceanographicchangestopredict theirfutureandtoevaluatehowmuchtheirexistencewillinfluencethetotalcarbonatebudget andtheatmosphericCO onEarth[20]. 2 Duringthelasttwodecades,onlyfewstudiesonlive(stained)anddead(fossil)benthicfora- miniferaandostracodsassociatedtoCWCecosystemshavebeenreportedfromtheNorwegian shelf[21–25],thePorcupineSeabightandRockallTrough[26–30],theGulfofCadizandthe AlboranSea[31,32],theIonianSea[33],theTuscanArchipelago[34]andNovaScotia[35]. Severalofthosestudies(e.g.,[24,27,29])allowedgainingfurthercomprehensiononthedistri- butionofspecifictaxaaccordingtosedimentaryfaciesandmicrohabitatsalongCWCmounds andreefs.FreiwaldandSchönfeld[22]showedevidenceforpredationofHyrrokinsarcophaga onliveCWCpolypswhereasMargrethetal.[27]proposedtheepibenthicspeciesDiscanoma- linacoronataasapotentialbioindicatorforlivingCWCreefs. Comparedtostudiesonmicroorganisms(foraminiferaandostracods),onlyfewofnumer- ousstudiesonlivemacro-andmeiofaunafromCWCsettingsfocusedonthefossildistribution (e.g.,[36,33,37]).Boththeskeletonisedbenthicmicroandmacrofaunastudiesassociatedto CWCshaveclearlyshownthatforaminifera,ostracodsandmacrofaunamayprovideapower- fulpaleoproxytounderstandlateralvariabilityandevolutionofCWCdevelopmentthrough time(e.g.,[25–27,33,36]). Weintegratestudiesonrecentbenthicmacro-andmicrofaunafromaCWCmoundofthe easternAlboranSeaandtheirabundanceduringthelast13ka,withspecialemphasisonscler- actinians,bryozoans,foraminiferansandostracodstorelatetheirevolutionthroughtimeand theirresponsetopaleoceanographymodifications.Forthefirsttimewehavecross-correlated bioticandgeochemicalproxiestointerprettheevolutionofaCWCmound. GeologicalandOceanographicSettings TheAlboranSeainthewesternMediterraneanSeaisa~400kmlongand~200kmwidebasin withwaterdepthsnotexceeding2000m(Fig1)thatexhibitsacomplexseafloormorphology PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 2/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 3/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig1.A.Mapshowingthemajorstudyareasoflive(stained)anddead(fossil)benthicforaminiferaandostracodsassociatedtocold-watercoral ecosystems:theNorwegianshelf[21–25],thePorcupineSeabightandRockallTrough[26–30],NovaScotia[35],theGulfofCadizandAlboran Sea[31,32],theIonianSea[33]andtheTuscanArchipelago[34].B.BathymetricmapoftheAlboranSeashowingthesurface-watercirculation withtheeastern(EAG)andwesternAlborangyres(WAG),theAlboranRidge(AR)andtheSouthAlboranBasin(SAB).Theredstarshowsthe locationofcoreTTR17-401G(251mwaterdepth)andthegreenstarsthelocationandwaterdepthsofadjacentcoresdiscussedinthisstudy:1,KS8230 (795m);2,TTR12-293G(1840m);3,GeoB13731-1(362m);4,TTR17-MS419G(410m);5,TTR17-MS411G(370m);6,MD95-2043(1841m).Thedashed areasindicatethelocationandwaterdepthofcold-watercoralsamplesfromtheAlboranSeadatedwith14CandU/Th(<20kaBP):A,MelillaMoundsField [42];B,NWCabliersBank[43]andC,SEIberianMargin[44] doi:10.1371/journal.pone.0140223.g001 withseveralsub-basins,ridgesandseamounts[38].OurstudyareaislocatedintheSouth AlboranBasin(SAB),whichisaNW-SEtrendingtectonicallycontrolledbasinboundingthe southernflankoftheAlboranRidge[39].ItsformationstartedinthelateCretaceousasacon- sequenceofcrustalextensioninasettingofoverallconvergenceoftheAfricanandEurasian plates[40].ThisNorth-SouthconvergencewasreactivatedinthelatestTortonian[41].After post-Messiniantimes,activecompressionalstructuressuchastheAlboranRidge(Fig1)or strike-slipfaultssuchastheNektorfaultwereproduced[39]. TheMelillaMoundsField(MMF)islocatedinthesoutheasternAlboranSea(westernMed- iterraneanSea)southeasttotheCapeTresForcas(Fig1).Thesubmarinemorphologyofthe MMFischaracterizedbycarbonatemounds(Fig1),whichcoverasurfaceof~100km2within awaterdepthrangeof250–600m[45].SimilarlytothemoundsinthenorthAtlantic,the moundsoftheMMFformelongatedanddomedbiogeniccarbonatebuildupswithadiameter rangingfrom48mto476m,upto100mhighabovetheseafloor,displayingamaximum lengthof3000mandmostlyburiedbya1–12mthickfine-grainedsedimentarycover[42,45]. RadiocarbondatingsuggeststhattheCWCsoftheMMFstartedtodevelopduringthelate Pleistoceneonunconformitiesandlandslides[42].Basedonvideosurvey,onlyafewliving CWCcoloniesstilloccurintheMMFnowadays[46]. Fromanoceanographicpointofview,theAlboranSeabasinisapeculiarbasinstrongly influencedbywaterexchangebetweentheAtlanticOceanandtheMediterraneanSea.Three mainwatermassescharacterizethemodernwatermassconfigurationintheAlboranSea.The upper~150–200mofthewatercolumnareoccupiedbyModifiedAtlanticWater(MAW) (salinity=~36.2g/kg,T=~15°C)flowingfromtheAtlanticOceanthroughtheStraitof GibraltartowardstheAlgerianBasin[47,48].TheMAWistransformedintheeasternMediter- raneanSeabetweenRhodesandCyprusintotheLevantineIntermediateWater(LIW)[47,49]. Itoccursinwaterdepthsof200–600m,withasalinityof~38.4g/kgandameantemperature of~13.3°C[47].TheWesternMediterraneanDeep-Water(WMDW;salinity=~38.4g/kg,T= ~12.8°C),formedintheGulfofLions(SEFrance)flowsbelowtheLIWinthedeepestpartof theAlboranBasin[47,50].TheWMDWflowstowardstheAtlanticOceanandistopographi- callyforcedtoshoalat~300mwaterdepthwhenpassingthesillofGibraltar[51].TheMedi- terraneanOutflowWater(MOW),whichflowsintotheAtlanticOceanalongtheIberian margin,iscomposedofLIWandWMDW[52]. IntheAlboranSea,theinflowingMAWformstwoanticyclonicgyresof~100kmindiame- ter:theWesternAlboranGyre(WAG)andtheEasternAlboranGyre(EAG)(Fig1)[53].The twogyresareroughlysituatedoverthewesternandeasternAlboranbasinswithrespective maximumdepthsof1200and1800m.BothareseparatedfromeachotherbytheAlboran Ridge[54].TheWAGandEAGdonothaveverystablepositionsorbehavioursgiventhe strongseasonalvariationsinthesurfacecirculationoftheSAB[55].Insummer,bothgyresare ratherconstant,butduringwintertheWAGoftenmigrateseastwardsandtheEAGevendisap- pearsduetohigherMAWinflowandMOWoutflow.Furthermore,strongerwesterlywinds [56]developajetalongtheAfricancoastinsteadofthegyre[54]. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 4/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution ThemodernAlboranSeaisgenerallyoligotrophicwiththeexceptionoftwoareasofhigh primaryproductivity[57].ThefirstareaissituatedonthenorthernlimboftheWAG,where westerlywindscausetheupwellingofnutrient-richsubsurfacewatersandleadtoproduction ratesofupto200gCm-2yr-1[58,59].Thesecondelevatedprimaryproductivitycentreis locatedalongtheAlmeria-OranFrontandistriggeredbythedensitycontrastbetweenMAW andresidentMediterraneansurfacewaterwithincreasedsalinity[57,60]. MaterialandMethods The560cmlongsedimentcore401GwasrecoveredintheMelillaMoundsField(MMF)ata waterdepthof251m(35°19.273'N,02°34.001'W)(Fig1)duringtheTraining-Through- ResearchTTR17cruisein2008[61].Itconsistsofalternatinglayersofclayeytosandymud bearingCWCfragmentsupto10cmlongandotherbenthicmacrofaunalcomponents.The gravitycorewassampledeach20cmforgeochemicalandmicropaleontologicalinvestigations. Sampleswereprocessedfollowingstandardproceduresforforaminiferalpreparation(see [62,63]).Approximately10gofdrybulksedimentpersamplewaswashedthroughthreemesh sieves(63,125and250μm)andatleast200specimensperfractionwerecountedandgluedon plummer-cellsforarchive.Iftheresiduecontainedmorethanthetargetnumberof300benthic foraminiferainasinglefraction,itsvolumewassplitwithadrysplitter.Iftheresiduecontained lessthan300specimens,allspecimenswerecounted.Wedecidedtofocusonspecimenslarger than125μm(S1Table)toexcludesmallerforms,whichareoftendisplacedbyredeposition [64],andtomakethedatacomparabletootherbenthicforaminiferalstudiesinadjacentareas (e.g.,[65–68]).Theplanktonicforaminiferaandostracodswereidentifiedonthe fraction>250μmfollowingsimilarprocedures(S2andS3Tables).Theplanktonictobenthic (P/B)ratiohasbeencalculatedbasedonthe>250μmsizefractiontoavoidoverestimationof theratioduetotheredepositionofsmallerspecimens. QuantitativeanalysesofbenthicforaminiferawereperformedwiththeSoftwarePRIMER6 [69].Thedatasetwasdouble-squareroottransformedtolimitthecontributionofmostabun- dantandubiquitousspecies[70]andtheBray-Curtis(dis)SimilarityTermAnalysiswascalcu- lated[71].ThesamesimilaritymatrixusedforBray-Curtis(dis)similaritieswasusedalsoto obtainthenon-metricMultiDimensionalScaling(nMDS)plot[72]. Allrecognizableentirespecimensandskeletalfragmentslargerthan1mmwerecounted andidentifiedtothelowestpossibletaxonomiclevel(familytospecies,withexceptionofAster- ozoaandDecapodaidentifiedatsubphylumandorderlevel,respectively)(S4–S6Tables). Moreover,duetothesmallsizeofimportantbryozoanspeciesbelongingtoCandidaeandCri- sia,observationsonpresence/absenceofbryozoantaxawereperformedalsoonthe0.5–1mm sedimentgrainfraction. InordertooutlinethemainresultsofthemacrofaunaanalysisinFig2therelativeabun- danceofthetwodominanttaxonomicgroups(Scleractinia,Bryozoa)collectedinthesediment fraction1–10mmarepresented.Twomainsubgroups(“erectrigidCheilostome”and“erect rigidTubuliporina”,Fig2,S5Table)wereselectedamongbryozoans.Theyincludethemost representativespeciesintermsofabundanceandabundancevariationalongthecore. RadiocarbondatingwasperformedattheEidgenössischeTechnischeHochschule(ETH) Zürichusingtheacceleratormassspectrometry(AMS)technique.Fromselectedsamples,ben- thicforaminiferawerepickeduntilatleast5–10mgofpurecarbonatewereobtained.Thespe- ciesDiscanomalinacoronatalivesattachedtoahardsubstrateandisassociatedtotheCWC ecosystem[27]andwaschosenwhereverpossible.Alternatively,theepibenthicforaminifera Cibicideslobatuluswaspicked.Specimenswerecleanedinultrasoundstoremoveeventualcon- tamination.Coralfragments(25–50mg)usedforradiocarbondatingwereselectedaccording PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 5/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig2.Distributionofmainmacrofaunalcomponents,benthicforaminifera,benthicforaminiferaassemblages(BFA)andostracodsincoreTTR17- 401G.ThechronologyofthecoreisbasedonAMS14Cagesofforaminiferaandcoralsandtheplanktonicforaminiferalturnover(PFT),expressedasa maximumage.Therelativeabundanceofcoralsandbryozoansisexpressedaspercentageofthetotalnumberofcountedmacrofaunaspecimensper sample.Therelativeabundanceofallmacrofaunalspecimenspersample(blackdottedline)isexpressedaspercentageofthetotalnumberofcounted specimensinthecore.Therelativetaxonomicrichnesspersample(reddottedline)isexpressedaspercentageofthetotalnumberofmacrofaunataxafound inthecoreanddoesnotincludescleractiniantaxa.Benthicforaminiferalspeciesrichness(SR)isexpressedasthetotalnumberofspeciesfoundineach sample.Thedashedlinesdisplaychangesinthebenthicforaminiferalassemblages. doi:10.1371/journal.pone.0140223.g002 totheirpreservationandfurthertreatedbystandardchemicalleachingprocedures.Table1 summarizesthescleractinianspeciesusedfortheAMS14Cdating.Theyweredissolvedincon- centratedphosphoricacid[73]andtheextractedcarbondioxidewasconvertedintographite asdescribedby[74].Allagesarecorrectedfor13Cand,assumingareservoiragecorrectionof 400years,the14Cageswereconvertedtocalendaryears(cal.yrBP;P=AD1950)usingthe Marine13calibrationcurve[75]andsoftwareOxCalV4.2.4[76].Allagesarereportedaskilo- yearsbeforepresent(kaBP;Table1). ThestableisotopeanalyseswereperformedattheStableIsotopesLaboratoryoftheUniver- sityofLausanne.Carbonandoxygenstableisotopecompositionofbenthic(Cibicideslobatu- lus)andplanktonic(Globigerinabulloides)foraminifera(Table2)weredeterminedwiththe ThermoFisherScientificcarbonatepreparationdeviceandGasBenchIIconnectedtoaDelta PlusXLisotoperatiomassspectrometer(IRMS).Between5and15specimensofeachspecies werepickedinthe>250μmandcleanedtwiceinanultrasonicbath.Thestablecarbonand oxygenisotopicratiosarereportedindelta(δ)notationaspermil(‰)deviationrelativeto ViennaPeeDeeBelemnite(VPDB)standard.Thestandardizationoftheδ13Candδ18Ovalues relativetotheVPDBscalewasdonebycalibrationofthereferencegasandworkingstandards withIAEAstandards.Analyticaluncertainty(1σ),monitoredbyreplicateanalysesofthe PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 6/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Table1. Radiocarbon14Cagesofsediment(benthicforaminifera)andcold-watercorals. Allagesarecorrectedforareservoirageof400years. Core Coredepth Material SampleID] 14C-age 1σerror 2σrangecal.age Medianprobabilityage (cm) (years) (±years) (yearsBP,P=AD1950) (yearsBP) TTR17–401G 0 Fo–Lobatula ETH-55620 1055 28 552–671 611 TTR17–401G 0 CWC–Mo ETH-55621 5073 30 5316–5536 5426 TTR17–401G 80 CWC–Mo ETH-57100 5466 28 5746–5912 5829 TTR17–401G 200 CWC–Mo ETH-57101 10302 35 11168–11483 11326 TTR17–401G 240 CWC–Mo ETH-57102 10476 35 11362–11862 11612 TTR17–401G 260 Fo–Coronata ETH-55622 11146 56 12558–12763 12660 TTR17–401G 260 CWC–Lo ETH-55623 10770 39 12036–12448 12242 TTR17–401G 420 Fo–Coronata ETH-55624 11432 57 12731–13076 12903 TTR17–401G 420 CWC–Lo ETH-55625 11231 39 12610–12824 12717 TTR17–401G 560 Fo–Lobatula ETH-55626 11675 65 12987–13316 13151 TTR17–401G 560 CWC–Lo ETH-55627 11553 40 12880–13166 13023 Fo=Foraminifera;CWC=Cold-watercorals,Mo=Madreporaoculata,Lo=Lopheliapertusa doi:10.1371/journal.pone.0140223.t001 internationalcalcitestandardNBS-19andthelaboratorystandardsCarraraMarblewasnot greaterthan±0.05‰forδ13Cand±0.1‰forδ18O.Stablecarbonisotopecompositionofthe organiccarbon(δ13C )wasdeterminedbyflashcombustiononaCarloErba1108elemental org analyzer(EA)connectedtoaThermoFisherScientificDeltaVIRMSthatwasoperatedinthe continuousheliumflowmodeviaaConfloIIIsplitinterface(Table2).Thereproducibilityof theEA-IRMSmeasurementisbetterthan±0.1%.Theaccuracyofanalyseswasassessedusing internationalreferencestandards. Totalorganiccarbon(TOC)content(inweight%)wasdeterminedatthelaboratoryofSedi- mentGeochemistryattheUniversityofLausanneonabout100mgbulksedimentusingthe Rock-Eval6technologyandfollowingthestandardrockpyrolysis[77,78].TheHydrogenIndex (HI),expressedinmgHC/gTOC,displaysthetotalamountofpyrolyzedhydrocarbonsresult- ingfromthecrackingofnon-volatileorganicmatter(HI=S x100/TOC)andtheOxygen 2 Index(OI,inmgCO /gTOC)whichaccountsfortheamountofCO generatedduringthe 2 2 pyrolysisofthekerogen(OI=S x100/TOC),bothnormalizedtoTOC.Additionalparameter 3 providedbytheRock-Eval6istheMineralCarbon(MINC),whichrepresentsthepercentage ofcarbonderivedfrominorganicsources.AllRock-EvaldataaregiveninTable2. Results Chronology Thechronologyofthecoresisconstraintby7AMS14CdatingonCWCfragmentsand4on benthicforaminiferacoupledtothedistributionofplanktonicforaminifera(Fig2,Table1). DiscrepanciesbetweencoralandbenthicforaminiferaagesareacommonfeatureinCWC mounds(e.g.,[19,26,42]).Coralagesindicatethetimeswhentheorganismslivedwhileages frombenthicforaminiferarepresentthesedimentationhistoryoftheCWCmound.However, bothcanbeusedforpaleoceanographiccomparisonsbutinterpretationsshouldberelatedto theorganism.TheradiocarbondatingrevealsthatcoreTTR17-401Gcoversthetimespan0.6– 13.1kaBP,thusreachingbacktothetransitionfromtheAllerödinterstadialtotheYounger- Dryas(YD)coldevent(12.9–11.5kaBP).Thecalculatedlinearsedimentationrates(LSR)indi- catethatthesedimentationwasshiftingbetweenextremevaluesof611cm/kafromthebaseto 260cm,and20.55cm/kafrom260cmtothetopofthecore. PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 7/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Table2. GeochemicaldataofcoreTTR17-401G. Areshowntotalorganiccarbon(TOC),mineralcarbon(MINC),hydrogenindex(HI),oxygenindex(OI), planktonic(Globigerinabulloides)andbenthic(Cibicideslobatulus)δ18Oandδ13C,δ13C andgrain-sizedistribution. org Rock-Evalpyrolysis Stableisotopes(‰VPDB) Grain-size(%) Depth TOC MINC HI OI δ13C δ13C δ18O δ13C δ18O >250μm 250– 125– <63μm org lobatula lobatula bulloides bulloides (cm) [% [%wt.] [mg [mg 125μm 63μm wt.] HC/g CO /g 2 TOC] TOC] 0 0.7 5.76 99 278 -22.2 0.1 1.3 -0.8 0.6 58.29 1.11 0.68 39.91 20 1.07 3.71 102 212 -21.8 0.9 1.4 -1.1 0.8 15.61 0.33 0.92 83.14 40 0.98 3.8 84 211 -22.2 0.4 0.9 -0.5 0.8 14.05 0.83 1.83 83.3 60 0.86 5.34 90 224 -21.7 0.4 1.1 -1.2 0.6 50.58 0.41 1.49 47.52 80 1.03 3.74 95 224 -21.7 0.9 1.1 -0.6 0.9 14.55 0.61 2.42 82.41 100 1.14 3.95 90 191 -21.4 0.2 1.1 -0.5 0.9 31.77 0.87 0.77 66.59 120 1.05 3.73 98 221 -21.6 0.9 1.6 -0.7 1 14.52 0.98 1.09 83.41 140 0.93 4.52 92 213 -22 1 1.6 -0.5 0.9 45.58 0.92 0.5 53 160 0.98 3.23 82 220 -21.9 0.1 1.6 -1.1 0.7 1.28 0.46 0.74 97.52 180 0.97 3.43 86 219 -21.9 0.6 1.5 -1.1 0.6 41.42 0.79 1.8 55.99 200 0.87 5.11 78 202 -21.9 0.3 1.2 -1.4 0.4 38.87 0.92 3.72 56.5 220 0.95 4.35 102 195 -21.3 0.4 2.5 1.3 1.5 5.92 1.43 2.89 89.76 240 0.98 4.26 119 180 -21.1 1.2 2.5 0.6 2.3 42.82 0.73 5.25 51.19 260 0.71 7.03 112 243 -20.7 0.9 2.5 0.1 2.5 67.92 0.92 3.36 27.8 280 0.87 5.97 110 183 -20.8 0.9 2.7 0 2.2 54.34 1.28 2.01 42.37 300 0.8 6.7 105 220 -21.1 0.9 2.7 0.3 2.5 53.58 1.07 2.39 42.96 320 1.11 4.79 131 168 -21.2 1.1 2.9 -0.6 2.3 25.25 1.04 3.47 70.24 340 0.82 5.5 136 225 -21.3 0.8 2.6 0.4 2.5 48.8 1.19 2.59 47.41 360 0.92 5.51 119 186 -21.1 1 2.7 -0.7 1.7 25.66 2.96 5.36 66.02 380 0.85 4.83 124 187 -20.8 0.8 2.7 -0.5 2.6 12.53 2.93 10.03 74.51 400 0.99 4.71 112 179 -21.2 1 2.9 0.1 2.4 6.96 2.87 8.48 81.69 420 0.58 6.3 96 239 -21 0.8 2.6 -0.6 1.3 23.69 5.78 12.13 58.4 440 0.88 4.43 111 178 -21.4 0.9 2.8 -0.7 2.2 8.85 0.82 3.68 86.65 460 0.99 4.3 115 182 -21 1 2.7 0.5 2.6 15.49 1.18 2.65 80.67 480 0.96 4.09 119 177 -21 1.1 2.7 0.2 2.6 6.59 1.39 2.85 89.18 500 1.06 4.28 132 171 -21.2 0.7 2.8 -0.8 2.4 8.51 0.5 2.36 88.63 520 1 4.24 159 186 -21.2 0.2 2.6 -1 2.3 1.8 0.68 2.48 95.04 540 0.94 4.69 127 164 -21.5 -0.3 2.5 -1.1 1.8 2.7 0.84 2.95 93.51 560 0.68 5.79 117 199 -21 0.7 2.4 -1.1 1.9 4.97 1.31 5.5 88.23 doi:10.1371/journal.pone.0140223.t002 ThedatedCWCfragmentsyieldagesrangingfrom5.4atthetopofthecoreto13kaatits base(Fig2).Apparently,theCWCsstoppedgrowing5.4kaatthecoretop,whichhasasedi- mentageof0.6ka.Thisindicatesthepresenceofahiatusclosetothecoretopwithpossible erosionofsediments.Becauseoftheagedifferencesbetweencoralsandsediments,thesedi- mentrecordofcoreTTR17-401Gwillthereforebeexpressedinallfiguresversuscoredepth andnotversusage. Thedistributionofplanktonicforaminiferainthecoreshowstheoccurrenceoftwomajor intervals,thefirstlastingfrom560to200cmanddominatedbyNeogloboquadrinaincompta andthesecondfrom200cmtothetopanddominatedbyGloborotaliainflata(Figs2and3). Thisplanktonicforaminiferalturnover(PFT)hasbeenwelldescribedintheAlboranSeaby Rohlingetal.[79]andassumedtohaveoccurredaround8kaBP.Aroundthiscoredepth PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 8/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution Fig3.Multi-proxyrecordfromcoreTTR17-401G.Aredisplayedthelithologywithmainmacrofaunalcomponents,radiocarbonagesofsediment (foraminifera),grain-sizedistribution(<63μm),totalorganiccarbon(TOC),δ13C ,δ13Candδ18Oofbenthicandplanktonicforaminifera.Benthic org foraminiferalassemblages(BFA)areshownaccordingtotheleveloftheBray-CurtiesSimilarity:BFAniandBFAgi(39%)andBFA1-BFA4(54%).Dashed lineindicatestheturnoverintheplanktonicforaminiferalassemblage(PFA)atca.8kaBP[79].Freshwaterpulses1–4correspondtopossiblefreshening eventsofthe(sub-)surfacewaters. doi:10.1371/journal.pone.0140223.g003 anotherhiatusoccurredasindicatedbythedifferentagesbetweensediment(8ka)andcorals (~11ka)(Fig2). Stablecarbonandoxygenisotopesinforaminifera Theplanktonicδ18Ovaluesdecreasetowardsthetopofthecoreandrangebetween0.4and 2.6‰(Fig3,Table2).IntheN.incomptadominatedinterval,theplanktonicδ18Ovalues(1.3– 2.6‰)arehigherthanduringtheG.inflatainterval(0.4–1‰).IntheintervaldominatedbyN. incompta,theplanktonicδ18Ovaluesvarybetween2.2and2.6‰,exceptforsamples540–560, 420,360and220cmshowingrelativelylargenegativeexcursionsof1.9,1.8,1.3,1.7and1.5‰ respectively(Fig3,Table2). Thebenthicδ18Ocurveshowsasimilarpatternastheplanktonicδ18Ocurvewithhigher valuesof2.4–2.9‰intheintervaldominatedbyN.incomptacomparedtolowervaluesinthe G.inflatainterval(0.9–1.6‰)(Fig3,Table2).Highestvaluesof2.9‰arereachedduringthe earlyYD(12.6–12.9kaBP).IntheG.inflataintervalbenthicδ18Ovaluesshowadecreasein twosteps,onefrom120–200cm(1.2–1.6‰)andanotheronefrom40–100cm(0.9–1.1‰)fol- lowedbyanincreaseinthelast20cm(1.3–1.4‰)(Fig3).Therelativelylargenegativeexcur- sionsobservedintheplanktonicδ18Ovaluescoincidewithdecreasesinthebenthicδ18O,from PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 9/34 Microfossils,aKeytoUnravelCold-WaterCarbonateMoundEvolution whichthemostprominentoccursatthetransitionfromtheintervaldominatedbyN.incompta toG.inflatawithadecreaseof-1.1‰intheplanktonicand-1.3‰inthebenthicδ18O. Theplanktonicandbenthicδ13Cdisplayvaluesrangingfrom-1.4to1.3‰and-0.3to1.2‰ respectivelyandshowroughlyasimilarevolutionthroughoutthecore.Thehighestplanktonic δ13Cvaluewasmeasuredintheinterval220–480cmwherethevaluesaregenerallyofamagni- tudehigherthanfortheloweranduppersamples(Fig3).At200cm,theplanktonicδ13C decreaseof-2.7‰coincideswiththetransitionfromtheN.incomptatotheG.inflatainterval (Fig3).Similarly,higherbenthicδ13Cweremeasuredfrom480cmto240cm,wherevalues dropfrom1.2to0.4‰,thusslightlybeforetheplanktonicδ13C(Fig3).Theinterval240–480 cmischaracterizedbyextremelystablebenthicδ13Csignalcomparedtomeasuredinthelower andupperpartsofthecore. Sedimentcharacterization:Rock-Evalpyrolysisandstablecarbon isotopesofTOC TheTotalOrganicCarbonshowsvaluesrangingfrom0.58–1.14%(Fig3,Table2).TOCvalues tendtodecreasefromthebaseto260cmwiththreemarkedminimaat560,420and260cm (Fig3).TOCvaluesincreasefrom240cmtoamaximumof1.14%at100cmbeforedecreasing againintheuppermostpartofthecore(Fig3).TheTOCcontentdisplaysapositivecorrelation tothemudfraction(Fig3). TheMineralCarboncontentishigher(4.71–7.03%)intheinterval260–420cmcompared totheintervals440–560cm(4.09–5.79%)and0–240cm(3.23–5.76%).TheMINCshowsarel- ativelystrongnegativecorrelationtotheP/Bratio(Fig4). TheHydrogenandOxygenIndexvaryfrom78–158mgHC/gTOCand164–278mgCO /g 2 TOCrespectively(Fig5;Table2).ArelativelycleartrendcanberecognizedwithhigherHI andlowerOIintheintervaldominatedbyN.incomptaandlowerHIandhigherOIinthe intervaldominatedbyG.inflata(Fig5;Table2).Thevaluesofδ13C rangefrom-22.2‰(0 org cm)to-20.7‰(260cm).Theδ13C followsasimilartrendastheHIwithhighervalues org (-21.5–-20.7‰)intheN.incomptaintervalandlowervalues(-22.2–-21.4‰)intheG.inflata interval(Fig3,Table2).Highestδ13C valuesaremeasuredwithininterval260–420cm(Fig org 3).Theδ13C signalfollowswelltheplanktonicδ18Oandδ13Csignalwithmarkedminimaat org 540,440,340and200cm. Micropaleontology CoreTTR17-401Gischaracterizedbyaconspicuousdistributionofthelarge(>250μm) planktonicandbenthicforaminifera(S1andS2Tables).Thetargetvalueof200benthicspeci- mensperfractioncouldbereachedonlyinthesamplesfrom260–420cmwheremostofthe samplesweresplit.Inallothersamples,allspecimensoftheresiduewerecountedandamini- mumwasobtainedat500cm(8specimens)andamaximumat540cm(110specimens).The planktonicforaminiferashowedanoppositetrendwithlowestscores(71–202specimens) between220and520cmandthetargetvaluereachedonlyat380cm(S2Table).Theplank- tonicforaminiferacontributiontothetotalforaminiferafaunaiswelldocumentedintheP/B ratio(Fig4). Benthicforaminifera–univariatedistribution Intotal,138benthicforaminiferaspecies(unstained)belongingto84generahavebeenidenti- fiedincoreTTR17-401G(S1Table).Speciesrichness(SR)variesfrom34at500cmto61at 220cm.ThemostcommonspeciesfoundinthiscoreareBuliminaaculeata,Buliminamargin- ata,Cassidulinalaevigata,C.lobatulus,Cibicidesrefulgens,Cibicidesungerianus(groupedas PLOSONE|DOI:10.1371/journal.pone.0140223 October8,2015 10/34
Description: