RESEARCHARTICLE Whole-body iron transport and metabolism: Mechanistic, multi-scale model to improve treatment of anemia in chronic kidney disease JoydeepSarkar1¤a,AlkaA.Potdar2¤b,GeraldM.Saidel3* 1 PricewaterhouseCoopersLLP,NewYork,NY,UnitedStatesofAmerica,2 DepartmentofBiomedical Engineering,CaseWesternReserveUniversity,Cleveland,OH,UnitedStatesofAmerica,3 Departmentof BiomedicalEngineering,CaseWesternReserveUniversity,Cleveland,OH,UnitedStatesofAmerica a1111111111 ¤a Currentaddress:HolmuskUSA,Durham,NC,UnitedStatesofAmerica a1111111111 ¤b Currentaddress:F.WidjajaFoundationInflammatoryBowel&ImmunobiologyResearchInstitute, DepartmentofMedicine,Cedars-SinaiMedicalCenter,LosAngeles,CA,UnitedStatesofAmerica a1111111111 *[email protected] a1111111111 a1111111111 Abstract Ironplaysvitalrolesinthehumanbodyincludingenzymaticprocesses,oxygen-transport OPENACCESS viahemoglobinandimmuneresponse.Ironmetabolismischaracterizedby~95%recycling andminorreplenishmentthroughdiet.Anemiaofchronickidneydisease(CKD)ischarac- Citation:SarkarJ,PotdarAA,SaidelGM(2018) Whole-bodyirontransportandmetabolism: terizedbyalackofsynthesisoferythropoietinleadingtoreducedredbloodcell(RBC)for- Mechanistic,multi-scalemodeltoimprove mationandaberrantironrecycling.TreatmentofCKDanemiaaimstonormalizeRBCcount treatmentofanemiainchronickidneydisease. andserumhemoglobin.Clinically,thevariousfluxesofirontransportandaccumulationare PLoSComputBiol14(4):e1006060.https://doi. org/10.1371/journal.pcbi.1006060 notmeasuredsothatchangesduringdisease(e.g.,CKD)andtreatmentareunknown. Unwantedironaccumulationinpatientsisknowntoleadtoadverseeffects.Currentwhole- Editor:DanielA.Beard,UniversityofMichigan, UNITEDSTATES bodymodelslackthemechanisticdetailsofirontransportrelatedtoRBCmaturation,trans- ferrin(TfandTfR)dynamicsandassumepassiveironeffluxfrommacrophages.Hence, Received:March31,2017 theyarenotpredictiveofwhole-bodyirondynamicsandcannotbeusedtodesignindividual- Accepted:February27,2018 izedpatienttreatment.Forprediction,wedevelopedamechanistic,multi-scalecomputa- Published:April16,2018 tionalmodelofwhole-bodyironmetabolismincorporatingfourcompartmentscontaining Copyright:©2018Sarkaretal.Thisisanopen majorpoolsofironandRBCgenerationprocess.Themodelaccountsformultipleformsof accessarticledistributedunderthetermsofthe ironinvivo,mechanismsinvolvedinironuptakeandreleaseandtheirregulation.Further- CreativeCommonsAttributionLicense,which more,themodelisinterfacedwithdrugpharmacokineticstoallowsimulationoftreatment permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal dynamics.Wecalibratedourmodelwithexperimentalandclinicaldatafrompeer-reviewed authorandsourcearecredited. literaturetoreliablysimulateCKDanemiaandtheeffectsofcurrenttreatmentinvolving DataAvailabilityStatement:Allrelevantdataare combinationofepoietin-alphaandirondextran.Thisinsilicowhole-bodymodelofiron withinthepaperanditsSupportingInformation metabolismpredictsthatayearoftreatmentcanpotentiallyleadto90%downregulationof files.Codeforthemathematicalmodelisincluded ferroportin(FPN)levels,15-foldincreaseinironstoreswithonlya20%increaseinironflux inthesupplementarymaterial. fromthereticulo-endothelialsystem(RES).Modelsimulationsquantifiedunmeasurediron Funding:Theauthorsreceivednospecificfunding fluxes,previouslyunknowneffectsoftreatmentonFPN-levelandironstoresintheRES. forthiswork. Thismechanisticwhole-bodymodelcanbethebasisforfuturestudiesthatincorporateiron Competinginterests:ThefirstauthorJoydeep metabolismtogetherwithrelatedclinicalexperiments.Suchanapproachcouldpavethe SarkarworksasaconsultantwithPricewaterhouse wayfordevelopmentofeffectivepersonalizedtreatmentofCKDanemia. Coopers(PwC),buttheworkpresentedinthe manuscriptisnotrelatedtohisworkatPwC,was PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 1/34 Computationalmodelofanemiaofchronickidneydisease doneonpersonaltime,anddoesnotinvolveany financialorotherformsofconflictofinterest. Authorsummary Ironismostlyrecycledwithverylittlelossorreplenishment.Thismodelsimulatesthe complexregulatorynetworkthatmaintainsironwithinhealthylimits.Irondiseasesare typicallycharacterizedbybreakdownofsuchregulatorypathways(e.g.synthesisoferyth- ropoietin,inhibitionofironreleasebyhepcidin,etc.)thatleadtopathologicallackofiron ordepositionofiron.Mostironmetabolismresearchfocusesonthespecificrolesofthe regulatoryproteins(e.g.HFE,ceruloplasmin),butherewechosetofocusontheinterplay betweenferroportinandhepcidin.Thecurrentliteraturelacksanintegratedwhole-body viewofironmetabolismwithkeyfluxesthatareessentialforinvestigatingtherolesofreg- ulatoryproteinwithinfeedbacknetworksandmolecularpathways.Theseaspectscanbe investigatedbysimulationswithourtop-down,mechanisticcomputationalmodel.Our modelsimulationssuggestpossibleimprovementsintreatmentofanemiaofchronickid- neydisease.Furthermore,thismodelcanprovideaplatformforfuturedevelopmentsof powerfulpredictivetoolsthatcanbeusedtoacceleratedrugdevelopmentofiron-disorder diseases. Introduction Ironisessentialforawidevarietyofbiologicalfunctions.Itsmostcriticalphysiologicalfunc- tionisassociatedwiththeoxygencarryingcapacityofhemoglobin.Ironalsoplaysimportant rolesinmitochondrialredoxreactions(cytochromes)andinhealthyimmunefunction[1,2]. Whilethereisalargefocusonthemultitudeofdiseasesimplicatedduetoirondeficiency, excessiveironisalsoverytoxic[1].Hence,ironlevelsinthebodymustbeverytightly regulated. Inanadultmaleindevelopedcountries,thebloodironlevelis4-5gofwhich50–60%is associatedwithhemoglobin.Mostironisstoredintheliver,spleenandotherorgansinferric (Fe3+)formboundtothestorageprotein,ferritin(FN)[2,3].Circulatinginplasmaisasmall amount(3–4mg)ofFe3+boundtotheprotein,apo-(Tf).Theliversensesserumironthrough thetransferrinreceptor2pathwaysandregulatesthesynthesisandsecretionofhepcidininto blood[4,5].Inbodyfluids,ferrous(Fe2+)ionsarehighlyunstableatphysiologicalpH.Since Fe2+ionsarehighlyreactive,theymustbetightlycontrolledtopreventdamage.Therefore, Fe2+isconvertedtoFe3+,whichbindstoironchelators(Tf,FN)exceptatverylowpH,e.g., insideendosomes[3]. About25mgofironisrecycledperdayviathehemoglobinsynthesisanddegradationcycle. Only4–5%ofthisironislostandneedstobereplenishedthroughabsorptionfromdiet[6,7]. Aschematicrepresentationoftherecyclingprocessinironmetabolismhasbeendepictedin literature[8].Macrophagesofthereticulo-endothelialsystem(RES)degradesenescentred bloodcells(RBCs)toreleaseironthatistransportedbyTf.Thematuringerythroblastsinthe bonemarrowthenutilizethisironforincorporationintohemoglobinbeforeenteringblood. Overthelastdecade,manynewdetailsaboutirontransporthavebeendiscovered.Cerulo- plasmin(Cp),aferroxidaseassociatedwithmacrophageironrelease[9–12],isessentialin intestinalirontransport.Hepcidin(Hepc),adefensin[13–16],regulatesironreleasefrom macrophagesthroughdirectdegradationofferroportin(FPN)[17].Thereisacomplexnet- workofdifferentenzymesandhormonesthatprovidesanintricatecontrolofironmetabo- lism.Teasingoutthespecificimportanceofdifferentmoleculesunderdifferentconditionsis PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 2/34 Computationalmodelofanemiaofchronickidneydisease verychallenging.Mathematicalmodelingofkeyexperimentaldatacanhelpprovideanswers tosuchcomplexproblems. Mathematicalmodelsofirontransporthavebeendevelopedandrefinedsincetheearly 1970’s.Mostofthesemodelsarebasedonferrokineticstudies[18,19]andfocusonflux changesandrelativeabundanceofironindifferentorgans.Also,mathematicalmodelsofspe- cificprocesssuchasthemolecularcontrolofHepcsynthesisoritseffectonserumironhave beendeveloped[20,21].Typically,modelsofwhole-bodyironmetabolismconsiderironina singlemolecularform,whichispassivelytransportedaccordingtoitsconcentrationgradient. However,ironreleasefrommacrophagesrequiresfacilitatedtransport[22]ratherthansimple passivediffusion[23,24].Despitethekeyroleofironinerythropoiesis[25,26],modelshave notconsidereditinformationofironhemoglobin.Quantitativeunderstandingofironmetab- olismandrecyclingundernormalanddifferentpathologicalconditionsrequiresmathematical modelsthatintegratemechanisticdetailsofironuptake,releaseandtransportbetweenthe majorpools,thedynamicsoftheseprocesses,aswellasthefeedbackregulationmechanisms controllingthem.Withamulti-scalemodel,processesthatoccuratthemolecularandcellular levelscanberelatedtoobservedbehaviorsatthetissue-,organ-andwhole-bodylevels. Recentstudies[27–29]proposemathematicalmodelstobetterpredictthedosingstrategy ofrecombinanterythropoietin(rEpo)usedtotreatanemiainpatientswithchronickidneydis- ease(CKD)[30–32].ThecurrentclinicalguidelinesfortreatmentofanemiainCKD[33,34] alsoincludeadministrationofirondextrantoCKDpatientswhererEpoaloneisnotenough toimprovethehemoglobinlevels.Evenwithlowtransferrinsaturationandlowserumironin patientswithCKDanemia,ironuptakethroughthegutdoesnotincreaseandoralironsupple- mentsaretypicallyineffective[7,33,35].Theoptimalhemoglobinlevelneedstobepersonal- ized[33].However,currentfocusoncontrolofoverallhemoglobinlevelsdoesnotaccountfor theimpactoftherapyonironmetabolism,especiallyontherecyclingprocessanddetrimental effectsofironoverloadindifferenttissues[36,37]. Inthisstudy,wehavedevelopedamulti-scalemodelofironmetabolism,whichintegrates intracellular,molecularmechanismswithcellularandtissuetransportofiron.Avarietyofper- turbationscenarioswerecarefullychosentoestimatemodelparametersfromdifferentpartsof themodel.Consequently,wecansimulatetheimportantclinicaloutputs(e.g.serumiron,total ironbindingcapacity,serumhemoglobin,RBCcellconcentration)relatedtotherapywhile simultaneouslyprovidingoutputofchangesintransportfluxesandintracellularspeciesrelated toironmetabolism.OfspecialclinicalsignificanceisourmodelsimulationofanemiainCKD patientswithinsufficienterythropoietinandtreatmentswithrEpoandirondextraninfusion. Moregenerally,thegoalofthismechanisticmathematicalmodelistoinvestigatequantitatively theresponsesoftheironmetabolismsystemunderdifferentdiseaseconditionsandtreatment strategiesasaguidefornewerandimprovedtreatments. Models Themodelofironmetabolismdevelopedherehasfourscales:whole-body,tissue,cellularand molecular.Atop-downmodelingmethodologyhasbeenusedtodevelopthismodelproviding justenoughdetailtosimulatetheinter-tissueironfluxesandchangesduringdiseaseandtreat- ment.Asystemdiagram(Fig1)showsfourmajortissuecompartments:blood(B),reticular- endothelialsystem(RES),bonemarrow(BM)andliver(L).Wehaveconsiderederythropoie- tin(Epo)synthesizedbythekidneysandHepcsynthesizedfromliverasmajorhormonesthat helpmaintainironhomeostasis.TheBcompartmentconsistsofredbloodcell(RBC)and plasma(P)phases.Themodelcoversthemajortransportprocessesforironbetweenthese4 compartmentsaswellasthesensingelementsintheliverandkidney. PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 3/34 Computationalmodelofanemiaofchronickidneydisease Fig1.Majorcomponentsandprocessesofwhole-bodyironmetabolismincorporatedinthemodel. https://doi.org/10.1371/journal.pcbi.1006060.g001 Adetailedschematicofthereactionsandtransportprocessesincorporatedinthemodelis presentedinFig2.IntheRES,wedistinguishintracellular(I),membrane(M),andinterstitial fluid(ISF)phases.TheBMcompartmentincludescolony-formingprecursorcells(CFUe)that matureandleadtoerythroblasts(EB).TheLcompartmentinterfaceswiththeBcompartment. Becausetherateofironlossandreplenishmentbyintestinalabsorptionissmall,thismetabolic modelfocusesonkeyaspectsofironrecyclingincontrasttopreviousmodelsofironmetabo- lism[18,20,26,28,38,39].Ourmodelincorporatesdetailedmolecularmechanismsofiron transport[18]thatdifferentiateactiveandpassivediffusivetransport,aswellasthemajorspe- ciesoftheironrelevantfortransportandrecycling.Thesemechanisticdetailshelpelucidate theroleofdifferentproteins,enzymesandhormonesinironhomeostasisanddisease conditions. Blood(B)compartment Inthebloodcompartment,weconsiderRBCdynamicsaswellasiron-relatedmolecular speciesinRBCandplasma.Inplasma,thesespeciesincludeiron-hemoglobin(HbFe),free ferriciron(Fe3+),apo-transferrin(Tf),mono-ferrictransferrin(Fe3+Tf),diferrictransferrin ((Fe3+) Tf),ceruloplasmin(Cp),erythropoietin(Epo),andhepcidin(Hepc). 2 Inaconstant-volumeplasmaV ,amassbalanceofmolecularspeciesjthatdiffusesbetween P compartmentsandchangesbyreactionrateRj leadstotheplasmaconcentrationCj dynam- P P ics: dCj V P ¼Jj (cid:0) Jj þV Rj ð1Þ P dt ISF!P P!EB P P PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 4/34 Computationalmodelofanemiaofchronickidneydisease Fig2.Keytransportandreactionprocessesofironmetabolisminvolvingfourmodelcompartments:Blood(B),reticuloendothelialsystem (RES),bonemarrow(BM)andliver(L).Fourdifferenttypesofarrowsareusedtoconnectcompartmentsandspecieswhichareexplainedinthe legenddrawninsidethefigure. https://doi.org/10.1371/journal.pcbi.1006060.g002 PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 5/34 Computationalmodelofanemiaofchronickidneydisease Here,theISF-plasmadiffusionfluxis Jj ¼hj ðCj (cid:0) CjÞ j¼Tf;ðFe3þÞTf;ðFe3þÞ Tf;Cp;Fe3þ ð2Þ ISF!P ISF!P ISF P 2 andtheplasma-erythroblast(EB)diffusionfluxis Jj ¼hj ðCj (cid:0) Cj Þ j¼Tf;ðFe3þÞTf;ðFe3þÞ Tf ð3Þ P!EB P!EB P EB 2 Wherehj andhj aremasstransportcoefficients;Cj andCj areconcentrationsinISF ISF(cid:0) P P(cid:0) EB ISF EB andEB.ExpressionsforRj (j¼Fe3þ;Tf;ðFe3þÞTf;ðFe3þÞ Tf areprovidedintheTable1.The P 2 degradationofFe3+referstonon-specificbindingofserumFe3+toplasma. TheconcentrationsofEpoandHepcincreaseinplasmabyendogenoussynthesisand decreasebynaturaldegradation: dCEpo CEpo dCHepc CHepc P ¼TEpo (cid:0) P ; P ¼THepc(cid:0) P ð4Þ dt K!P tEpo dt L!P tHepc whereTEpo andTHepcaretheinputratesfromsynthesisofEpobykidneysandHepcbyliver, K!P L!P whichhavebeendiscussedindetaillater(sectiononErythropoietinandHepcidinInputs). ThesemolecularspecieshaveaveragedecaytimesτEpoandτHepc,respectively. TheRBCnumberperplasmavolume(N )increasesfromEBdifferentiationand RBC decreasesbymacrophagephagocytosisrepresentedbyacellnumberdensitybalance: dN k RBC ¼ RBC EBN (cid:0) d N ð5Þ dt V EB RES RBC RBC P whereN istheEBnumberinthebonemarrowcompartment,k isthedifferentiation EB RBC EB ratecoefficient.ThedeathratecoefficientbyRESphagocytosisd =1/τ isthe RES RBC RBC inverseoftheaverageRBClife-spaninplasma. AssociatedwiththeRBCisHbFe3+,whoseconcentration(relativetoplasmavolume) changesbytheentryofdifferentiatingerythroblastscarryingHbFe3+anddecreaseswiththe removalofRBCbyphagocytosis: (cid:18) (cid:19) dCHbFe k N P ¼ RBC EB EB CHbFe(cid:0) d CHbFe ð6Þ dt V NSS EB RES RBC P P EB whereCHbFeistheHbFe3+concentrationinbonemarrow.Here,thenumberofEBcellsinthe EB bonemarrowisscaledbytheirsteady-statevalues,whichareinitialvalues,NSS ¼N ð0Þ. EB EB BoneMarrow(BM)compartment Precursorcell(CFUe)dynamics. TheCFUenumberN (μ,t)changeswithrespectto CFU maturity,i.e.,age(μ)andtime(t)[38].Thesecellsproliferate,butarenegligibleinbonemar- rowreactionortransportprocessesrelatedtoiron.Fromanage-distributedcellnumber Table1. Reactionsinblood(B)compartment. ReactionTerm Expression RTf (cid:0) k CFe3þCTf P Fe3þ;Tf P P RFe3þTf k CFe3þCTf (cid:0) k CFe3þCFe3þTf P Fe3þ;Tf P P Fe3þ;Fe3þTf P P RPðFe3þÞ2Tf kFe3þ;Fe3þTfCPFe3þCPFe3þTf RFe3þ (cid:0) dFe3þCFe3þ P P P https://doi.org/10.1371/journal.pcbi.1006060.t001 PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 6/34 Computationalmodelofanemiaofchronickidneydisease balance,weobtain @N @N CFU þv CFU ¼b N ; 0(cid:20)m(cid:20)m ð7Þ @t CFU @m CFU CFU F wheretherateofagingisν =dμ/dtandtheratecoefficientofproliferationβ isassumed CFU CFU constant.ThisisasimplificationofamodelpresentedbyMahaffyetal.[25].Atsteadystate, CFUenumberis NSS ðmÞ¼N0 expðb mÞ ð8Þ CFU CFU CFU TherateofCFUeagingisrepresentedas: ! CEpo v ¼v P ð9Þ CFU 0 CEpoþKm P Epo ThisrelationisbasedonsaturationofhighaffinityEporeceptorsofCFUe. TheCFUenumberformingatμ=0fromdifferentiatingBurstFormingUnitErythroids (BFUe)isdependentonthetotalBFUenumberN availablefordifferentiationand BFUe CEpoðtÞaccordingtoanempiricalfunction[36]: P 8 (cid:18) (cid:19) >>< N CPEpoðtÞ for CEpoðtÞ<CEpoð0Þ NCFUð0;tÞ¼>>: BFUe CPEpoð0Þ for CPEpoðtÞ(cid:21)CPEpoð0Þ ð10Þ N P P BFUe whereCEpoð0Þisthesteady-statevalue. P NoirontransporthappensintheCFUeage-distributedcompartment.Furthermore,all detailsofthedevelopmentofthereceptorsontheCFUeetc.areignoredforthismodel.At maturityCFUe’sbecomeerythroblasts(EB)withtheaveragenumberoftransferrinreceptors ontheirsurfaceandtheaverageintracellulariron-freehemoglobin.Theinternalprocessesare developedforrecyclingoftransferrinreceptorsandincorporationofironintohemoglobin. Erythroblast(EB)regionrelations. Atfullmaturityμ ,differentiationtoEBoccursata F rate: (cid:12) @N (cid:12) FEB CFU ¼vCFU @mCFU(cid:12)(cid:12) ð11Þ m¼mF TheEBnumberincreasesbyCFUedifferentiationanddecreasesbyEBdifferentiationinto RBC: dN EB ¼F (cid:0) k N ð12Þ dt EB CFU RBC EB EB Wherek isadifferentiationratecoefficient.Theprocessofmaturationoferythroblasts RBC EB intomatureRBChasbeensimplifiedintoalumpedmodelunliketheage-distributedmodel formaturationofCFU.Withthissimplification,ironuptakebymaturingerythroblastsisrep- resentedbyasinglesetofreactionsinasingleEBcompartment.Atsteadystate,weobtain V d NSS ¼ P RES RBCNSS ð13Þ EB k RBC RBC EB PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 7/34 Computationalmodelofanemiaofchronickidneydisease Combiningequationsabove,wefind (cid:12) @N (cid:12) FESSB CFU ¼nCFU @mCFU(cid:12)(cid:12) ¼nCFUbCFUNCSSFUðmFÞ¼kRBC EBNESBS ð14Þ m¼mF DefiningthecharacteristictimeforCFUe’stobecomeRBC’sasτ =1/k ,wecan EB RBC EB expressthesteady-stateCFUnumberasfollows: NSS ðm Þ¼NSS=ðt n b Þ ð15Þ CFU F EB RBC CFU CFU Thesteady-stateCFUnumberisdefinedasfollows: V d NSS ¼ P RES RBCNSS ¼V d t NSS ð16Þ EB k RBC P RES RBC EB RBC RBC EB TocomputeNSS ðm ÞandNSS,weobtainestimatesfromtheliteratureforV ,d ,τ , CFU F EB p RES RBC EB β andNSS .FollowingMahaffy[25],wesetν =1. CFU RBC CFU0 Ironandtransferrindynamics. IntheEBregion,ironistakenfrom(Fe3+)Tfand (Fe3+) Tfviatransferrinreceptor(TfR).Thereactionsofchemicalspeciesarerepresentedby 2 thefollowingkinetics(Fig2): TfRþðFe3þÞTf $ðTfRÞFe3þTf TfRþðFe3þÞ Tf $ðTfRÞðFe3þÞ Tf 2 2 ðTfRÞðFe3þÞTf !TfRþFe3þþTf ð17Þ ðTfRÞðFe3þÞ Tf !TfRþ2Fe3þþTf 2 Fe3þþHb!HbFe3þ Here,themechanismofironreleasefromTfandrecyclingofTfandTfRhasbeensimplifiedas asinglereaction. InrepresentingtheconcentrationchangesofspeciesjinEBwithtime,weassumeEBvol- umeisconstant.ConcentrationsinEBincreaseswithCFUeentryanddecreasesbecauseofEB maturationintoRBCandreactionsintheEBcompartmentasfollows: (cid:18) (cid:19) dCj F Bj k N EB ¼ EB CFU CFU (cid:0) RBC EB EB Cj þRj ; j¼TfR;Hb ð18Þ dt V V NSS EB EB EB EB EB whereBTfR ,BHb aretheconstantamountsofTfRandHbperCFUeenteringtheEBcompart- CFU CFU ment[7,40]. SinceHbFe3+isnotinCFUeitsconcentrationchangesaccordingto (cid:18) (cid:19) dCHbFe3þ (cid:0) k N EB ¼ RBC EB EB CHbFe3þ þRHbFe3þ ð19Þ dt V NSS EB EB EB EB ForthespeciesthatdonotenterorleavetheEBcompartment,theconcentrationchangesonly byreaction: dCj EB ¼Rj ; j¼ðTfRÞðFe3þÞTf;ðTfRÞðFe3þÞ Tf;Fe3þ ð20Þ dt EB 2 Forotherspeciesconcentrations,changescanoccurbyreactionandtransportintooroutof PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 8/34 Computationalmodelofanemiaofchronickidneydisease plasma: dCj J EB ¼Rj þ EB P; j¼ðFe3þÞTf;ðFe3þÞ Tf;Tf ð21Þ dt EB V 2 EB ExpressionsforRj areprovidedintheTable2. EB REScompartment TheREScompartmentisdividedintointracellular(I),membrane(M)andinterstitial(ISF) regions,whichareassumedtohaveconstantvolumes(Fig2).Ironfromthehemoglobinin senescentRBC’sthatarephagocytosedbythemacrophagesoftheISFisdeliveredasFe3+into theintracellularregion.Then,Fe3+isconvertedtoFe2+(labileironpool)byendosomalreduc- ingagentsandthenitbindstointracellularFPN.Thiscomplexiscarriedbyanenergy-driven processtothecellmembrane,whereFe2+isconvertedtoFe3+bysequestrationwithferritin (FN).Atthemembrane,oxygen(O )andceruloplasmin(CpCu2+)oxidizeFe2+FPNtoFe3+ 2 FPN.ThedissociationofFe3+FPNallowsFPNtorecycleandFe3+todiffuseintotheISFor bindtoTftoformFe3+Tfinthemembraneregion. Formostspecies,thetransportfluxesbetweenMandISFaregovernedbypassivediffusion: Jj ¼hj ðCj (cid:0) Cj Þ; j¼Tf;ðFe3þÞTf;ðFe3þÞ Tf ð22Þ M!ISF M(cid:0) ISF M ISF 2 Forafewspecies,thetransportfluxesbetweenRESregionsareenergy-drivenprocesses: JFPN ¼h CFPN; JFe2þFPN ¼h CFe2þFPN; JFe3þ ¼h CFe3þ ð23Þ I M I M M M I M I I ISF M ISF M M IntheIregion,thespeciesjconcentrationschangeaccordingto dCj Jj (cid:0) Jj I ¼ I M M I þRj j¼Fe2þ;FPN ð24Þ dt V I I TheFe3+fromthesenescentRBCactsasasourceofFe3+intheintracellular(I)region.Hence theequationforconcentrationofFe3+intheIregionvariesas: (cid:18) (cid:19) dCFe3þ JFe3þ (cid:0) JFe3þ V I ¼ I M M IþRFe3þ þd CHbFe P ð25Þ dt V I RES RBC P V I I Table2. Reactionsintheerythroblast(EB)compartment. ReactionTerm Expression RTEBfR (cid:0) kon;TfR;Fe3þTfCETBfRCEFeb3þTf (cid:0) kon;TfR;ðFe3þÞ2TfCETBfRCEðFBe3þÞ2Tf þkTfR;recycleðCETBfRFe3þTf þCETBfRðFe3þÞ2TfÞ þk CTfRFe3þTf þk CTfRðFe3þÞ2Tf off;TfRFe3þTf EB off;TfRðFe3þÞ2Tf EB RTfRFe3þTf k CTfRCFe3þTf (cid:0) k CTfRFe3þTf (cid:0) k CTfRFe3þTf EB on;TfR;Fe3þTf EB EB off;TfRFe3þTf EB TfR;recycle EB RTfRðFe3þÞ2Tf k CTfRCðFe3þÞ2Tf (cid:0) k CTfRðFe3þÞ2Tf (cid:0) k CTfRðFe3þÞ2Tf EB on;TfR;ðFe3þÞ2Tf EB EB off;TfRðFe3þÞ2Tf EB TfR;recycle EB RFe3þTf (cid:0) k CTfRCFe3þTf þk CTfRFe3þTf EB on;TfR;Fe3þTf EB EB off;TfRFe3þTf EB RðFe3þÞ2Tf (cid:0) k CTfRCðFe3þÞ2Tf þk CTfRðFe3þÞ2Tf EB on;TfR;ðFe3þÞ2Tf EB EB off;TfRðFe3þÞ2Tf EB RFe3þ k ðCTfRFe3þTf þCTfRðFe3þÞ2TfÞ(cid:0) k CFe3þCHb EB TfR;recycle EB EB Fe3þ;Hb EB EB RHb (cid:0) k CFe3þCHb EB Fe3þ;Hb EB EB RHbFe3þ k CFe3þCHb EB Fe3þ;Hb EB EB https://doi.org/10.1371/journal.pcbi.1006060.t002 PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 9/34 Computationalmodelofanemiaofchronickidneydisease TheFPNconcentrationdependsonFPNendogenoussynthesisandloss: dCFPN JFPN I ¼ I MþRFPN þSFPN ð26Þ dt V I I I where CFPNj (cid:0) CFPN SFPN ¼ I SS I ð27Þ I t FPN Here,τ isthehalf-lifeofFPNandCFPNj isthesteady-stateconcentrationofFPN.The FPN I SS modelignoresanytranscriptionalregulationofFPNashasbeenobservedespeciallydueto hypoxia,irondeficiencyetc.[41,42].IntheMregion,thespeciesjconcentrationschangeas: dCj Jj þJj (cid:0) Jj M ¼ M I M ISF I MþRj ð28Þ dt V M M wherej¼Fe2þFPN;Fe3þFPN;Fe3þ;FPN;CpCu2þ;CpCu1þ;Tf;Fe3þTf;Fe3þTf.IntheISFregion, 2 thespeciesjconcentrationchangesas: dCj N Jj (cid:0) Jj ISF ¼ scale factor ISF M ISF!PþRj ð29Þ dt V ISF ISF whereJj ¼hj ðCj (cid:0) CjÞ; j¼Tf; ðFe3þÞTf; ðFe3þÞ Tf;CpCu2þ;CpCu1þ ð30Þ ISF!P ISF(cid:0) P ISF P 2 ThereactionratesforeachchemicalspeciesjinthethreeRESregions(Rj ,Rj,Rj )are ISF I M basedonthekineticsasindicatedinFig2anddescribedbelow.WeincorporatedtheHepc blockingofirontransportfromRESthroughdegradationofbothintracellularandmembrane FPN[15–17].Intheintracellular(I)region: Fe3þ $Fe2þ Fe2þþFPN !Fe2þFPN ð31Þ FPNþHepc!(cid:10) FPN !(cid:10) where(cid:10)representsdegradationproducts.Inthemembrane(M)region: 4ðFe2þÞFPNþO þ4Hþ⇄4ðFe3þÞFPNþ2H O 2 2 Fe2þFPNþCpðCu2þÞ!Fe3þFPNþCpðCu1þÞ Fe3þFPN !Fe3þþFPN Fe3þþTf !ðFe3þÞTf ð32Þ Fe3þþðFe3þÞTf !ðFe3þÞ Tf 2 4CpðCu1þÞþO þ4Hþ!4CpðCu2þÞþ2H O 2 2 FPNþHepc!(cid:10) PLOSComputationalBiology|https://doi.org/10.1371/journal.pcbi.1006060 April16,2018 10/34
Description: