Message passing in random satisfiability problems 4 0 0 2 n MarcMe´zard a J CNRS,LaboratoiredePhysiqueThe´oriqueetMode`lesStatistiques Universite´ParisSud 4 1 Baˆtiment100,91405OrsayCedex,France [email protected] ] n n - Abstract s i d . Thistalksurveystherecentdevelopmentofmessagepassingprocedures t a forsolvingconstraintsatisfactionproblems.Thecavitymethodfromsta- m tisticalphysicsprovidesageneralizationofthebeliefpropagationstrat- egythatisabletodealwiththeclusteringofsolutionsintheseproblems. - d Itallowstoderiveanalyticresultsontheirphasediagrams,andoffersa n newalgorithmicframework. o c [ 1 Messagepassing 1 v ManyNIPSparticipantscanbeconfrontedtothefollowingtypeofgenericproblem[1]. A 7 systeminvolvesmany’simple’discretevariables,andeachvariablecantakeacertainnum- 3 berofdiscretevalues(whichisnottoolarge).Thesevariablesinteract,andtheinteractions 2 canbewrittenintheformofconstraints,whereeachconstraintinvolvesasmallfractionof 1 allthevariables. Onewantstofindthevaluesofthevariableswhicharecompatiblewith 0 allconstraints(or,whenthisisimpossible,findthevalueswhichminimizethenumberof 4 0 violatedconstraints). / t This’constraintsatisfactionproblem’(CSP) isaubiquitoussituationwhichshowsupfor a instanceinstatistical physics,combinatorialoptimization,errorcorrectingcodes, statisti- m cal inference,... It turns out that, in order to solve CSPs, these various disciplines have - developed, often independently, some message passing procedures which turn out to be d remarkablypowerful.Thegeneralstrategyinvolvestwomainsteps: n o • Organizetheconstraintsandvariablesinagraph c v: • Exchangemessages,ofprobabilisticnature,alongthegraph i X Weshallillustrateithereusingasanexamplethefamous’satisfiability’problem. r a 2 Satisfiability andcomplexity theory The problem of satisfiability involvesN Boolean variablesx ∈{0,1}. There exist thus i 2N possible configurations of these variables. The constraints take the special form of ’clauses’,whicharelogical’OR’functionsofthevariables. Forinstancetheclausex ∨ 1 x ∨x¯ is satisfied whenever x = 1 or x = 1 or x = 0. Therefore, among the 8 27 3 1 27 3 possible configurations of x ,x ,x , the only one which is forbidden by this clause is 1 27 3 x = x = 0,x = 1. Aninstanceofthesatisfiabilityproblemisgivenbythelistofall 1 27 3 theclauses. Satisfiabilityisadecisionproblem. Onewantstogiveayes/noanswertothequestion: is thereachoiceoftheBooleanvariables(calledan’assignment’)suchthatallconstraintsare satisfied (whenthereexistssuch a choicethe correspondinginstanceis said to be ’SAT’, otherwiseitis’UNSAT’)? Thisproblemappearsinmanyfieldsanditsimportanceisaconsequenceofitsgenericity: aninstanceoftheSATproblemcanbeseenasalogicalformula(suchas(x ∨x ∨x¯ )∧ 1 27 3 (x¯ ∨x )∧...),anditturnsoutthatanyformulacanbewritteninthisformofthe’and’ 11 2 functionofseveralclauses,called’conjunctivenormalform’. Satisfiability plays an essential role in the theoryof computationalcomplexity,becauseit wasthe firstproblemwhichhasbeenshownto be’NP-complete’,in a beautifultheorem byCookin1971[2]. TheNPproblemsarethosedecisionproblemswherea’yes’answer canbecheckedinatimewhichispolynomialinN. Thisisavastclassofproblemswhich containssuchdifficultproblemsasthetravelingsalesman,theproblemoffindingaHamil- tonian path in a graph (a path which goes once through all vertices), the protein folding problem,orthespinglassprobleminstatisticalphysics. ThefactthatsatisfiabilityisNP- completemeansthatanyotherNPproblemcanbemappedtosatisfiability inpolynomial time. Soifwehappenedtohaveapolynomialalgorithmforsatisfiability(i.e. analgorithm thatsolvesthedecisionprobleminatimewhichgrowslikeapowerofN),alltheproblems inNPwouldalsobesolvedinpolynomialtime. Thisisgenerallyconsideredunlikely,but thecorrespondingmathematicalproblem(whethertheNPclassisdistinctornotfromthe ’P’classofproblemswhicharesolvableinpolynomialtime)isanimportantopenproblem. The result of Cook is a worst case analysis of the satisfiability problem. However it is known experimentally that many instances of this problem are easy to solve, and re- searchershavestartedtostudysomeclassesofinstancesinordertocharacterizethe’typ- icalcase’complexityofsatisfiabilityproblems. Aclassofinstancesisaprobabilitymea- sureonthe spaceofinstances. Amuchstudiedprobleminthisframeworkistherandom ’3-SAT’problem. Eachclausecontainsexactlythreevariables;theyarechosenrandomly in{x ,..,x }withuniformmeasure,andeachvariableisnegatedrandomlywithproba- 1 N bility 1/2. This problem is particularlyinteresting because its difficulty can be tuned by varying one single control parameter, the ratio α = M of constraints per variable. One N expectsintuitivelythatforsmallαmostinstancesareSAT,whileforlargeαmostofthem are UNSAT.Numericalexperimentshaveconfirmedthis scenario,buttheyindicateactu- allya moreinterestingbehavior. TheprobabilitythataninstanceisSAT exhibitsa sharp crossover,fromavaluecloseto1toavaluecloseto0,atathresholdα whichisaround c 4.3.WhenthenumberofvariablesN increases,thecrossoverbecomessharperandsharper [3,4]. IthasbeenshownthatitbecomesastaircasebehavioratlargeN [5]: almostallin- stancesareSATforα<α ,almostallinstancesareUNSATforα>α ,andsomebounds c c onthevalueofα havebeenderived[6,7]. Thisthresholdbehaviorisnothingbutaphase c transition as one finds in physics, and has been analyzed using the methodsof statistical physics[3,8]. A veryinterestingobservationis thatthe algorithmicdifficultyofthe problem,measured bythetimetakenbythealgorithmtoanswerifatypicalinstanceissatisfiable,alsodepends stronglyonα: thetypicalproblemiseasywhenαiswellbeloworwellaboveα ,andis c much harder when α is close to α . Therefore the region of phase transition is also the c regionwhichisinterestingfromthecomputationalpointofview. 3 Statistical physicsofthe random 3-SAT problem In the last two decades, it has been realized that some concepts and methods developed instatisticalphysicscanbeusefultostudyoptimizationproblems[9]. Theinterestinthis type of approachhas been focusingin recentyears on the randomsatisfiability problem, following the works of colleagues like Kirkpatrick, Monasson and Zecchina [8, 10, 11]. This is indeed a choice problem for a multidisciplinary study, because the SAT-UNSAT transition is a phase transition in the usual statistical physics sense, and the algorithmic complexityoftheproblemshowsuppreciselyintheneighborhoodofthisphasetransition. Ontheanalyticalside,thefirstbreakthroughusedthereplicamethodandcomputedsome approximations of the phase diagram using either a ’replica symmetric’ approximation, or some variational approximation to the replica symmetry breaking solution. Hereafter I will mainlyreview the mostrecentdevelopmentsinitiated in [12, 13]. These have pro- videdsomeanalyticalinsightintothephasediagramoftheproblem,whichturnsouttobe morecomplicatedthanoriginallythought,aswellasanewalgorithmicstrategybasedon messagepassingforthecaseofrandom3-satisfiability. ThemainanalyticalresultonthephasediagramissummarizedinFig.1. Whenonevaries thecontrolparameterα(thenumberofconstraintspervariable),thereactuallyexistthree distinctphases,separatedbytwothresholdsα andα . Thethresholdatα =4.267isthe d c c satisfiabilitythresholdwhichseparatestheSATphasesatα < α fromtheUNSATphase c atα > α . ButintheSATregion,thereactuallyexisttwodistinctphases. Theydifferby c thestructureofthespaceofSATassignments(the’SATspace’). Forα < α ≃ 3.86,the d setofSATassignmentsbuildsoneclusterwhichisbasicallyconnected[11,14]. Starting from a genericSAT assignment(which is a pointon the unitN-dimensionalhypercube), one can step to another one nearby by flipping a finite number of variables. It turns out that one can get from any generic SAT assignment to any other one through a sequence of such steps, always staying in the SAT space. On the other hand, for α > α , this d SAT space becomesdisconnected: the SAT assignments are groupedinto many clusters. Itisimpossibletogetfromoneclustertoanotheronewithouthavingtoflipatsomemo- mentamacroscopicfractionofthevariables. Simultaneously,thespaceofconfigurations develops many ’metastable states’: imagine walking along the configuration space (the N-dimensional hypercube), flipping one variable at a time, but allowing only the moves whichdecrease,orleaveconstant,thenumberofviolatedclauses. Suchanalgorithmwill gettrappedintosome’metastableclusters’,whichareconnectedclustersofassignments, allviolatingthesame (non-zero)numberofclauses. Thisstructurehassomedirectalgo- rithmicimplication: theseparationofclustersinthephaseα > α makesitverydifficult d foralgorithmsbasedonlocalmovestofindaSATassignment. Thephaseα < α isthus d calledthe’Easy-SAT’phase,whiletheonebetweenα andα isthe’Hard-SAT’phase. d c These results have been obtained using the cavity method. Originally this method was invented in the study of spin glass theory, in order to solve the Sherrington Kirkpatrick model [15]. It is only recently that new developments in this method allowed to solve ’finiteconnectivity’problemswhereeachvariableinteractswith asmallnumberofother variables[16]. Thankstothesedevelopment,ithasbecomepossibletostudyconstraintsat- isfactionproblems. Althoughthemethodisnotfullyrigorous,theself-consistencyofthe mainunderlyinghypothesishasbeenchecked[17, 18, 19], andthereforetheresultscon- cerningthesatisfiabilitythreshold,aswellascrucialfeaturesofthephasediagramlikethe existenceoftheintermediateHard-SATphase,areconjecturedtobeexactresults,notap- proximations.Ofcourse,itisveryimportanttodeveloprigorousmathematicalapproaches inordertoconfirmorinfirmthem. It turns out that the cavity method when applied to one given instance of the problem amountstoamessagepassingprocedurewhichcanalsobeusedasanalgorithm.Therefore onesurprisingoffspringofthetheoreticaldevelopmentofthecavitymethodinrecentyears, SAT (E = 0 ) UNSAT (E >0) 0 0 1 state Many states Many states E=0 E>0 E>0 α α = 4.267 α =M/N d c Figure1:Thephasediagramoftherandom3-SATproblem:whenoneincreasestheratioα ofconstraintstovariables,onefindssuccessivelyanEasy-SATphase,aHard-SATphase, andanUNSATphase whichaimedatansweringveryfundamentalquestionsconcerningthephasediagram,has been the finding of a new class of algorithms, which turn out to be very efficient in the Easy-SATphase. Thenextsectionsaim atdescribingthemainideasofthecavitymethod,takingthepoint ofviewofthemessagepassingalgorithm. Itisimpossibletoexplainallthedetails,orto givethejustification,forallthesesteps. Theinterestedreaderisreferredtorefs[16]forthe basic conceptsofthe cavity methodin finite connectivitydisorderedsystems, and to refs [12,13,20,18]forthesolutionoftherandomsatisfiabilityproblem. 4 Factorgraphs and warningpropagation Thefirststepconsistsinagraphicalrepresentationofthesatisfiabilityproblem.Eachclause isrepresentedbya functionnode, connectedto thevariousvariableswhichappearin the clause,asdescribedinFig.2. Factorgraphsturnouttobeveryusefulinvariouscontexts,includingstatisticalinference [21]anderrorcorrectingcodes[22]. Thegeneralformalismisdescribedin[23]. Inarandom3-SATproblemwithN variablesandM = αN clauses,inthelargeN limit, itiseasytoseethatthefactorgraphisarandombipartitegraph,wherethefunctionnodes have a fixed connectivity equal to 3, and the variable nodes have a Poisson distributed connectivitywithamean3α. Thesimplestcaseofmessagepassingisthewarningpropagation. Alongalltheedgesof thegraph,onepassesmessages. Ifclauseainvolvesvariablei,themessageu ∈{0,1} a→i sent from clause a to variable i is a way for clause a to inform variable i: A warning u = 1 means: “Accordingto the messagesI havereceived(fromtheothervariables a→i whichareconnectedtome),youshouldtakethevaluewhichsatisfiesme!”.Whenu = a→i 0,thismeansthatnowarningispassed,whichmeansamessagesaying:“Accordingtothe messagesIhavereceived,thereisnoproblem,youcantakeanyvalue!” Itcanbeshownthatwarningpropagationconvergesandgivesthecorrectanswerinasat- isfiability problem described by a tree factor graph (such a problem can be nontrivial if c 4 2 a 1 2 b d a 1 5 e 3 3 Figure2: Factorgraphrepresentationof satisfiability: A variableis representedby a cir- cle. A clause is represented by a square, connected with a full (resp. dashed) line to a variablewhenthisvariableappearsassuch(resp. negated)in theclause. Lefthandside: The clause x¯ ∨ x ∨ x¯ . Right hand side: the factor graph representing the formula: 1 2 3 (x¯ ∨x¯ ∨x¯ )∧(x ∨x¯ )∧(x ∨x ∨x )∧(x ∨x ∨x¯ )∧(x ∨x¯ ∨x ) 1 2 4 1 2 2 4 5 1 2 5 1 3 5 there are, among the clauses, some ’unit clauses’, involving a single variable, and forc- ing this variable): the problemis SAT if and onlyif, on each variablenode, there are no contradictorymessages. Thissimplewarningpropagationcorrespondstosomelimitingcaseofthecelebratedbelief propagation(“BP”)algorithm.ThebasicideaofBPistostudytheprobabilityspaceofall SATassignmentswithuniformmeasure. ConsideragaintheclauseinFig.3. Imagineone knowsthejoint’cavity’probabilityP(a)(x ,x )forthevariablesx ,x whentheclause 2 3 2 3 aisabsent.Thenonecandeducethefollowingestimatefromaconcerningthestateof1: Pa→1(x1)= X Ca(x1,x2,x3)P(a)(x2,x3), (1) x2,x3 where C is the indicator function of clause a, equal to one if and only if the clause is a satisfied. Theprobabilitydistributionofx intheabsenceofaclausebisgivenby: 1 P(b)(x1)=C Y Pa→1(x1) (2) a∈V(1)\b whereC isanormalizationconstant. These exact equations are useless as such, but they become very useful if one adds the hypothesisthat P(a)(x ,x )∼P(a)(x )P(a)(x ). (3) 2 3 2 3 Then eqs (1,2) close onto a set of self-consistent equations for the cavity probabilities P(a)(x). These equations can be interpreted as a message passing procedure which is the BPalgorithm; theyalso carrythe nameofBethe approximationin statistical physics. ThewarningpropagationequationsaresomeversionofBPinwhichonefocusesontothe variables which are forced to take one given value in all the SAT configurations (in the statisticalphysicsapproachtheycorrespondtowritingtheBetheequationsdirectlyatzero temperature).Theonsetofclusteringatthiszerotemperaturelevelsignalstheexistenceof clustersinwhichagivenvariableisfrozen(ittakesthesamevalueinallconfigurationsof thecluster):ittakesplaceatavalueα∼3.91. 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 2 3 2 3 1 1 1 0 a a u = 1 u = 0 a 1 a 1 1 1 Figure3: Two examplesof warningpropagationin a clause a. In orderto determinethe messagewhichitpassestovariable1,clauseaconsidersallthemessagesreceivedbythe othervariablestowhichitisconnected,herethevariables2and3. Onthelefthandside, themessagesreceivedby2tellittotakethevaluex = 1, whichdoesnotsatisfy clause 2 a, andthemessagesreceivedby3tellittotakethevaluex = 0,whichdoesnotsatisfy 3 clausea. Therefore,inordertobesatisfied,clauseamustrelyonvariable1. Itthussends a warning u = 1. Right hand side: an example where no warning is sent, because a→1 variable3istoldbyitsenvironmenttotakethevaluex =1,whichsatisfiesclausea. 3 Themain questionis whetherthe factorizationapproximation(3)is correct. Ifthe factor graphisatree, itisobviouslycorrect. Inthecaseofa random3-SAT,orrandomK-SAT problem, one may notice that generically the factor graph is locally tree-like: the loops appearonlyatlargedistances(oforderlogN). Therefore,intheabsenceofclausea,the twovariablesx ,x arefarapart. Insuchasituationonemayhopethatthefactorization 2 3 willhold,inthelargeN limit. Howeverthisistrueonlyinthecasewherethereisasingle purestateinthesystem(i.e. asingleclusterofsolutions). Ifthereareseveralpurestates, it is well knownin statistical physicsthat the correlationsof the variables decay at large distancesonlywhentheprobabilitymeasureisrestrictedtoonepurestate. 5 Proliferationofstates: survey propagation Thereforeone can expectsthe BP, or the warningpropagation,to be correctin the Easy- SATphase. IntheHard-SATphasewherepurestatesproliferate,theBPwouldbecorrect if we had a way to restrict the measure to the SAT configurations in one given cluster. Howeverthereisnowaytoachievethisglobally.BPisalocalmessagepassingprocedure. Locally it will tend to find equilibrated configurations corresponding to one cluster, but thereisnowaytoselectthesameclusterindistantpartsofthefactorgraph. In order to handle such a situation the cavity method introduces generalized messages: Along each edge a−i, a message is sentfrom clause a to variablei. Thismessage is a surveyoftheelementarymessagesinthevariousclustersofSATconfigurations. Because warningsaresosimple(thisiswhereitisusefultousewarningsratherthanstandardBP), thesurveyischaracterizedbyasinglerealnumberη ,whichgivestheprobabilityofa a→i warningbeingsentfromconstraintatovariablei,whenaclusterispickedupatrandom inthesetofallclustersofSATassignments. Thesurveypropagation(SP) equationsareeasily written. Lookingagainattheclause of Fig.3, let us denote by U the set of function nodes, distinct from a, connected through a full line to variable x , and V the set connected through a dashed line. Introduce the 2 probabilitiesthatno warningsare sentfromU and V, givenby π2 = (1−η ) + Qb∈U b→2 andπ2 = (1−η ).Similarquantitiesπ3 areintroducedforthevariablex .Then − Qb∈V b→2 ± 3 theSPequationsread: π2(1−π2) π3(1−π3) η = − + + − (4) a→1 π2 +π2 −π2π2 π3 +π3 −π3π3 + − + − + − + − Itturnsoutthatthe propagationof these surveysalongthe graphconvergesfora generic probleminthewholeHard-SATphase. These SP equations can be used in two ways. When iterated on one given sample, they provide very interesting information concerning each variable: From the set of surveys, one can compute for instance the probability that one variable is constrained to 0, when one choosesa SAT cluster randomly. The surveyinspired decimationalgorithm[12, 13] uses this information as follows: it identifies the most biased variable (the one which is polarized to 1, or to 0, with the largest probability), and fixes it. Then the problem is reducedto a new satisfiability problemwith one variableless. One can runagainthe SP algorithmonthissmallerproblemanditeratetheprocedure.ThissimplestrategyfindsSAT assignmentintheregionα<4.252(quiteclosetotheUNSATthresholdα =4.267),ina c timeoforderNlogN whichallowstoreachlargesamplesizesofafewmillionvariables. Somebacktrackinginthewayoneperformsthedecimation[24]allowstogetclosertothe threshold,butuntilnowitisnotknownifthesesurveybasedalgorithmswillallowtosolve thealgorithmicprobleminthewholeHard-SATphaseornot. OntheotherhandonecanalsousetheSPequationsinordertofindanalyticalresults. The ideaistoperformastatisticalanalysisoftheSPequations: oneintroducestheprobability densityP(η),whenonepicksupanedgea−irandomlyinalargerandom3-SATproblem, that the survey η takes a given value η. The SP equations (4) allow to write a self- a→i consistentnon-linearintegralequationforP(η). Solvingtheseequations,onecandeduce allthefeaturesofthephasediagramofFig.1. ThethresholdsfoundforrandomK-sat,for K =3,4,5,6,10,arerespectivelyequalto4.267, 9.931, 21.12, 43.37, 708.9(see[18]). TheequationscanalsobegeneralizedtostudytheUNSATphase,inwhichonecandeter- mine the minimal numberof violated clauses, both analytically, and also algorithmically ononegivensample,butthisgoesbeyondthepresentpaper. Thisgeneralcavitymethodstrategycanalsobeusedinotherconstraintsatisfactionprob- lems [25], and has foundnon-trivialresults for instance on the coloring problem[26]. A particularlyinterestingcaseistheXOR-SATproblem[27],wherethesametypeofphase diagramis found,and the cavity methodresultcan be checkedversusrigorouscomputa- tions. It is also worth mentioning that for K even, the SAT-UNSAT threshold α found c withthecavitymethodhasbeenshowntobeanupperboundtothecorrectresult[28]. Our conjectureisthatthisboundisactuallytight. To summarize, we have considered sparse network of many interacting elements, with interactions taking the form of constraints on their relative values. In this situation, one often finds a “Hard-SAT” phase, with an exponential number of well separated solution clusters, togetherwith an exponentiallylargernumberof’metastable states’. Itturnsout that the local exchange of probabilistic messages between the elements provides a very detailed statistical informationon the varioussolutions. One can expectthat this general frameworkwillalsofindapplicationsinneuralnetworkstudies. Acknowledgments The results presented here have been obtained in various collaborations, mainly with G. ParisiandR.Zecchina,andalsowithA.Braunstein,S.Mertens,M.Weigt. References [1] M.Me´zard,Science301(2003)1685. [2] S.Cook,Proc.3rdAnn.ACMSymp.onTheoryofComputing,Assoc.Comput.Mach., NewYork,1971,p.151. [3] S.Kirkpatrick,B.Selman,Science264,1297(1994). [4] J.A.CrawfordandL.D.Auton,Artif.Intell.81,31-57(1996). [5] E.Friedgut,J.Amer.Math.Soc.12(1999)1017. [6] O. Dubois, Y. Boufkhad and J. Mandler, Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,124(SanFrancisco,CA,2000). [7] D. Achlioptas and C. Moore, http://arXiv.org/abs/cond-mat/0310227; D. Achlioptas andY.Peres,http://arXiv.org/abs/cs.CC/0305009. [8] R.Monasson,R.Zecchina,S.Kirkpatrick,B.SelmanandL.Troyansky,Nature(Lon- don)400,133(1999). [9] O.Dubois,R.Monasson,B.SelmanandR.Zecchina(Eds.),Theoret.Comp.Sci.265 (2001). [10] R.MonassonandR.Zecchina, Phys.Rev. E561357–1361(1997). [11] G.Biroli,R.MonassonandM.Weigt, Euro.Phys.J. B14551(2000). [12] M.Me´zard,G.ParisiandR.Zecchina,Science297,812(2002)(Sciencexpresspub- lishedon-line27-June-2002;10.1126/science.1073287). [13] M.Me´zardandR.Zecchina,Phys.Rev.E66(2002)056126. [14] G.Parisi,cs.CC0301015. [15] M.Me´zard,G.ParisiandM.A.Virasoro,SpinGlassTheoryandBeyond,WorldSci- entific,Singapore(1987). [16] M. Me´zard, and G. Parisi, Eur.Phys. J. B 20, 217–233 (2001). M. Me´zard and G. Parisi,J.Stat.Phys.111(2003)1. [17] A.MontanariandF.Ricci-Tersenghi,Eur.Phys.J.B33(2003)339. [18] S.Mertens,M.Me´zardandR.Zecchina,http://arXiv.org/abs/cs.CC/0309020. [19] A. Montanari, G. Parisi and F. Ricci-Tersenghi, http://arXiv.org/abs/cond-mat/0308147. [20] A.Braunstein,M.Me´zard,R.Zecchina,http://fr.arXiv.org/abs/cs.CC/0212002. [21] J.Pearl,ProbabilisticReasoninginIntelligentSystems,2nded.(SanFrancisco,Mor- ganKaufmann,1988). [22] Specialissue onCodes, GraphsandIterativeAlgorithms,IEEE Trans.Info.Theory vol.47,no2(2001). [23] F.R.Kschischang,B.J.FreyandH.-A.Loeliger,IEEETrans.Info.Theory47(2001) 498. [24] G.Parisi,cond-mat/0308510. [25] A.Braunstein,M.Me´zard,M.WeigtandR.Zecchina,cond-mat/0212451. [26] R.Mulet,A.Pagnani,M.Weigt,R.Zecchina,Phys.Rev.Lett.89(2002)268701. [27] M.Me´zard,F.Ricci-Tersenghi,R.Zecchina,J.Stat.Phys111(2003)505.S.Cocco, O.Dubois,J.Mandler,R.Monasson,http://arXiv.org/abs/cond-mat/0206239. [28] S.FranzandM.Leone,http://arXiv.org/abs/cond-mat/0208280.