ebook img

Message passing in random satisfiability problems PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Message passing in random satisfiability problems

Message passing in random satisfiability problems 4 0 0 2 n MarcMe´zard a J CNRS,LaboratoiredePhysiqueThe´oriqueetMode`lesStatistiques Universite´ParisSud 4 1 Baˆtiment100,91405OrsayCedex,France [email protected] ] n n - Abstract s i d . Thistalksurveystherecentdevelopmentofmessagepassingprocedures t a forsolvingconstraintsatisfactionproblems.Thecavitymethodfromsta- m tisticalphysicsprovidesageneralizationofthebeliefpropagationstrat- egythatisabletodealwiththeclusteringofsolutionsintheseproblems. - d Itallowstoderiveanalyticresultsontheirphasediagrams,andoffersa n newalgorithmicframework. o c [ 1 Messagepassing 1 v ManyNIPSparticipantscanbeconfrontedtothefollowingtypeofgenericproblem[1]. A 7 systeminvolvesmany’simple’discretevariables,andeachvariablecantakeacertainnum- 3 berofdiscretevalues(whichisnottoolarge).Thesevariablesinteract,andtheinteractions 2 canbewrittenintheformofconstraints,whereeachconstraintinvolvesasmallfractionof 1 allthevariables. Onewantstofindthevaluesofthevariableswhicharecompatiblewith 0 allconstraints(or,whenthisisimpossible,findthevalueswhichminimizethenumberof 4 0 violatedconstraints). / t This’constraintsatisfactionproblem’(CSP) isaubiquitoussituationwhichshowsupfor a instanceinstatistical physics,combinatorialoptimization,errorcorrectingcodes, statisti- m cal inference,... It turns out that, in order to solve CSPs, these various disciplines have - developed, often independently, some message passing procedures which turn out to be d remarkablypowerful.Thegeneralstrategyinvolvestwomainsteps: n o • Organizetheconstraintsandvariablesinagraph c v: • Exchangemessages,ofprobabilisticnature,alongthegraph i X Weshallillustrateithereusingasanexamplethefamous’satisfiability’problem. r a 2 Satisfiability andcomplexity theory The problem of satisfiability involvesN Boolean variablesx ∈{0,1}. There exist thus i 2N possible configurations of these variables. The constraints take the special form of ’clauses’,whicharelogical’OR’functionsofthevariables. Forinstancetheclausex ∨ 1 x ∨x¯ is satisfied whenever x = 1 or x = 1 or x = 0. Therefore, among the 8 27 3 1 27 3 possible configurations of x ,x ,x , the only one which is forbidden by this clause is 1 27 3 x = x = 0,x = 1. Aninstanceofthesatisfiabilityproblemisgivenbythelistofall 1 27 3 theclauses. Satisfiabilityisadecisionproblem. Onewantstogiveayes/noanswertothequestion: is thereachoiceoftheBooleanvariables(calledan’assignment’)suchthatallconstraintsare satisfied (whenthereexistssuch a choicethe correspondinginstanceis said to be ’SAT’, otherwiseitis’UNSAT’)? Thisproblemappearsinmanyfieldsanditsimportanceisaconsequenceofitsgenericity: aninstanceoftheSATproblemcanbeseenasalogicalformula(suchas(x ∨x ∨x¯ )∧ 1 27 3 (x¯ ∨x )∧...),anditturnsoutthatanyformulacanbewritteninthisformofthe’and’ 11 2 functionofseveralclauses,called’conjunctivenormalform’. Satisfiability plays an essential role in the theoryof computationalcomplexity,becauseit wasthe firstproblemwhichhasbeenshownto be’NP-complete’,in a beautifultheorem byCookin1971[2]. TheNPproblemsarethosedecisionproblemswherea’yes’answer canbecheckedinatimewhichispolynomialinN. Thisisavastclassofproblemswhich containssuchdifficultproblemsasthetravelingsalesman,theproblemoffindingaHamil- tonian path in a graph (a path which goes once through all vertices), the protein folding problem,orthespinglassprobleminstatisticalphysics. ThefactthatsatisfiabilityisNP- completemeansthatanyotherNPproblemcanbemappedtosatisfiability inpolynomial time. Soifwehappenedtohaveapolynomialalgorithmforsatisfiability(i.e. analgorithm thatsolvesthedecisionprobleminatimewhichgrowslikeapowerofN),alltheproblems inNPwouldalsobesolvedinpolynomialtime. Thisisgenerallyconsideredunlikely,but thecorrespondingmathematicalproblem(whethertheNPclassisdistinctornotfromthe ’P’classofproblemswhicharesolvableinpolynomialtime)isanimportantopenproblem. The result of Cook is a worst case analysis of the satisfiability problem. However it is known experimentally that many instances of this problem are easy to solve, and re- searchershavestartedtostudysomeclassesofinstancesinordertocharacterizethe’typ- icalcase’complexityofsatisfiabilityproblems. Aclassofinstancesisaprobabilitymea- sureonthe spaceofinstances. Amuchstudiedprobleminthisframeworkistherandom ’3-SAT’problem. Eachclausecontainsexactlythreevariables;theyarechosenrandomly in{x ,..,x }withuniformmeasure,andeachvariableisnegatedrandomlywithproba- 1 N bility 1/2. This problem is particularlyinteresting because its difficulty can be tuned by varying one single control parameter, the ratio α = M of constraints per variable. One N expectsintuitivelythatforsmallαmostinstancesareSAT,whileforlargeαmostofthem are UNSAT.Numericalexperimentshaveconfirmedthis scenario,buttheyindicateactu- allya moreinterestingbehavior. TheprobabilitythataninstanceisSAT exhibitsa sharp crossover,fromavaluecloseto1toavaluecloseto0,atathresholdα whichisaround c 4.3.WhenthenumberofvariablesN increases,thecrossoverbecomessharperandsharper [3,4]. IthasbeenshownthatitbecomesastaircasebehavioratlargeN [5]: almostallin- stancesareSATforα<α ,almostallinstancesareUNSATforα>α ,andsomebounds c c onthevalueofα havebeenderived[6,7]. Thisthresholdbehaviorisnothingbutaphase c transition as one finds in physics, and has been analyzed using the methodsof statistical physics[3,8]. A veryinterestingobservationis thatthe algorithmicdifficultyofthe problem,measured bythetimetakenbythealgorithmtoanswerifatypicalinstanceissatisfiable,alsodepends stronglyonα: thetypicalproblemiseasywhenαiswellbeloworwellaboveα ,andis c much harder when α is close to α . Therefore the region of phase transition is also the c regionwhichisinterestingfromthecomputationalpointofview. 3 Statistical physicsofthe random 3-SAT problem In the last two decades, it has been realized that some concepts and methods developed instatisticalphysicscanbeusefultostudyoptimizationproblems[9]. Theinterestinthis type of approachhas been focusingin recentyears on the randomsatisfiability problem, following the works of colleagues like Kirkpatrick, Monasson and Zecchina [8, 10, 11]. This is indeed a choice problem for a multidisciplinary study, because the SAT-UNSAT transition is a phase transition in the usual statistical physics sense, and the algorithmic complexityoftheproblemshowsuppreciselyintheneighborhoodofthisphasetransition. Ontheanalyticalside,thefirstbreakthroughusedthereplicamethodandcomputedsome approximations of the phase diagram using either a ’replica symmetric’ approximation, or some variational approximation to the replica symmetry breaking solution. Hereafter I will mainlyreview the mostrecentdevelopmentsinitiated in [12, 13]. These have pro- videdsomeanalyticalinsightintothephasediagramoftheproblem,whichturnsouttobe morecomplicatedthanoriginallythought,aswellasanewalgorithmicstrategybasedon messagepassingforthecaseofrandom3-satisfiability. ThemainanalyticalresultonthephasediagramissummarizedinFig.1. Whenonevaries thecontrolparameterα(thenumberofconstraintspervariable),thereactuallyexistthree distinctphases,separatedbytwothresholdsα andα . Thethresholdatα =4.267isthe d c c satisfiabilitythresholdwhichseparatestheSATphasesatα < α fromtheUNSATphase c atα > α . ButintheSATregion,thereactuallyexisttwodistinctphases. Theydifferby c thestructureofthespaceofSATassignments(the’SATspace’). Forα < α ≃ 3.86,the d setofSATassignmentsbuildsoneclusterwhichisbasicallyconnected[11,14]. Starting from a genericSAT assignment(which is a pointon the unitN-dimensionalhypercube), one can step to another one nearby by flipping a finite number of variables. It turns out that one can get from any generic SAT assignment to any other one through a sequence of such steps, always staying in the SAT space. On the other hand, for α > α , this d SAT space becomesdisconnected: the SAT assignments are groupedinto many clusters. Itisimpossibletogetfromoneclustertoanotheronewithouthavingtoflipatsomemo- mentamacroscopicfractionofthevariables. Simultaneously,thespaceofconfigurations develops many ’metastable states’: imagine walking along the configuration space (the N-dimensional hypercube), flipping one variable at a time, but allowing only the moves whichdecrease,orleaveconstant,thenumberofviolatedclauses. Suchanalgorithmwill gettrappedintosome’metastableclusters’,whichareconnectedclustersofassignments, allviolatingthesame (non-zero)numberofclauses. Thisstructurehassomedirectalgo- rithmicimplication: theseparationofclustersinthephaseα > α makesitverydifficult d foralgorithmsbasedonlocalmovestofindaSATassignment. Thephaseα < α isthus d calledthe’Easy-SAT’phase,whiletheonebetweenα andα isthe’Hard-SAT’phase. d c These results have been obtained using the cavity method. Originally this method was invented in the study of spin glass theory, in order to solve the Sherrington Kirkpatrick model [15]. It is only recently that new developments in this method allowed to solve ’finiteconnectivity’problemswhereeachvariableinteractswith asmallnumberofother variables[16]. Thankstothesedevelopment,ithasbecomepossibletostudyconstraintsat- isfactionproblems. Althoughthemethodisnotfullyrigorous,theself-consistencyofthe mainunderlyinghypothesishasbeenchecked[17, 18, 19], andthereforetheresultscon- cerningthesatisfiabilitythreshold,aswellascrucialfeaturesofthephasediagramlikethe existenceoftheintermediateHard-SATphase,areconjecturedtobeexactresults,notap- proximations.Ofcourse,itisveryimportanttodeveloprigorousmathematicalapproaches inordertoconfirmorinfirmthem. It turns out that the cavity method when applied to one given instance of the problem amountstoamessagepassingprocedurewhichcanalsobeusedasanalgorithm.Therefore onesurprisingoffspringofthetheoreticaldevelopmentofthecavitymethodinrecentyears, SAT (E = 0 ) UNSAT (E >0) 0 0 1 state Many states Many states E=0 E>0 E>0 α α = 4.267 α =M/N d c Figure1:Thephasediagramoftherandom3-SATproblem:whenoneincreasestheratioα ofconstraintstovariables,onefindssuccessivelyanEasy-SATphase,aHard-SATphase, andanUNSATphase whichaimedatansweringveryfundamentalquestionsconcerningthephasediagram,has been the finding of a new class of algorithms, which turn out to be very efficient in the Easy-SATphase. Thenextsectionsaim atdescribingthemainideasofthecavitymethod,takingthepoint ofviewofthemessagepassingalgorithm. Itisimpossibletoexplainallthedetails,orto givethejustification,forallthesesteps. Theinterestedreaderisreferredtorefs[16]forthe basic conceptsofthe cavity methodin finite connectivitydisorderedsystems, and to refs [12,13,20,18]forthesolutionoftherandomsatisfiabilityproblem. 4 Factorgraphs and warningpropagation Thefirststepconsistsinagraphicalrepresentationofthesatisfiabilityproblem.Eachclause isrepresentedbya functionnode, connectedto thevariousvariableswhichappearin the clause,asdescribedinFig.2. Factorgraphsturnouttobeveryusefulinvariouscontexts,includingstatisticalinference [21]anderrorcorrectingcodes[22]. Thegeneralformalismisdescribedin[23]. Inarandom3-SATproblemwithN variablesandM = αN clauses,inthelargeN limit, itiseasytoseethatthefactorgraphisarandombipartitegraph,wherethefunctionnodes have a fixed connectivity equal to 3, and the variable nodes have a Poisson distributed connectivitywithamean3α. Thesimplestcaseofmessagepassingisthewarningpropagation. Alongalltheedgesof thegraph,onepassesmessages. Ifclauseainvolvesvariablei,themessageu ∈{0,1} a→i sent from clause a to variable i is a way for clause a to inform variable i: A warning u = 1 means: “Accordingto the messagesI havereceived(fromtheothervariables a→i whichareconnectedtome),youshouldtakethevaluewhichsatisfiesme!”.Whenu = a→i 0,thismeansthatnowarningispassed,whichmeansamessagesaying:“Accordingtothe messagesIhavereceived,thereisnoproblem,youcantakeanyvalue!” Itcanbeshownthatwarningpropagationconvergesandgivesthecorrectanswerinasat- isfiability problem described by a tree factor graph (such a problem can be nontrivial if c 4 2 a 1 2 b d a 1 5 e 3 3 Figure2: Factorgraphrepresentationof satisfiability: A variableis representedby a cir- cle. A clause is represented by a square, connected with a full (resp. dashed) line to a variablewhenthisvariableappearsassuch(resp. negated)in theclause. Lefthandside: The clause x¯ ∨ x ∨ x¯ . Right hand side: the factor graph representing the formula: 1 2 3 (x¯ ∨x¯ ∨x¯ )∧(x ∨x¯ )∧(x ∨x ∨x )∧(x ∨x ∨x¯ )∧(x ∨x¯ ∨x ) 1 2 4 1 2 2 4 5 1 2 5 1 3 5 there are, among the clauses, some ’unit clauses’, involving a single variable, and forc- ing this variable): the problemis SAT if and onlyif, on each variablenode, there are no contradictorymessages. Thissimplewarningpropagationcorrespondstosomelimitingcaseofthecelebratedbelief propagation(“BP”)algorithm.ThebasicideaofBPistostudytheprobabilityspaceofall SATassignmentswithuniformmeasure. ConsideragaintheclauseinFig.3. Imagineone knowsthejoint’cavity’probabilityP(a)(x ,x )forthevariablesx ,x whentheclause 2 3 2 3 aisabsent.Thenonecandeducethefollowingestimatefromaconcerningthestateof1: Pa→1(x1)= X Ca(x1,x2,x3)P(a)(x2,x3), (1) x2,x3 where C is the indicator function of clause a, equal to one if and only if the clause is a satisfied. Theprobabilitydistributionofx intheabsenceofaclausebisgivenby: 1 P(b)(x1)=C Y Pa→1(x1) (2) a∈V(1)\b whereC isanormalizationconstant. These exact equations are useless as such, but they become very useful if one adds the hypothesisthat P(a)(x ,x )∼P(a)(x )P(a)(x ). (3) 2 3 2 3 Then eqs (1,2) close onto a set of self-consistent equations for the cavity probabilities P(a)(x). These equations can be interpreted as a message passing procedure which is the BPalgorithm; theyalso carrythe nameofBethe approximationin statistical physics. ThewarningpropagationequationsaresomeversionofBPinwhichonefocusesontothe variables which are forced to take one given value in all the SAT configurations (in the statisticalphysicsapproachtheycorrespondtowritingtheBetheequationsdirectlyatzero temperature).Theonsetofclusteringatthiszerotemperaturelevelsignalstheexistenceof clustersinwhichagivenvariableisfrozen(ittakesthesamevalueinallconfigurationsof thecluster):ittakesplaceatavalueα∼3.91. 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 2 3 2 3 1 1 1 0 a a u = 1 u = 0 a 1 a 1 1 1 Figure3: Two examplesof warningpropagationin a clause a. In orderto determinethe messagewhichitpassestovariable1,clauseaconsidersallthemessagesreceivedbythe othervariablestowhichitisconnected,herethevariables2and3. Onthelefthandside, themessagesreceivedby2tellittotakethevaluex = 1, whichdoesnotsatisfy clause 2 a, andthemessagesreceivedby3tellittotakethevaluex = 0,whichdoesnotsatisfy 3 clausea. Therefore,inordertobesatisfied,clauseamustrelyonvariable1. Itthussends a warning u = 1. Right hand side: an example where no warning is sent, because a→1 variable3istoldbyitsenvironmenttotakethevaluex =1,whichsatisfiesclausea. 3 Themain questionis whetherthe factorizationapproximation(3)is correct. Ifthe factor graphisatree, itisobviouslycorrect. Inthecaseofa random3-SAT,orrandomK-SAT problem, one may notice that generically the factor graph is locally tree-like: the loops appearonlyatlargedistances(oforderlogN). Therefore,intheabsenceofclausea,the twovariablesx ,x arefarapart. Insuchasituationonemayhopethatthefactorization 2 3 willhold,inthelargeN limit. Howeverthisistrueonlyinthecasewherethereisasingle purestateinthesystem(i.e. asingleclusterofsolutions). Ifthereareseveralpurestates, it is well knownin statistical physicsthat the correlationsof the variables decay at large distancesonlywhentheprobabilitymeasureisrestrictedtoonepurestate. 5 Proliferationofstates: survey propagation Thereforeone can expectsthe BP, or the warningpropagation,to be correctin the Easy- SATphase. IntheHard-SATphasewherepurestatesproliferate,theBPwouldbecorrect if we had a way to restrict the measure to the SAT configurations in one given cluster. Howeverthereisnowaytoachievethisglobally.BPisalocalmessagepassingprocedure. Locally it will tend to find equilibrated configurations corresponding to one cluster, but thereisnowaytoselectthesameclusterindistantpartsofthefactorgraph. In order to handle such a situation the cavity method introduces generalized messages: Along each edge a−i, a message is sentfrom clause a to variablei. Thismessage is a surveyoftheelementarymessagesinthevariousclustersofSATconfigurations. Because warningsaresosimple(thisiswhereitisusefultousewarningsratherthanstandardBP), thesurveyischaracterizedbyasinglerealnumberη ,whichgivestheprobabilityofa a→i warningbeingsentfromconstraintatovariablei,whenaclusterispickedupatrandom inthesetofallclustersofSATassignments. Thesurveypropagation(SP) equationsareeasily written. Lookingagainattheclause of Fig.3, let us denote by U the set of function nodes, distinct from a, connected through a full line to variable x , and V the set connected through a dashed line. Introduce the 2 probabilitiesthatno warningsare sentfromU and V, givenby π2 = (1−η ) + Qb∈U b→2 andπ2 = (1−η ).Similarquantitiesπ3 areintroducedforthevariablex .Then − Qb∈V b→2 ± 3 theSPequationsread: π2(1−π2) π3(1−π3) η = − + + − (4) a→1 π2 +π2 −π2π2 π3 +π3 −π3π3 + − + − + − + − Itturnsoutthatthe propagationof these surveysalongthe graphconvergesfora generic probleminthewholeHard-SATphase. These SP equations can be used in two ways. When iterated on one given sample, they provide very interesting information concerning each variable: From the set of surveys, one can compute for instance the probability that one variable is constrained to 0, when one choosesa SAT cluster randomly. The surveyinspired decimationalgorithm[12, 13] uses this information as follows: it identifies the most biased variable (the one which is polarized to 1, or to 0, with the largest probability), and fixes it. Then the problem is reducedto a new satisfiability problemwith one variableless. One can runagainthe SP algorithmonthissmallerproblemanditeratetheprocedure.ThissimplestrategyfindsSAT assignmentintheregionα<4.252(quiteclosetotheUNSATthresholdα =4.267),ina c timeoforderNlogN whichallowstoreachlargesamplesizesofafewmillionvariables. Somebacktrackinginthewayoneperformsthedecimation[24]allowstogetclosertothe threshold,butuntilnowitisnotknownifthesesurveybasedalgorithmswillallowtosolve thealgorithmicprobleminthewholeHard-SATphaseornot. OntheotherhandonecanalsousetheSPequationsinordertofindanalyticalresults. The ideaistoperformastatisticalanalysisoftheSPequations: oneintroducestheprobability densityP(η),whenonepicksupanedgea−irandomlyinalargerandom3-SATproblem, that the survey η takes a given value η. The SP equations (4) allow to write a self- a→i consistentnon-linearintegralequationforP(η). Solvingtheseequations,onecandeduce allthefeaturesofthephasediagramofFig.1. ThethresholdsfoundforrandomK-sat,for K =3,4,5,6,10,arerespectivelyequalto4.267, 9.931, 21.12, 43.37, 708.9(see[18]). TheequationscanalsobegeneralizedtostudytheUNSATphase,inwhichonecandeter- mine the minimal numberof violated clauses, both analytically, and also algorithmically ononegivensample,butthisgoesbeyondthepresentpaper. Thisgeneralcavitymethodstrategycanalsobeusedinotherconstraintsatisfactionprob- lems [25], and has foundnon-trivialresults for instance on the coloring problem[26]. A particularlyinterestingcaseistheXOR-SATproblem[27],wherethesametypeofphase diagramis found,and the cavity methodresultcan be checkedversusrigorouscomputa- tions. It is also worth mentioning that for K even, the SAT-UNSAT threshold α found c withthecavitymethodhasbeenshowntobeanupperboundtothecorrectresult[28]. Our conjectureisthatthisboundisactuallytight. To summarize, we have considered sparse network of many interacting elements, with interactions taking the form of constraints on their relative values. In this situation, one often finds a “Hard-SAT” phase, with an exponential number of well separated solution clusters, togetherwith an exponentiallylargernumberof’metastable states’. Itturnsout that the local exchange of probabilistic messages between the elements provides a very detailed statistical informationon the varioussolutions. One can expectthat this general frameworkwillalsofindapplicationsinneuralnetworkstudies. Acknowledgments The results presented here have been obtained in various collaborations, mainly with G. ParisiandR.Zecchina,andalsowithA.Braunstein,S.Mertens,M.Weigt. References [1] M.Me´zard,Science301(2003)1685. [2] S.Cook,Proc.3rdAnn.ACMSymp.onTheoryofComputing,Assoc.Comput.Mach., NewYork,1971,p.151. [3] S.Kirkpatrick,B.Selman,Science264,1297(1994). [4] J.A.CrawfordandL.D.Auton,Artif.Intell.81,31-57(1996). [5] E.Friedgut,J.Amer.Math.Soc.12(1999)1017. [6] O. Dubois, Y. Boufkhad and J. Mandler, Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,124(SanFrancisco,CA,2000). [7] D. Achlioptas and C. Moore, http://arXiv.org/abs/cond-mat/0310227; D. Achlioptas andY.Peres,http://arXiv.org/abs/cs.CC/0305009. [8] R.Monasson,R.Zecchina,S.Kirkpatrick,B.SelmanandL.Troyansky,Nature(Lon- don)400,133(1999). [9] O.Dubois,R.Monasson,B.SelmanandR.Zecchina(Eds.),Theoret.Comp.Sci.265 (2001). [10] R.MonassonandR.Zecchina, Phys.Rev. E561357–1361(1997). [11] G.Biroli,R.MonassonandM.Weigt, Euro.Phys.J. B14551(2000). [12] M.Me´zard,G.ParisiandR.Zecchina,Science297,812(2002)(Sciencexpresspub- lishedon-line27-June-2002;10.1126/science.1073287). [13] M.Me´zardandR.Zecchina,Phys.Rev.E66(2002)056126. [14] G.Parisi,cs.CC0301015. [15] M.Me´zard,G.ParisiandM.A.Virasoro,SpinGlassTheoryandBeyond,WorldSci- entific,Singapore(1987). [16] M. Me´zard, and G. Parisi, Eur.Phys. J. B 20, 217–233 (2001). M. Me´zard and G. Parisi,J.Stat.Phys.111(2003)1. [17] A.MontanariandF.Ricci-Tersenghi,Eur.Phys.J.B33(2003)339. [18] S.Mertens,M.Me´zardandR.Zecchina,http://arXiv.org/abs/cs.CC/0309020. [19] A. Montanari, G. Parisi and F. Ricci-Tersenghi, http://arXiv.org/abs/cond-mat/0308147. [20] A.Braunstein,M.Me´zard,R.Zecchina,http://fr.arXiv.org/abs/cs.CC/0212002. [21] J.Pearl,ProbabilisticReasoninginIntelligentSystems,2nded.(SanFrancisco,Mor- ganKaufmann,1988). [22] Specialissue onCodes, GraphsandIterativeAlgorithms,IEEE Trans.Info.Theory vol.47,no2(2001). [23] F.R.Kschischang,B.J.FreyandH.-A.Loeliger,IEEETrans.Info.Theory47(2001) 498. [24] G.Parisi,cond-mat/0308510. [25] A.Braunstein,M.Me´zard,M.WeigtandR.Zecchina,cond-mat/0212451. [26] R.Mulet,A.Pagnani,M.Weigt,R.Zecchina,Phys.Rev.Lett.89(2002)268701. [27] M.Me´zard,F.Ricci-Tersenghi,R.Zecchina,J.Stat.Phys111(2003)505.S.Cocco, O.Dubois,J.Mandler,R.Monasson,http://arXiv.org/abs/cond-mat/0206239. [28] S.FranzandM.Leone,http://arXiv.org/abs/cond-mat/0208280.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.