Deep-SeaResearchII47(2000)1387}1422 Microbial food web structure in the Arabian Sea: a US JGOFS study David L. Garrison!,*, Marcia M. Gowing!, Margaret P. Hughes!, Lisa Campbell", David A. Caron#, Mark R. Dennett$, Alexi Shalapyonok$, Robert J. Olson$, Michael R. Landry%, Susan L. Brown%, Hong-Bin Liu&, Farooq Azam’, Grieg F. Steward), Hugh W. Ducklow*, David C. Smith+ !InstituteofMarineSciences,UniversityofCalifornia,SantaCruz,CA95064,USA "DepartmentofOceanography,TexasA&MUniversity,CollegeStation,TX77843-3146,USA #DepartmentofBiologicalSciences,UniversityofSouthCarolina,3616TrousdaleParkway,AHF309, LosAngeles,CA90089-0371,USA $BiologyDepartment,WoodsHoleOceanographicInstitution,WoodsHole,MA02543,USA %DepartmentofOceanography,UniversityofHawaii,1000PopeRd.,Honolulu,HI96822,USA &MarineSciencesInstitute,TheUniversityofTexasatAustin,750ChannelViewDrive,PortAransas, TX78373,USA ’ScrippsInstitutionofOceanography,UniversityofCalifornia,SanDiego,CA92093,USA )MontereyBayAquariumResearchInstitute,P.O.Box628,MossLanding,CA95039,USA *TheCollegeofWilliamandMary,SchoolofMarineScience;Box1346,GloucesterPoint,VA23062,USA +GraduateSchoolofOceanography,UniversityofRhodeIsland,Narragansett,RI02882-1197,USA Received4May1999;receivedinrevisedform16September1999;accepted17September1999 Abstract OneofthemainobjectivesoftheJointGlobalOceanFluxStudies(JGOFS)programisto developan understandingof the factors controlling organic carbon production in the ocean andthetime-varyingvertical#uxofcarbonfromsurfacewaters(USJGOFS(1990)USJGOFS Planning Report Number 11; Sarmiento and Armstrong (1997) US JGOFS Synthesis and Modeling Project Implementation Plan). A considerable amount of evidence suggests that carboncyclingandthepotentialforexportingcarbonfromoceansystemsisafunctionoffood web structure. As part of the US JGOFS Arabian Sea Studies, the biomass of planktonic organisms,rangingfromheterotrophicbacteriathroughmicroplankton-sizedorganisms,was estimatedusingavarietyofmethodsincluding#owcytometryandmicroscopy.Thisisa"rst attempttocombinebiomassdatafromanumberofsources,evaluatethestructureofthefood *Correspondingauthor.NationalScienceFoundation,DivisionofOceanSciences,BiologicalOceanog- raphyProgram,Room725,4201WilsonBlvd.,Arlington,VA22230,USA.Interpretationsandconclusions arethoseoftheauthoranddonotimplytheendorsementoftheNationalScienceFoundation. 0967-0645/00/$-seefrontmatter ( 2000ElsevierScienceLtd.Allrightsreserved. PII: S0967-0645(99)00148-4 1388 D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 web,examinechangesin foodweb structurein relation toseasonal or spatialfeaturesof the studyarea,andlookforindicationsofhowchangingstructurea!ectscarbon-cyclingprocesses. Biomass in the upper 100m of the water column ranged from approximately 1.5 to ’5.2gCm~2. Heterotrophic bacteria (Hbac) made up from 16 and 44% of the biomass; autotrophscomprised43}64%;and theremainder wasmade upof nano-and microheterot- rophs.Autotrophsandnano-andmicroheterotrophsshowedageneralpatternofhighervalues atcoastalstations,withthelowestvalueso!shore.Heterotrophicbacteria(Hbac)showedno signi"cantspatialvariations.TheSpringIntermonsoonandearlyNEMonsoonweredomin- atedbyautotrophicpicoplankton,ProchlorococcusandSynechococcus.ThelateNEMonsoon andlateSWMonsoonperiodsshowedanincreaseinthelargersizefractionsof theprimary producers.AtseveralstationsduringtheSWMonsoon,autotrophicmicroplankton,primarily diatomsandPhaeocystiscolonies,predominated.Increasesinthesizeofautotrophswerealso re#ectedin increasingsizes ofnano-andmicroheterorophs.Thebiomass estimatesbasedon cytometry and microscopy are consistent with measurement of pigments, POC and PON. Changes in community structure were assessed using the percent similarity index (PSI) in conjunctionwithmultidimensionalscaling(MDS)orsingle-linkageclusteringanalysistoshow how assemblages di!ered among cruises and stations. Station clustering re#ected environ- mentalheterogeneity,andmanyoftheconspicuouschangescouldbeassociatedwithchanges intemperature,salinityandnutrientconcentrations.Despiteinherentproblemsincombining datafromavarietyofsources,thepresentcommunitybiomassestimateswerewellconstrained by bulk measurements such as Chl a, POC and PON, and by comparisons with other quantitativeandqualitativestudies. The most striking correlation between food web structure and carbon cycling was the dominanceoflargephytoplankton,primarilydiatoms,andtheseasonalmaximaofmass#ux duringtheSWMonsoon.HighnutrientconditionsassociatedwithupwellingduringtheSW Monsoonwouldexplainthepredominanceofdiatomsduringthisseason.Thesinkingoflarge, ungrazed diatom cells is one possible explanation for the #ux observations, but may not be consistentwiththeobservationofconcurrentincreasesinlargermicrozooplanktonconsumers (heterotrophicdino#agellatesandciliates)andmesozooplanktonduringthisseason.Food-web structure during the early NE Monsoon and Intermonsoons suggests carbon cycling by the microbialcommunitypredominated. ( 2000ElsevierScienceLtd.Allrightsreserved. 1. Introduction Thepelagicfoodwebiscomprisedofadiversityoforganismsvaryingoverseveral ordersofmagnitudeinsizeanddi!eringintaxonomica$nitiesandtrophicfunctions (e.g.,Sieburthetal.,1978).Manyofthesmallerplanktonicorganisms,suchasbacteria, picoplanktonicautotrophsand phagotrophic protists, were unknown orlargely over- looked until relatively recently (e.g., Azam et al., 1983; Sherr and Sherr, 1984; Porter etal.,1985).Nonetheless,thisassemblage,collectivelyknownasthe microbialfoodweb , ‘ a isnowrecognizedasubiquitousandabundantinoceanenvironments(e.g.,Garrison and Gowing, 1993; Buck et al., 1996; Table 5 in Garrison et al., 1998) with integral roles in system tropho-dynamics and biogeochemical transformations (Capriulo, 1990; Stoecker and Capuzzo, 1990; Caron et al., 1990; Caron, 1991; Gi!ord, 1991). Assessingthestructureandbiomasscompositionofthepelagicfoodwebhasbeen one of the enduring research activities of plankton ecologists. Progress has largely D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 1389 followedtechnicalimprovementsindetectingandenumeratingprogressivelysmaller organisms (e.g., Fuhrman and McManus, 1984; Glover et al., 1986; Chisholm et al., 1988), as well as quantifying the abundance of organisms too rare to be adequately sampledinbottlesortoodelicatetobecollectedwithnets(e.g.,GowingandGarrison, 1992).Forthemicrobialcommunity,epi#uorescencemicroscopy(Booth,1993;Sherr et al., 1993, Verity and Sieracki, 1993) and #ow cytometry (Olson et al., 1990,1993; ButtonandRobison,1993)techniqueshavebeencriticalinallowingroutinequantit- ativedescriptionsof,at least,thefunctionalgroupscomprisingthepelagicfoodweb (e.g., see citations in Table 5 in Garrison et al., 1998). Thefocusonaccuratedescriptionsofthefoodwebcompositionisdrivenbymore thandiscoveryortechnology.Ithaslongbeenrecognized,forinstance,thatfoodweb structure can profoundly a!ect ecosystem characteristics such as "sh yield (Ryther, 1969),carbon#ux,(Azamet al.,1983;MichaelsandSilver,1988; Peinertetal.,1989; Legendre and LeFevre, 1995; Legendre and Rassoulzadegan, 1996), and nutrient regeneration (Caron, 1991). Moreover, understanding of the underlying structure of foodwebsandthefactorsthatcausethemtodevelopindi!erentwaysisessentialfor developing and testing the predictive ecosystem and global-scale biogeochemical models that are ultimately desired by the JGOFS Program (e.g., Armstrong, 1994; Sarmiento and Armstrong, 1997). TheUSJGOFSArabianSeaProcessStudywasconductedtoexaminespatialand temporalvariabilityinfoodwebstructureinadynamicpelagicsystem(USJGOFS, 1990;Smithetal.,1991,1998a).Distributionsandabundancesofindividualcompon- entpopulationshave beenreported previously(picoplankton:Campbellet al., 1998; Brown et al., 1999; Riemannet al., 1999; Ducklow et al., 2000a,b; nano- and micro- plankton:Garrisonetal.,1998;Dennettetal.,1999;CaronandDennett,1999).Here wepresentthe"rstcombinede!orttoprovideacomprehensiveestimateofbiomass structure and to evaluate spatial and temporal patterns in community structure. 2. Materials and methods As part of the US JGOFS Arabian Sea Process Study, plankton community structure was investigated during four di!erent phases of the monsoon cycle of 1995 (Table 1). Data were analyzed from seven stations (Fig. 1) for which we had reasonablycomplete data sets from all, or most, cruises. These included six stations (S1, S2, S4, S7, S11 and S15) along the southern transect extending from the upwelling-in#uencedcoastalenvironmenttotheoligotrophicopenocean(Olson,1991; Smith et al., 1998a; Garrison et al., 1998), and one o!shore station (N7) on the northern transect. Samplesforthisanalysiswerecollectedatfourtosixdepthsintheupper100mof the water column with 10-l Niskin bottles on a CTD rosette. The microbial assem- blagewasanalyzedbydividingitintodi!erentsizefractionsandtrophicgroupsthat were enumerated separately using appropriate methodology (Table 2). Thespeci"cmethodologyusedtodeterminebiomassandabundanceoforganisms hasbeenreportedinanumberofrecentpapers(Campbelletal.,1998;Ducklowetal., 1390 D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 S1}S15.Meanand(range)upper20m(datacourtesysurfacereferencevalueasMarra.Chlorophyllvaluesncubations.Alldataand TN05428Nov.}27Dec.EarlyNEMonsoon 27.0(25.8}28.2)36.47(35.85}36.81)0.79(0.01}3.6)0.26(0.00}2.1)63(50}82)0.38(0.12}0.88)1.0(0.7}1.4) Table1Cruisedates,hydrographicseason,andsummaryofhydrographicconditionsintheupperwatercolumnforstationsonSouthtransect,##ofvaluesareshownforalldata.Temperature,salinity,andtotalnitrogen(NONONH)wereaveragesfromdepthswithinthe324~3ofJ.Morrisonetal.).Mixedlayerdepths(mld)wereestimatedasthedepthwheredensitychangedby0.125kgmfromanear0.125acalculatedandreportedbyW.GardnerandJ.Gundersen.ChlorophyllandprimaryproductiondatacourtesyofR.BarberandJ.areaverageswithintheupper25m.Primaryproductiondataareintegrateddataforthewatercolumnbasedon24hinsituidocumentationareavailablefromtheJGOFSArabianSeadatabase(http://www1.whoi.edu/jgofs.html). CruiseDatesSeasonTN0438Jan.}4Feb.TN04514Mar.}10AprilTN05017Aug.}15Sept.NEMonsoonSpringIntermonsoonLateSWMonsoon Temperature(3C)25.4(24.4}27.2)26.9(25.1}29.1)26.0(19.7}28.36)Salinity(psu)36.33(36.10}36.55)36.31(35.23}36.69)36.22(35.63}36.614lTotalnitrogen(moles)2.27(0.04}4.96)0.25(0.02}2.03)5.83(0.03}22.1)N:Si0.87(0.01}2.2)0.16(0.01}1.11)2.8(0.02}18.0)Mixedlayerdepth(m)72(68}76)30(10}70)54(24}100)l~1aChl(gl)0.36(0.05}0.95)0.34(0.02}0.93)0.67(0.01}1.72)~2~1Primaryproduction(gCmday)1.1(0.6}1.4)1.0(0.7}1.3)1.0(0.6}1.8) D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 1391 Fig.1. JGOFSStationsinthenorthernArabianSea.Stationsindicatedwereanalyzedforthisstudy,except thatstationS1wasnotanalyzedforthe"naloffourcruises(TN054). 2000a,b; Garrison et al., 1998; Dennett et al., 1999). Here, these methods are brie#y presented and discussed only as needed to explain the present synthesis of data. 2.1. Picoplankton Picoplankton,includingheterotrophicbacteria(Hbac),Prochlorococcusspp.(Pro), Synechococcus spp. (Syn), and phototrophic eukaryotes (Peuk), were counted using #ow cytometry as described by Campbell et al. (1994,1998). Cellcarbonvaluesforautotrophicpicoplanktonweredeterminedassummarizedin Table 2. Conversion values for Pro and Syn were based on recent calibrations by Shalapyonok et al. (2000) from cultures raised under natural light conditions. For picoeukaryotes,samplesfromTN054weresizedusingforwardanglelightscattering (FALS)todetermineasize-frequencydistribution,whichweassumedwassimilarfor all cruises. Approximately 69% (range 27}88%) of the eukaryotic cells were ’2.0 lm. These counts were removed from cytometer data to avoid overlap with micro- scopical counts of autotrophic nanoplankton. The remaining cells (31%) were assumed to comprise the picoeukaryotes. Cell volumes were calculated assuming a 1.5lm-diameter spherical shape, and cell volume-to-carbonconversions based on amodi"edStrathmannequationfornon-diatomphytoplankton(Eppleyetal.,1970) were used to estimate carbon. Flowcytometercountswereusedforheterotrophicbacteria(Hbac)estimatesforall cruises for consistency (no "lter counts were available for TN050). A regression (ModelII) of all pairedestimatesof Hbac by cytometerand epi#uorescencemicros- copyproducedtheregression:cytometer(bacteriacellsl~1)"1.044]epi#uorescence (cellsl~1)!0.870]108(cellsl~1);(R2"0.689,n"421),witharegressioncoe$cient 1392 D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 mthennettlight 1998) etal., dtoestimatecarbonbiomassfordi!erentcomponentsofthemicrobialfoodweb.Valuestakenfroofmethodsusedfornano-andmicroplanktonandinterpretationsofdistributionsarepresentedinDecriptionsofsomemethodsareinthetext.CYT:#owcytometry;EFM:epi#uorescencemicroscopy;LM:l~3m) l~3ConversionsusedforfgCmRemarksandcitations~1biomasspgCCell 0.011380AveragefromTN045andTN049data.Seetext 0.032/0.072235Mixedlayerpopulations/Belowmixedlayer0.101/0.152235Mixedlayerpopulations/Belowmixedlayer1.011Seetext 183TN043,TN045;Caronetal.,1995.!"!logC0.94(logV)0.60210TN050,TN054(Eppleyetal.,1970;Garrisonetal.,1010183TN043,TN045(Caronetal.,1995)!"!logC0.94(logV)0.60(209/211)TN050,TN054(Garrisonetal.,1998)1010 183TN043,TN045(Caronetal.,1995)"!logC0.94(logV)0.60TN050,TN0541010"!logC0.76(logV)0.352AllCruises(Eppleyetal.,1970)1010140TN043,TN045(Stoeckeretal.,1994)!"!logC0.94(logV)0.60(183/165)TN050,TN054(Eppleyetal.,1970)1010 140TN043,TN045!"!logC0.94(logV)0.60(164/160)TN050,TN0541010140TN043,TN045160}190TN050,TN054(PuttandStoecker,1989)53TN043,TN045(VerityandLangdon,1984)160}190TN050,TN054(PuttandStoecker,1989) forcruisesTN050andTN054dataforcomparisonswiththoseusedforTN043andTN045(seeDennett Table2Overviewofmethodsandconversionfactorsuseliteratureareshownwithsourcecitations.Detailsetal.(1999)andGarrisonetal.(1998).Speci"cdes"<microscopy.Informulaebelowcellvolume( SizefractiongroupMethodsforenumeration l&(0.2}2.0m)Picoplankton HeterotrophicpicoplanktonCYTEFMAutotrophicpicoplankton CYTProchlorococcusCYTSynechococcusPicoeukaryotesCYT l(2}20m)Nanoplankton AutotrophicnanoplanktonEFM HeterotrophicnanoplanktonEFM l’(20m)Microautotrophs OtheralgaeEFM DiatomsLM/EFMDino#agellatesLM/EFM l’(20m)Microheterotrophs Dino#agellatesLM/EFM Non-loricateciliatesLM TintinnidsLM !l~3Averagevalueofcarbonpervolume(fgCm)1999) D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 1393 not di!erent from 1.0. The cell sizes of (Hbac) were determined by epi#uorescence microscopy for cruises TN045 and TN049 (Ducklow et al., 2000a). Mean bacterial volumes were measured on every cell counted in every sample and cell volume calculated using the algorithm of Baldwin and Bankston (1988) (mean"0.029lm3; range"0.019}0.056lm3; N"421, upper 0}200 m), and carbon content was deter- minedbyassuming380fgClm~3(LeeandFuhrman,1987).Anaveragevalueof11fg Ccell~1forthesetwocruiseswasusedtoestimatebacterialbiomassfromabundance for all cruises. 2.2. Nanoplankton Bothautotrophicandheterotrophicnanoplanktonwereconcentratedon"ltersand counted by epi#uorescence microscopy as described by Garrison et al. (1998) and Dennettetal.(1999).Preservationandstainingmethodsvariedamongthecruises(see Garrisonetal.,1998;Dennettetal.,1999).DuringTN043andTN045(Dennettetal., 1999),watersampleswerepreservedata"nalconcentrationof1%formalin(madein natural,"lteredseawater)andstoredat43C.Sampleswerepreparedforenumeration byepi#uorescencemicroscopywithin24hofpreservationbystainingwithDAPI at a"nalconcentrationof50lgml~1(Caron,1983;Sherretal.,1993).ForTN050and TN054 (Garrison et al., 1998), replicate samples were stained separately with the #uorochromes DAPI (Coleman, 1980) and pro#avine (Haas, 1982)#DAPI (e.g., Verity and Sieracki, 1993). Glutaraldehyde and the #uorochromes were added near theendofthe"ltrationwhenapproximately10mlremainedinthe"lterchimney.The "nal concentration of glutaraldehyde was &0.5%. 2.3. Microplankton WatersampleswerepreservedwithLugol’sIodinesolutionorbu!eredparaformal- dehyde for analysis of the robust microplanktonincluding diatoms, silico#agellates, thecateandsomeathecatedino#agellatesandciliates.Thesesampleswerecountedby inverted microscopy (see Garrison et al., 1998; Dennett et al., 1999). For both "lter-collectedandwholewatersamples,carbonestimateswerederivedbymeasuring celldimensions,calculatingcell volumes andapplyingcarbonto volume conversion factors (Table 2). 2.4. Size fractions Biomass in conventional size fractions (i.e., pico-, nano- and microplankton) was calculated as follows: picoplankton sizes were con"rmed by FALS analysis of cytometerdata,andthefractioncomprisingpico-eukaryoteswasdistinguishedfrom the wider range of eukaryotic autotrophs detected by the cytometer as described in Campbelletal.(1994,1998).ForTN043andTN045,biomassdataareseparatedinto nano-and microplanktonsizefractions Dennett et al. (1999),but taxonomicgroups within the autotrophic nanoplankton (Anan) and heterotrophic nanoplankton (Hnan)were not di!erentiated.For TN050 and TN054 microbial groups within the 1394 D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 nanoplankton were distinguished by taxon and cell volume. To have a consistent groupingofcategoriesthatwouldallowananalysisamongallcruises,sizefractionsof nano- and microplankton were grouped using cell volume ranges of ’4.2 to 4190lm3and’4190lm3,respectively,toseparatecellsintonano-andmicroplan- kton and data recombined in a manner consistent with that used for TN043 and TN045. 2.5. Analysis of the microbial assemblage We used community analysis procedures similar to those outlined by Field et al. (1982) to examine the similarity of assemblage composition between stations and cruisesandto assesswhichbiomasscomponentswereresponsibleforthevariations. Biomass was classi"ed within the 12 size and taxonomic components (Table 3). SimilaritieswerecalculatedbetweenpairedstationsasPercentSimilarityIndex(PSI): PSI(Sample )"+Minimum[Group(%Sample ,%Sample )] !," * ! " where,i"(groups1,22,12)inacomparisonofthesimilaritybetweensamplesaand b.Theresultingstation-by-stationsimilaritymatrixwasanalyzedusingmulti-dimen- sional scaling (MDS) and single-linkage cluster analysis (see Field et al., 1982 for amorecompletediscussionoftheseprocedures).Wedidnotusetransformedbiomass data, as suggested by Field et al. (1992), to avoid the bias of giving unwarranted weighting to ciliate biomass. Tintinnid data from TN050 and TN054, in particular, sometimeswerebasedonsampleswithlowcellcountsandthushavewidecon"dence limits. Analyses and clustering were performed on both transformed and untran- sformeddata.Bothproducedsimilarstationclusteringpatternsbutthelatterproved easier to interpret. 3. Results 3.1. Community Composition Theoverallrangesofabundanceandbiomassofmicrobialgroupsaresummarized inTable 3.Depth-integratedbiomassoverthe upper100m of the water column(or 85matS1wherebottomdepthdidnotextendto100m)rangedfromapproximately 1.5to’5.2gCm~2(Table4).Overall,autotrophsmadeup43}64%ofthebiomass; Hbac accountedfor 16}44%, and nano-and microheterotrophicprotists comprised the remaining portion (Table 4). Biomass estimates for total microbial biota, autot- rophic, nano- and microheterotrophic, and bacterial biomass were not signi"cantly di!erentamongthefourcruises(Duncanmultiple-rangetest,a(0.05;SASInstitute Inc., 1989). Among stations and within cruises, total autotrophic and nano- and microheterotrophbiomassestimatesweregenerallyhigherforcoastalstations(S1and S2)and lowerat theo!shorestations (N7}S15),butusually onlythe extremevalues could be distinguished statistically (see Table 5). Heterotrophic bacteria showed no statisticallysigni"cantdi!erencesamongstations.Basedonanalysisofdiscrete-depth D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 1395 Table3 Rangeofabundanceandbiomassfordi!erentmicrobialgroupsoverthefourcruisesanalyzed(0.0)0.05) Cruise Biomass Abundance Sizefraction lgCl~1 celll~1 Microbialgroup Mean Min Max Mean Min Max TN043 Picoplankton Heterotrophicbacteria 8.0 0.2 11.5 7.3E#08 1.8E#07 1.0E#09 Prochlorococcus 1.0 0.0 7.2 3.0E#07 3.3E#04 2.3E#08 Synechococcus 3.7 0.1 112.9 3.7E#07 7.9E#04 1.3E#08 Picoeukaryotes 0.6 0.0 1.8 1.3E#06 9.9E#03 3.9E#06 Nanoplankton Autotrophicnanoplankton 5.6 0.2 18.1 7.6E#05 2.7E#04 2.9E#06 Heterotrophicnanoplankton 4.3 0.9 12.3 3.7E#05 1.3E#05 9.8E#05 Microplankton Dino#agellates 2.1 0.0 27.6 5.6E#02 0.0E#00 2.2E#03 Diatoms 3.4 0.0 27.6 2.7E#04 2.2E#02 2.0E#05 Autotrophic#agellates 0.3 0.0 7.5 9.9E#01 0.0E#00 9.6E#02 Heterotrophicdino#agellates 2.3 0.0 32.4 5.5E#02 0.0E#00 2.6E#03 Non-loricateciliates 0.5 0.0 2.4 5.0E#02 0.0E#00 2.6E#03 Tintinnids 0.0 0.0 0.1 4.7E#01 2.4E#00 1.3E#02 TN045 Picoplankton Heterotrophicbacteria 10.2 2.8 31.8 9.2E#08 2.6E#08 2.9E#09 Prochlorococcus 8.6 0.0 47.2 1.7E#08 3.3E#04 7.0E#08 Synechococcus 3.6 0.0 33.0 2.8E#07 1.6E#04 2.2E#08 Picoeukaryotes 0.4 0.0 2.3 9.7E#05 1.0E#04 5.2E#06 Nanoplankton Autotrophicnanoplankton 4.8 0.1 15.2 5.3E#05 1.1E#04 1.4E#06 Heterotrophicnanoplankton 4.6 0.7 12.1 3.0E#05 1.3E#05 8.0E#05 Microplankton Dino#agellates 1.4 0.0 5.2 1.4E#03 2.4E#01 5.1E#03 Diatoms 0.8 0.0 8.8 4.7E#03 1.1E#02 6.0E#04 Autotrophic#agellates 0.1 0.0 0.9 6.9E#01 0.0E#00 4.1E#02 Heterotrophicdino#agellates 0.6 0.0 2.2 5.9E#02 1.0E#01 2.2E#03 Non-loricateciliates 0.4 0.0 2.6 3.2E#02 2.1E#01 1.3E#03 Tintinnids 0.0 0.0 0.2 5.4E#01 1.2E#00 2.5E#02 TN050 Picoplankton Heterotrophicbacteria 11.4 3.8 23.5 1.0E#09 3.4E#08 2.1E#09 Prochlorococcus 1.6 0.0 9.10 4.4E#07 3.6E#04 2.8E#08 Synechococcus 3.0 0.1 9.5 2.8E#07 3.7E#04 9.4E#07 Picoeukaryotes 0.9 0.0 5.8 2.0E#06 1.1E#04 1.3E#07 Nanoplankton Autotrophicnanoplankton 4.6 0.1 36.3 4.2E#05 3.2E#03 2.0E#06 Heterotrophicnanoplankton 2.9 0.5 10.1 5.4E#05 3.5E#04 2.2E#06 1396 D.L.Garrisonetal./Deep-SeaResearchII47(2000)1387}1422 Table3(continued) Cruise Biomass Abundance Sizefraction lgCl~1 celll~1 Microbialgroup Mean Min Max Mean Min Max Microplankton Dino#agellates 0.7 0.0 2.9 4.2E#05 4.2E#05 4.2E#05 Diatoms 5.5 0.0 36.8 3.7E#03 1.0E#01 2.6E#04 Autotrophic#agellates! 3.8 0.1 18.7 6.6E#05 8.2E#03 2.8E#06 Heterotrophicdino#agellates 1.0 0.1 4.6 2.6E#02 3.0E#01 1.0E#03 Non-loricateciliates 0.9 0.1 4.4 3.0E#02 3.0E#01 1.2E#03 Tintinnids 0.2 0.0 1.5 8.0E#01 1.0E#01 3.0E#02 TN054 Picoplankton Heterotrophicbacteria 11.3 1.5 34.7 1.0E#09 1.4E#08 3.2E#09 Prochlorococcus 2.8 0.2 10.2 8.4E#07 3.2E#05 3.2E#08 Synechococcus 9.8 0.1 54.2 9.7E#07 3.5E#04 5.4E#08 Picoeukaryotes 0.9 0.0 3.3 2.1E#06 1.1E#04 7.4E#06 Nanoplankton Autotrophicnanoplankton 2.3 0.1 9.8 3.0E#05 9.0E#03 8.0E#05 Heterotrophicnanoplankton 1.7 0.1 9.5 1.8E#05 9.2E#03 7.9E#05 Microplankton Dino#agellates 0.5 0.0 1.9 1.7E#02 1.0E#01 1.1E#03 Diatoms 0.5 0.0 2.3 6.0E#02 1.0E#01 2.6E#03 Autotrophic#agellates 0.0 0.0 0.0 0.0E#00 0.0E#00 0.0E#00 Heterotrophicdino#agellates 1.3 0.1 6.1 5.0E#02 6.0E#01 1.9E#03 Non-loricateciliates 1.1 0.0 5.2 2.6E#02 2.4E#01 1.1E#03 Tintinnids 0.3 0.0 2.3 8.0E#01 1.0E#01 3.4E#02 !MostlyPhaeocystisnon-motilecellsindisruptedcolonies;seemethodsandGarrisonetal.(1998). samples, biomass estimates for Hbac, autotrophs, and other heterotrophs were negatively correlated with depth (Spearman; R"!0.55, !0.70, !0.59; N"240, 172, 171; P(0.01 for the three groups, respectively). 3.2. Seasonal and spatial distributions The composition of the microbial community varied among stations and cruises (Table5). To identify seasonal (between cruises) and spatial (between station) di!er- ences for each of the 12 groups of the microbial community, we examined both the depth-integrated (Table 5) and discrete-depth data (not shown) using the Duncan multiple-range test (SAS Institute Inc., 1989). Trends were considered signi"cant at a(0.05. Pro biomass washigher duringTN045 than duringother cruises, andSyn biomass was higher during TN054. Autotrophic micro#agellate (A#g) biomass was highest during TN050, and non-loricate ciliate (Cil) biomass was higher for TN050
Description: