Microbial Diversity, Activity, and Ecology of a Hypersaline High Arctic Spring System Chih-Ying Lay Department of Natural Resource Sciences McGill University, Montreal August, 2013 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of PhD. ©2013 Although we have no rational grounds for believing in an objective reality, we also have no choice but to act as if it is true. - David Hume 2 ACKNOWLEDGEMENTS First of all, I would like to thank Dr. Lyle G. Whyte, my supervisor, who let me study in his lab and supported me with his resources to complete my PhD research. From his supervision, I acquired a lot of knowledge of experiment design, planning field trips, interpreting research results, and building academic networks. His enthusiasm on unique microbiology topics and desires of using newly-developed technologies always encouraged me to face all the trendiest topics in the frontline of environmental microbiology. He let me to attend the unforgettable field trip to the Canadian High Arctic to perform field works. Without his help, I will not finish this thesis. I also would like to thank all the support from Dr. Charles Greer, Dr. Brian Driscoll, Dr. Donald Niven, and Dr. Sébastien Faucher. They always kindly gave me many useful and professional advices to overcome research problems. I would like to thank Dr. Thomas Niederberger, Dr. Nadia Mykytczuk and Dr. Étienne Yergeau. When I had in situ questions or problems for my research, they always offered me the most immediate helps. My lab mates, Guillaume Lamarche-Gagnon, Sara Sheibani, Roland Wilhelm, Kris Radtke, Jen Allan, Jackie Goordial, Diana Popa, Sara Klemm, Dr. Christine Martineau, Dr. Ofelia Ferrera Rodriquez, Dr. Jennifer Ronholm, Dr. Olga Onyshchenko, and Dr. Helen Vrionis were very friendly and helpful to me. In the last five years, when I needed their friendship, advices, or help, they always offered me much more than I expected. They helped me to adapt to the life and work style at Macdonald campus. I also would like to thank all the members of the Microbiology Division. They enriched my microbiology knowledge through seminars and conversations. I would also like to thank NRS support staff, Dave Meek, Marie Kubecki, Ann Gossage, and Marlene Parkinson. They tried their best to keep me in line and guided me when I feel confused with the school system. I would like to thank Dr. Joann Whalen and Hélène Lalande for the soil/sediment analyses. I also would like to thank Dr. Anthony Cushing for doing a final English edition for my thesis and Patricia Görner-Potvin for translating my abstract into French. The Polar Continental Shelf Project, the Canadian Astrobiology Training Program, National Sciences and Engineering Research Council of Canada, Canadian Space Agency, and Northern Scientific Training Program all contributed to making this thesis possible. During the past five years, I had enormous friendship support from Ting-Heng Yu, Chia-Chen Chang, Ming-Yueh Wu, James Wang, Dr. Eric Huang, Li-Jen Chen, Gengrui Wang, Chen Chen, Seamus McClare, Nathaniel Fink, Timothy Schwinghamer, Arturo Mayorga, Claude Gravel, and members from Sainte Anne Singers, Musica Orbium, and McGill Taiwanese Graduate Student Association. Finally, I would like to thank my parents, Jiunn-Yuan Lay and Dr. Pen-Ho Yeh, who encouraged me to study in Canada. Thank you! i TABLE OF CONTENTS ABSTRACT ...................................................................................................................... vi RÉSUMÉ ......................................................................................................................... viii CONTRIBUTIONS TO KNOWLEDGE ............................................................................ x LIST OF TABLES ............................................................................................................. xi LIST OF FIGURES .......................................................................................................... xii LIST OF ABBREVIATIONS .......................................................................................... xiii CHAPTER 1 ........................................................................................................................ 1 Introduction and Literature Review ..................................................................................... 1 1.1 Introduction .................................................................................................. 1 1.2 Terrestrial saline water body ecosystems in Polar regions .......................... 2 1.2.1 Definitions of terrestrial saline water bodies ...................................... 2 1.2.2 Saline lakes in the Polar regions and the microbiology studies on them……………… ............................................................................................. 4 1.2.3 Saline springs in Polar regions ............................................................ 7 1.3 Challenges to microbial life in Polar saline water bodies .......................... 11 1.3.1 The availability of liquid water in cryoenvironments ....................... 11 1.3.2 The adaptation of microorganisms to cryoenvironments .................. 12 1.3.2.1 Cold adaptations of microorganisms ..................................................... 13 1.3.2.2 Saline adaptation of microorganisms .................................................... 16 1.4 Applications and astrobiology aspects of the study ................................... 18 1.4.1 Potential applications of microorganisms from cold saline environments ..................................................................................................... 18 1.4.2 Astrobiological aspects ..................................................................... 20 1.5 Objectives .................................................................................................. 22 CONNECTING TEXT ...................................................................................................... 24 CHAPTER 2 ...................................................................................................................... 24 Microbial Diversity and Activity in Hypersaline High Arctic Spring Channels ............... 24 ABSTRACT ...................................................................................................................... 25 2.1 Introduction .......................................................................................................... 26 2.2 Materials and Methods ......................................................................................... 29 2.2.1 Sample site description and geochemical analyses .................................. 29 2.2.2 CO and CH concentrations and flux measurements .............................. 31 2 4 2.2.3 Microscopy and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) ............................................................................ 32 2.2.4 Microbial cultivation and characterization .............................................. 33 ii 2.2.5 Bacterial and Archaeal 16S rRNA gene clone libraries ........................... 35 2.2.6 Biodiversity indices and statistical analysis of 16S rRNA gene clone libraries ............................................................................................................. 36 2.2.7 Microbial activity at cold temperatures ................................................... 37 2.2.8 Nucleotide accession numbers ................................................................. 37 2.3 Results .................................................................................................................. 38 2.3.1 Geochemical analyses .............................................................................. 38 2.3.2 CO and CH concentrations and flux measurements .............................. 39 2 4 2.3.3 Cell enumeration ...................................................................................... 40 2.3.4 Identification and characterization of isolates ......................................... 40 2.3.5 Bacterial and Archaeal 16S rRNA gene clone libraries ........................... 41 2.3.6 Microbial activity at cold temperatures ................................................... 44 2.4 Discussion ............................................................................................................ 44 2.5 Acknowledgements .............................................................................................. 52 CONNECTING TEXT ...................................................................................................... 62 CHAPTER 3 ...................................................................................................................... 62 Defining the Functional Potential and Active Community Members of a Sediment Microbial Community in a High Arctic Hypersaline Subzero Spring ............................... 62 ABSTRACT ...................................................................................................................... 63 3.1 Introduction .......................................................................................................... 64 3.2 Materials and Methods ......................................................................................... 68 3.2.1 Study site and sample collection .............................................................. 68 3.2.2 Metagenomic DNA extraction and sequencing ....................................... 68 3.2.3 Metagenomic DNA analyses .................................................................... 69 3.2.4 Statistical analyses ................................................................................... 71 3.2.5 RNA extraction and 16S ribosomal cDNA analyses ................................ 72 3.2.6 Nucleotide and metagenome sequence accession numbers ..................... 73 3.3 Results and Discussion ........................................................................................ 74 3.3.1 Metagenomic sequencing statistics .......................................................... 74 3.3.2 Metagenomic microbial community composition ................................... 75 3.3.3 Functional gene profiles of the LH metagenome ..................................... 78 3.3.4 Methane metabolism ................................................................................ 79 3.3.5 Nitrogen metabolism ................................................................................ 80 3.3.6 Sulfur Metabolism ................................................................................... 81 3.3.7 Stress response ......................................................................................... 82 3.3.8 Comparison with other metagenomes ...................................................... 85 iii 3.3.9 Active profiling of LH based on 16S ribosomal cDNA pyrosequencing . 87 3.4 Conclusion ........................................................................................................... 90 3.5 Acknowledgements .............................................................................................. 91 CONNECTING TEXT ...................................................................................................... 99 CHAPTER 4 ...................................................................................................................... 99 Seasonal Changes in Microbial Communities at a Hypersaline Spring Channel and the Adjacent Tundra ................................................................................................................. 99 ABSTRACT ...................................................................................................................... 99 4.1 Introduction ........................................................................................................ 100 4.2 Materials and methods ....................................................................................... 105 4.2.1 Sample collection and geochemical analyses ........................................ 105 4.2.2 DNA and RNA extraction, cDNA synthesis, pyrosequencing and analyses. ......................................................................................................................... 106 4.2.4 UniFrac analysis of the LH libraries ...................................................... 108 4.2.5 Archaeal amoA and hcd gene cloning and sequencing and analyses ..... 109 4.2.6 qPCR of Thaumarchaeal 16S/amoA/hcd genes in LH channel sediments and tundra ........................................................................................................ 110 4.3 Results ................................................................................................................ 112 4.3.1 Geochemical analyses of the LH channel and tundra sampling sites .... 112 4.3.2 Pyrosequencing library statistics ............................................................ 113 4.3.3 Microbial compositions in LH spring channel and tundra in the summer ......................................................................................................................... 115 4.3.4 Microbial compositions in LH spring channel and the tundra in the winter ......................................................................................................................... 117 4.3.5 Archaeal functional genes for ammonia oxidation and carbon fixation 119 4.4 Discussion .......................................................................................................... 120 4.4.1 Seasonal changes in active microbial components in LH channel area . 120 4.4.2 Microbial biodiversity and richness in LH channel sediments .............. 124 4.4.3 Thaumarchaeal signature functional genes in the LH channel sediment and the adjacent tundra ................................................................................... 128 4.5 Conclusion ......................................................................................................... 133 4.6 Acknowledgements ............................................................................................ 134 CHAPTER 5 .................................................................................................................... 134 Discussion and Conclusions ............................................................................................ 134 5.1 Microbial diversity and activity in the hypersaline spring channel ................... 134 5.2 Functional potential and the active components at LH outlet ............................ 135 iv 5.3 Seasonal changes in microbial communities at a hypersaline spring channel and the adjacent tundra ................................................................................................... 136 5.4 Conclusions ........................................................................................................ 138 References ........................................................................................................................ 142 APPENDIX: Supporting Information .............................................................................. 182 v ABSTRACT The Lost Hammer (LH) spring, located on Axel Heiberg Island in the Canadian High Arctic, is the coldest and saltiest terrestrial spring discovered to date. It is characterized by perennial discharges of subzero temperatures (-5°C), hypersalinity (24% salinity), along with reducing (≈-165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0% w/w), dissolved H S/sulfides (up to 25 ppm), ammonia (≈381 µM), 2 and methane (11.1 g d-1). The LH spring system contains the outlet and the outflow channel. In the initial study of the LH channel sediment, the results determined the microbial abundance by using fluorescent microscopy in the channel sediment; also, the study characterized the cultured representatives and confirmed that most of these isolates are halotolerant and psychrotolerant microorganisms. The mineralization assays on the LH channel sediment revealed that the heterotrophic microorganisms remained activity down to -20°C. To determine the total microbial communities inhabiting the LH spring system, the study demonstrated the microbial 16S rRNA genes and the active 16S rDNA profiles for different sampling locations, including the outlet, channel and the adjacent tundra. We identified that the Bacteria from the five phyla (Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria) were the dominant bacterial groups at the LH spring system. In the archaeal communities, microorganisms affiliated with three phyla (Euryarchaeota, Crenarchaeota, and Thaumarchaeota) were identified. To determine its total functional and genetic potential, we performed metagenomic analysis of the LH spring outlet microbial community. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic dataset. Stress-response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. vi Comparing functional community composition of the LH spring to metagenomes from other saline/subzero environments revealed a close association between LH and another Canadian High Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. To identify the abundance and the presence of the featured genes (amoA and hcd) of Thaumarchaea at the LH spring system, we performed qPCR to assess their abundance. A phylogenetic analysis was performed using the putative amino acid sequences of these genes to identify their phylogenetic affiliation. The copy numbers of Thaumarchaeal amoA and hcd genes in LH channel sediment and the adjacent tundra were roughly 10 to a hundred-folds less than those reported in other environments. The phylogenetic tree of amoA showed similar patterns of grouping as the analysis done by 16S rRNA. This thesis demonstrates the microbial ecology, diversity and activity at the LH spring system and provides knowledge for the microbiology studies on cryo- and hypersaline environments. vii RÉSUMÉ La source de Lost Hammer (LH), située sur l’ile d’Axel Heiberg dans le Grand Nord Canadien, est la source la plus froide et la plus salée découverte à ce jour sur terre. Elle est caractérisée par des décharges pérennes de températures sous zéro (-5°C), par ses conditions hyper salines (salinité de 24%), réductrices (≈-165 mV), microoxiques, et oligotrophiques. Elle est aussi riche en sulfates (10.0% w/w), en H S/sulfites dissouts, en 2 ammoniac (≈381 µM), et en methane (11.1 g d-1). Le système de la Source de LH contient la sortie et le canal de sortie. L’étude originale des sédiments du canal détermina l’abondance de microbes avec des techniques de microscopie fluorescente. L’étude caractérisa aussi les cultures représentatives et confirma que la majorité des isolats sont des microorganismes halotolérants et psychrotolérants. Les tests de minéralisation des sédiments du canal de LH ont révélés que les microorganismes hétérotrophes restent actifs jusqu’à -20°C. Pour determiner la communauté totale vivant dans le système de la source de LH, l’étude investigua les profils de l’ARNr 16S ainsi que l’ARNr 16S actif microbien pour différents endroits d’échantillonnage, incluant la sortie, le canal, et la toundra adjacente. Nous avons identifié que les bactéries de cinq phylums (Bacteroidetes, protéobactéries, Actinobactéries, Firmicutes et Cyanobactéries) étaient les groupes de bactéries dominantes dans ce système. Dans les communautés archées, des microorganismes affiliés avec trois phylums (Euryarchaeota, Crenarchaeota et Thaumarchaeota) ont été identifiés. Pour déterminer son potentiel fonctionel et génétique total, nous avons performé l’analyse métagénomique de la communauté microbienne de la sortie de la source de LH. La reconstruction des voies enzymatiques responsables pour la nitrification/dénitrification/ammonification bactériennes et pour la réduction du sulfate apparut presque complète dans la banque de donnés métagnénomique. Les gènes de viii
Description: