ebook img

Mechanism of Focal Adhesion Kinase Mechanosensing PDF

16 Pages·2015·1.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanism of Focal Adhesion Kinase Mechanosensing

RESEARCHARTICLE Mechanism of Focal Adhesion Kinase Mechanosensing JingZhou1☯,CamiloAponte-Santamaría1☯,SebastianSturm2,JakobTómasBullerjahn2, AgnieszkaBronowska1,FraukeGräter1,3* 1HeidelbergInstituteforTheoreticalStudies,Heidelberg,Germany,2LeipzigUniversity,Institutefor TheoreticalPhysics,Leipzig,Germany,3InterdisciplinaryCenterforScientificComputing(IWR),Heidelberg University,Heidelberg,Germany ☯Theseauthorscontributedequallytothiswork. a11111 *[email protected] Abstract Mechanosensingatfocaladhesionsregulatesvitalcellularprocesses.Here,wepresent resultsfrommoleculardynamics(MD)andmechano-biochemicalnetworksimulationsthat OPENACCESS suggestadirectroleofFocalAdhesionKinase(FAK)asamechano-sensor.Tensileforces, Citation:ZhouJ,Aponte-SantamaríaC,SturmS, propagatingfromthemembranethroughthePIP bindingsiteoftheFERMdomainand 2 BullerjahnJT,BronowskaA,GräterF(2015) fromthecytoskeleton-anchoredFATdomain,activateFAKbyunlockingitscentralphos- MechanismofFocalAdhesionKinase phorylationsite(Tyr576/577)fromtheautoinhibitoryFERMdomain.Varyingloadingrates, Mechanosensing.PLoSComputBiol11(11): e1004593.doi:10.1371/journal.pcbi.1004593 pullingdirections,andmembranePIP concentrationscorroboratethespecificopeningof 2 theFERM-kinasedomaininterface,duetoitsremarkablylowermechanicalstabilitycom- Editor:PeterMKasson,UniversityofVirginia, UNITEDSTATES paredtotheindividualalpha-helicaldomainsandthePIP -FERMlink.Analyzingdown- 2 streamsignalingnetworksprovidesfurtherevidenceforanintrinsicmechano-signalingrole Received:June5,2015 ofFAKinbroadcastingforcesignalsthroughRastothenucleus.ThisdistinguishesFAK Accepted:October12,2015 fromhithertoidentifiedfocaladhesionmechano-responsivemolecules,allowinganew Published:November6,2015 interpretationofcellstretchingexperiments. Copyright:©2015Zhouetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermits unrestricteduse,distribution,andreproductioninany AuthorSummary medium,providedtheoriginalauthorandsourceare credited. Focaladhesionsintegrateexternalmechanicalsignalsintobiochemicalcircuitsallowing DataAvailabilityStatement:Allrelevantdataare cellularmechanosensing.Althoughthezooofmechanosensingproteinsatfocaladhesions withinthepaperanditsSupportingInformationfiles. issteadilygrowing,force-inducedenzymaticmechanisms,asthoseuncoveredforautoin- Funding:FundingfromtheKlausTschiraFoundation hibitedkinasesinmuscle,remaintobeidentifiedforfocaladhesiondownstreamsignaling. (toJZandFG),theBMBFSYSTECprogramme(to Here,weprovideevidencethatfocaladhesionkinase(FAK)canactasadirectmechano- JZandFG),theDeutscheForschungsgemeinschaft enzymeatfocaladhesions,usingmoleculardynamicssimulationsandkineticmodelling. (DFG)researchgroupFOR1543(toCASandFG), WeshowthatanchorageofFAKtothemembraneviaPIP-2iscriticalforthismechanical andtheBIOMSprogrammeatHeidelbergUniversity activation.Ourresultssuggestsimilarmechanismstobeatplayforothermembrane- (toAB)isgratefullyacknowledged.JTBandSS acknowledgefinancialsupportfromtheEuropean boundautoinhibitedkinases. UnionandtheFreeStateofSaxony,andtheDFG throughFOR877andtheLeipzigSchoolofNatural Sciences-BuildingwithMoleculesandNano-objects (BuildMoNa).Thefundershadnoroleinstudy PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 1/16 FAKMechanosensing design,datacollectionandanalysis,decisionto Introduction publish,orpreparationofthemanuscript. Focaladhesions(FAs)actaskeycellularlocationsformechanosensingbyintegratingmechani- CompetingInterests:Theauthorshavedeclared calandbiochemicalsignalsbetweentheoutsideandinsideofthecell,therebyregulatingpro- thatnocompetinginterestsexist. cessessuchascellproliferation,motility,differentiation,andapoptosis[1–3].Theycontain numerousadapteroranchorproteins,whichestablishthemechanicallinkofthecytoskeleton withtheextracellularmatrix[4].Someoftheseproteinshavebeenidentifiedasmechano- responsiveelements[5–7]. FocalAdhesionKinase(FAK)centrallyregulatesFAsbyestablishingadhesiveinteractions atthecellperiphery[8].Actingasasignalinghubbetweenintegrinandmultipleproteinspar- ticipatingindownstreamsignalingpathways,itcarriesoutdiversefunctionsinembryonic development,cellmigration,andsurvival,anditsmalfunctionisassociatedwithcancerpro- gressionandcardiovasculardiseases[9,10].FAKcomprisesacentraltyrosinekinasedomain flankedbytwolargenon-catalyticdomains:FERMandFAT(Fig1A).TheN-terminalthree- lobed4.1ezrinradixinmoesin(FERM)homologydomainisconnectedtothekinaseN-lobe Fig1.MechanicalactivationofFK-FAK.A)DomainorganizationofFAKanditsrelativepositionatthecell peripheryinthecytosol.Thekinasedomain(orange)containsthelobesNandCandtheFERMdomain (blue)consistsoflobesF1–3,withF2bindingtoPIP lipids(red)concentratedattheinnerleaflet(IL)ofthe 2 membrane(grey).ThemajorphosphorylationsiteTyr576/577(magentastar),locatedattheactivationloop (green)inthekinasedomain,isautoinhibitedbytheFERMdomain.TheautophosphorylationsiteTyr397 (greystar)ispositionedintheloopconnectingthekinaseandFERMdomains(grey).TheFATdomain(violet) isnotconsideredinourstudy.B)StretchingforceappliedtothebasicpatchinFERMandthekinaseC- terminalresidue(red),informofvirtualsprings,inducesFERM-kinasedissociation.Representative structuresofFAKinitsinitialautoinhibitedconformation(1),afterdissociationofthekinaseC-lobefromthe FERMF2lobe(2),andafterTyr576/577releaseandpartialC-terminalunfolding(3)areshown.Color-code andorientationoftheproteinasinA.C)Cumulativenumberofdissociationeventsasafunctionofthe distancebetweenthepulledelementsatthemomentofdissociation(De−e).Thisindicatestheextentof unfoldingpriordissociation.Twoeventsweremonitored:dissociationofthetheFERMF2lobefromthe kinaseC-lobe,F2-C(transitionfrom(1)to(2)inB),andseparationofFERMdomainfromtheTyr576–577 phosphorylationsite,F-YY(transitionfrom(2)to(3)inB).Totalnumberofsimulations(83)isindicatedwith thedashedline. doi:10.1371/journal.pcbi.1004593.g001 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 2/16 FAKMechanosensing througha50-residuelinker.TheC-terminalFAT(focaladhesiontargeting)domainfollowsa 220-residuelongproline-richanddisorderedlinker,throughwhichitisconnectedtothe kinaseC-lobe.TheactivationofFAKfirstrequiresautophosphorylationofTyr397,which offersaSrchomology2(SH2)bindingsite.SrcbindingtoFAKincreasesSrckinaseactivity, inducingthephosphorylationofTyr576/577withinthekinasedomainactivationloop[11]. ThisisneededformaximalFAK-associatedactivityandleadstotheformationofaSrc-FAK complex,whichtriggerssubsequentphosphorylationsintheFATdomainandbindingof downstreamsignalingproteins[12].TheFERMdomainauto-inhibitsthekinasedomainby blockingtheTyr576/577phosphorylationsite[13,14].Exposureofthissiteisanessentialstep topermititsphosphorylation,andtherebyrendermaximumFAKactivity. FAKlocatesatsitesofintegrinclusteringthroughprotein-proteininteractionsofitsFAT domain,whichcontainsbindingsitesforintegrin-andactin-associatedproteins[4,15].Integ- rinsignalingandinteractionswithgrowthfactorreceptorsweredeterminedasFAKactivators [16,17].Recentstudiesprovidedevidencethatphosphoinositidephosphatidylinsositol- 4,5-bis-phosphate(PIP )iscriticalforefficientFAKactivationandautophosphorylation[18, 2 19].PIP ,aubiquitoussecondmessengerenrichedintheinnerleafletoftheplasmamembrane 2 andconcentratedatFAs,regulatestheinteractionofcytoskeletalproteinswiththemembrane [20,21].PIP interactsdirectlywiththebasicpatch(216KAKTLR221)intheFERMdomain[18, 2 19],whichinducesconformationalchangesinFAK.TheglobalconcentrationofPIP inthe 2 cellmembraneisonlyapproximately1%[22].However,PIP -proteininteractions[22,23]or 2 divalentions,suchasCa2+,[24,25]canleadtolocalPIP2accumulation.Localizedincrements ofCa2+werealsosuggestedtoincreasetheresidencyofFAKatFAs[26]. EvidenceforadecisiveroleofFAKinmechanotransductionissteadilygrowing[27].FAK isrecruitedtotheleadingedgeandphosphorylatedinmigratingcellsundershearstress[28, 29].Ithasalsobeenshowntomediateforce-guidedcellmigration[30,31]aswellasstrain- inducedproliferation[32].Recently,themechano-sensitivityofFAKhasbeenascribedtothe force-sensingfibronectin-integrinlink[33].However,untilnow,theavailabledataon mechano-sensingthroughFAKisindirect.ItremainsunknownifFAKonlyliesdownstream ofmechano-sensingprocessessuchasthoseinvolvingintegrins,orifFAKisalsoperse exposedtoandactivatedbymechanicalforce. WeherehypothesizethatmechanicalforceactsasadirectstimulusofFAKactivity,indica- tionsforwhicharetwo-fold.First,FAKistetheredbetweenthePIP -enrichedmembraneand 2 thecytoskeleton,likelyactingasaforce-carryinglinkinFAs.Second,theFERM-kinasestruc- turesuggestsitselfasamechano-responsivescaffold,inwhichforcecouldspecificallydetach theautoinhibitoryFERMdomainfromtheactivesite.FAKwouldbethefirstmechanoenzyme ofFAs,allowingadirecttransductionofamechanicalsignalintoanenzymaticreactionand downstreameventsintothenucleus,whichwouldyieldamechanisticexplanationofFAK’s mechano-sensingrole[10].Indeed,twoanalogouscasesofmechanicallyactivatedenzymes havebeenpreviouslyidentified,bothofwhicharekinasesandfeatureforce-inducedactivation byremovalofanautoinhibitorydomain,namelytitinandtwitchinkinaseinmuscle[34–36]. IncontrasttotheFATdomain[37],theforceresponseoftheautoinhibitedFERM-kinasefrag- mentiscurrentlyunknown.TotestthehypothesisofFAKasaforce-sensor,weperformed extensiveequilibriummoleculardynamics(MD)andforce-probemoleculardynamics (FPMD)simulationsoftheFERM-kinasefragmentofFAKundervariousconditions.Force propagatingontoFAKfromaPIP -enrichedmembraneandthecytoskeletonspecifically 2 opensthehydrophobicFERM-kinaseinterface,preparingFAKforactivationviaphosphoryla- tionpriortotheunfoldingofthekinasedomain.Giventhelowstabilityofthelargelyα-helical kinaseandFERMdomains,thisisremarkable.Theenforcedactivationisrobustwithregardto PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 3/16 FAKMechanosensing alargerangeofpullingvelocities,butsensitivetothesiteofforceapplication.Ourforce- inducedactivationpathwaysuggestsadirectmechanoenzymaticfunctionofFAKinFAs. MaterialsandMethods EquilibriumMDsimulationsoftheFERM-kinasefragment(FK-FAK)fragment[14](PDB code:2J0J)intheapostate,bothintheabsenceandinthepresenceofamembranecontaining PIP andPOPElipids,aswellasofonlythemembrane,wereperformedusingtheGROMACS 2 package[38].FPMDsimulations[39,40]ofFK-FAKwithoutamembranewereperformedby subjectingtheC-terminalC-alphaatomandthecenter-of-massoftheC-alphaatomsofthe basicpatch216KAKTLR221toharmonic-springpotentialswhichweremovedawayfromeach otherwithconstantvelocity.FAThasbeensuggestedtointeractwithFERM,bindingtothe samesiteasPIP2does[41].However,PIP2bindingisrequiredforFAKactivation[18,19], thusexcludingthepossibilityofFAT-FERMstableinteractionsforPIP2-mediatedFAKactiva- tion.OtherinteractionsbetweenFATandtheFERM/Kinasecomplexarenotknownoratleast suggestedtobeverydynamicandweak[42],andtherebyeasiertobreakunderforcecondi- tions.Thissuggeststhatundertensileforce,FATismaintainedsufficientlyfarfromthecom- plex,andthattheforceistransducedtowardsthecomplexthroughthefully-stretched200 amino-acidproline-richdisorderedlinker.Inconsequence,inourFPMDsimulationsneither FATnorthelinkerwereconsidered. Theforceresponseofmembrane-boundFK-FAKwasinvestigatedbysubjectingitsC-ter- minustoaharmonicpotentialthatwasthenmovedawayfromthemembraneeithervertically ordiagonally,whilekeepingthemembranepositionatitsoriginalposition.PLS-FMA[43]was usedtodetectcollectivemotionsmaximallycorrelatedwiththeopeningoftheFERM-kinase interface.Theunderlyingfreeenergylandscapewascharacterizedbyanalyzingtherupture forcesasafunctionofloadingrate,usingboththeHSmodelbyHummer&Szabo[44]andthe BSKmodelbyBullerjahnetal.[45].Kineticmodelswerebasedonpreviousbiochemicalnet- works[46–49]andsimulatedusingCOPASI[50].DetailsofthemethodsaregiveninS1Text. Results Force-inducedreleaseofFAKautoinhibition Invitro,phosphorylationoftheactivationloopofFAKisenhancedbyrelievingtheautoinhibi- tionthroughY180/M183mutation[14]orPIP -binding[18].Catalyticturnoverofwild-type 2 FAK,however,requiresanadditionalbiochemicalstimulus.Here,weaskifmechanicalforce couldpromotefulldomaindissociationofFAKasrequiredforauto-andSrc-phosphorylation– analogoustotheeffectoftheY180/M183mutation.Weexaminedtheeffectoftensileforceon theautoinhibitedFK-FAKusingFPMDsimulations.TetheringFAKbetweenthemembrane andthecytoskeletonresultsinforcetransmissionfromthemembraneontothebasicpatchof theFERMdomainandfromthepaxillin-interactingFATdomainthroughtheproline-rich linkerontothekinaseC-terminus(Fig1A).Accordingly,inoursimulations,apullingforcewas appliedtothebasicpatchofFERMandtheC-terminusofthekinasedomaininoppositedirec- tionswith13differentpullingvelocitiesfrom6×10−3nm/nsto1nm/ns(1inFig1B).Foreach pullingvelocity,multiplerunswerecarriedout(83runsintotal),yieldingaconcatenatedsimu- latedtimeofabout7μs,withtheslowestpullingsimulationcovering1μs.Weobservedthe autoinhibitoryFERMdomaintodissociatefromthekinasedomainin76outof83FPMDsimu- lations(morethan90%ofthecases).ConformationaldamageofeithertheFERMF2-lobeor kinaseC-lobeoccurredintheremaining7simulations.ReleaseofTyr576/577fromFERM occurredalwayslater,i.e.atlargerend-to-enddistances,thandissociationoftheF2-lobefrom theC-lobe(Fig1Band1C),suggestingtheF2-Cdetachmenttobearequirementformechanical PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 4/16 FAKMechanosensing FAKactivation.WeobservedpartialunfoldingatthekinaseC-terminuspriortoexposureof Tyr576/577toanonlyminorextentandmostlyathigherloadingrates,comprisingatmosta15 nmincreaseinend-to-endlength(Fig1Band1C),ornomorethan30residuesoftheC-termi- nalα-helix(S1Fig).Asthesecondhalfofthishelix(ormore)istypicallydisorderedinother kinases(e.g.inproteinkinaseAorSrc),itspartialunfoldingunderforceislikelynottoimpair FAKenzymaticfunction.Hence,ourdatasuggestdomain-domaindissociationtolargelythwart theunfoldingofthemoderatelystableα-helicaldomainstructures.However,moresubstantial unfoldingfromtheC-terminusofthekinasedomainwasthedominantpathwaywhenpulling FK-FAKfromitsNandC-terminus(S2Fig).Thus,weconcludethatforceactingspecifically betweentheFERMbasicpatchandthekinaseC-terminusremovestheinhibitoryFERMdomain andtherebyfacilitateskinaseactivation,insteadofdomainunfoldingandkinaseinactivation. FAK-membraneinteractionsunderforce AtFAs,thespecificinteractionoftheFERMbasicpatchwithPIP2isrequiredfortheanchor- ingofFK-FAKtothemembrane.Otherphospholipidsonlydisplaybackgroundlevelsofbind- ing[18].Inourpreviousstudy,weobservedanallostericchangeattheFERM-kinaseinterface uponPIP bindingtoFK-FAK,butnofullopening[18].Thisraisedthequestioniffulldomain 2 openingunderforce,asobservedforisolatedFK-FAKinsolution,alsooccurswhenFK-FAKis anchoredtoamembraneviaPIP .ThiswouldrequireboththePIP -containingmembraneas 2 2 wellasthePIP -FERMlinktobemechanicallymorerobustagainstrupturethantheFERM- 2 kinaseinteraction.Totestthis,wesetupapalmitoyloleoylphosphatidylethanolamine(POPE) membranecontaining15%(mol/mol)ofPIP intheinnerleafletofthemembrane,whichwas 2 surroundedbywaterandneutralizedbyCaCl .Within100nsofMDsimulationsstarting 2 fromindividualPIP moleculesinthemembrane,weobservedtheformationofsmallPIP 2 2 clustersinvolvingtwoormorelipidsandCa2+(S3Fig),accompaniedbyadecreaseofareaper lipidby*1Å2(S1Table),inagreementwithdivalent-cation-mediatedPIP -enrichmentin 2 membranes[18,24,51].FK-FAKwasanchoredtothemembraneandthedynamicsofthe resultingcomplexwasmonitoredover150nsofMD.Anchoragefurtherincreasedclustering. TheproteinremainedstablyboundtothemembranethroughtheFERM-PIP andadditional 2 interactionsbetweenthekinaseC-lobeandthemembrane,independentfromtheinitialorien- tationoftheproteinrelativetothemembraneplane(Fig2AleftandS3Fig).Thesamewas observedforamembranewith1%PIP ,which,however,showedlessclusteringandprovided 2 onlyasinglePIP lipidforanchorageofFK-FAK. 2 Next,wemonitoredthemechanicalresponseofmembrane-anchoredFK-FAK.InFPMD simulations,wesubjectedtheproteintoforcebymovingaharmonicspringattachedtothe kinaseC-terminuswithconstantvelocityalongadirectionverticalordiagonaltothemem- brane,whilepositionrestrainingthecenter-of-massofthemembranebilayer(Fig2A).At15% PIP concentration,independentofthepullingdirection,weobservedalossofcontactsofthe 2 kinasedomainwiththemembraneandwiththeFERMdomain,whiletheFERM-membrane interactionremainedintact(Fig2B).Whilediagonalpullingledtoaconcurrentdissociationof thekinasefromthemembraneandtheFERMdomain,verticalpullingresultedinkinase-mem- branedissociationpriortokinase-FERMdissociation.Innoneofthesesimulations,we observedkinaseunfoldingpriortodissociation.Also,forbothpullingdirections,themem- braneandthePIP -FERMinteractionweremechanicallymorerobustthanthoseatthe 2 FERM-kinaseinterface.Thus,themembranesimulationsreproducedtheprocesspredomi- nantlyobservedforisolatedFK-FAKinsolution(compareFig2BwithFig1Band1C).Namely, theyallshowedforce-inducedremovaloftheautoinhibitoryFERMdomainandexposureof theactivationloopcarryingtheTyr576/577phosphorylationsite. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 5/16 FAKMechanosensing Fig2.MechanicalactivationofFAKboundtothemembrane.A)ForcewasappliedtotheC-terminusof FK-FAK,inverticalordiagonaldirectionwithrespecttothemembrane,withacounter-forceactingonthe membrane,leadingtothereleaseofautoinhibition(lefttorighttransition).FK-FAKisshownasinFig1B,PIP 2 lipidsinthemembrane(hereat15%)incyan/redandPOPElipidsingrey.B-C)NumberofcontactsN betweentheFERMF2-lobe(F2)andthekinaseC-lobe(C)comparedtothenumberofcontactsbetween bothlobesandthemembrane(mem),at15%(B)and1%(C)PIP concentration.Numberofcontacts 2 betweenlobeswasdefinedasthenumberofatomsinoneofthelobescloserthan0.6nmtoatleastone atomoftheotherlobe.Upperpanelsshowresultsfordiagonalpullingwhilelowerpanelsforverticalpulling. DensitiesofN(forapullingvelocityof0.03nm/ns)areshownasagreygradient,withapolynomialfittothe datashownasasolidblackline.Thelabelsi,a,b,anducorrespondtotheinactive,active,boundand unboundstatesofFK-FAK,respectively,sketchedattherightside. doi:10.1371/journal.pcbi.1004593.g002 WhenweappliedforcetoFK-FAKanchoredtoamembranecontainingonly1%PIP ,i.e. 2 toasinglePIP molecule,detachmentofthekinasedomainfromthemembranewasfollowed 2 bythedetachmentofalsotheFERMdomain(Fig2C).Fulllossofmembraneanchoringnatu- rallystopsforcetransmissionandimpedesactivation.Thus,aninteractionoftheFERMbasic patchwithmultiplePIP ,whichislikelyinPIP -enrichedmembranes,isrequiredformechani- 2 2 calFK-FAKactivation.ThisisinlinewiththefactthatPIP5Koverexpressionincreasesand PIP5KknockdowndecreasestheopenFAKconformation[19].Thepullingdirection,instead, appearstobelessrelevant. Mechanismofforce-inducedFK-FAKopening Wenextanalyzedinfurtherdetailthedynamicsunderlyingtheforce-triggeredFK-FAK domain-domainrupture.Applyingpartialleastsquaresfunctionalmodeanalysis(PLS-FMA) [43]tothesimulationsofisolatedFK-FAKinsolution,weobtainedacollectiveopening PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 6/16 FAKMechanosensing motionthatmaximallycorrelateswiththeincreaseinminimaldistancebetweentheF2andC lobes(S4Fig).ThisopeningmotionalsostronglycorrelatedwiththeF2-Clobedistances obtainedforthetrajectoriesofmembrane-boundFK-FAK,suggestingthatitcapturesthe essentialopeningdynamicsofFK-FAKbothisolatedandboundtothemembrane.Thisimplies thesimplifiedsystemofisolatedFK-FAKinsolutiontofollowaFERM-kinasedissociation mechanism,whichishighlysimilartotheoneofthemorerealisticsystemincludingthemem- brane,eventhoughitlackseffectsfromFERM/kinase-membraneinteractions. WethenidentifiedthefirststepsalongtheopeningmotionofFK-FAKgivingrisetorup- tureforces.Fig3AshowstypicalforceprofilesandF2/C-lobeinteractionareasasafunctionof thespringlocationsrecoveredfromtheFPMDsimulations.ForbothFK-FAKinisolationand boundtothemembrane,andindependentoftheloadingrate,weobservedthattheinterface areabetweenthetwolobeswasreducedintwosteps,bothofwhichcoincidedwithnoticeable forcepeaks.Themaximalforcewasreachedwhenthefirstdecreaseininter-lobeareaoccurred Fig3.MechanismofFK-FAKmechanicalactivation.A)InterfacialareabetweentheF2-andC-lobe(grey) andaverageforceexertedbythetwosprings(blue)asafunctionofthedistancebetweensprings,D . spring ResultsfromsixindependentFPMDsimulationsareshown:(1–3)withoutthemembranepullingatV=0.006, 0.006and0.014nm/ns,respectively,and(4and5)pullingdiagonallyawayfromthemembraneatV=0.03and 0.05nm/ns,respectively.Theinterfacialareadropsfrominitialvaluesof3–4.5nm2tointermediatevaluesof 1.5–2.8nm2.Afterwardsitdecreasestozero.Ruptureforce(highestforcepeak)alwayscorrespondedtothe firstdropintheinterfacialarea(redline).Thepeakforceassociatedtotheseconddropintheareais highlightedwiththegreenline.B)DistributionofinterfaceareasreflectingthetwostatesofFK-FAKduringits force-inducedopening(highlightedwitharrows).AllFPMDsimulationswereconsideredtocomputethe distribution.C)Residuesinvolvedintherupturestepsarehighlightedassticks.FERMF2-andKinaseC-lobe areshowninsurfacerepresentation.Rupturestepsareassociatedtothedisruptionofhydrophobic interactions(green);saltbridges(blue)andotherelectrostaticinteractions(magenta),andinteractionswith otherpartners(cyan).ResidueswereidentifiedbyTRFDA(S5Fig).TheyarelistedinS2Table. doi:10.1371/journal.pcbi.1004593.g003 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 7/16 FAKMechanosensing (from3–4.5nm2to1.5–2.8nm2).Thisledtoashort-livedintermediate,asreflectedbyasec- ondpeakinthedistributionoftheF2/C-lobeinterfacearea(Fig3B),beforethetwolobesfully dissociated.Wenotethattheintermediatebecomeslessevidentforfasterpullingvelocities. Topinpointtheload-carryingresidue-residueinteractionsacrosstheinterface,wecalcu- latedthepunctualstressofeachresidue,usingtimeresolvedforcedistributionanalysis (TRFDA)[52],andtherebydetectedthelossofinter-lobeinteractionsduringpulling(seeS5 Fig,S2Table,andS1Text).Inter-lobeinteractionswhichrupturedreproduciblyatoneofthe twodissociationstepsarehighlightedinFig3C.Thefirstmajorrupturesteprequiredthe breakupofahydrophobicclustercomposedofresiduesY180,M183,N193,V196,andF596, andofanadditionalsaltbridge(D200-R598).Ruptureoftheseinteractionsgaverisetothe maximalforce,thusstressingtheircriticalstabilizingrole.Ourresultsareinagreementwith theobservationthatmutationsY180A,M183A,andF596DresultinconstitutivelyactiveFAK withanopenFERM-kinaseinterface[14,18].Residuepairsrupturingatthesecondstep includedresiduesofmostlyelectrostaticnature(E182,R184,K190andN595,N628,N629, E636)andarelocatedfurtherawayfromthemembraneanchor.Thissecondrupturestepis immediatelyfollowedbytheopeningoftheremainingFERM-kinaseinterfaceestablished betweentheF1andtheN-lobe,includingtheexposureofTyr576/577.Thus,therupturepro- cessresemblesazipper-likemechanism,duringwhichtheFERMandkinaseinterfaceis sequentiallyopened.Herein,themembrane-proximalhydrophobicpatcharoundF596repre- sentsthemostrobustmechanicalclamptobeopenedfirst.OurPLS-FMAcalculationsfurther supportthissequentialmodeofopening(S4CFig). ForcerequiredforFAKactivation AretheforcespredictedbythesimulationstorelieveFAKautoinhibitionrelevanttoFAKat FAs?Atthirteendifferentloadingrates,coveringtwoordersofmagnitude,weobtainedmaxi- malruptureforcesforFK-FAKactivationbetween150and450pN(Fig4A).Thisforceregime issimilartotheoneobservedfortitinkinase(400pNat0.2pN/ps),akinaseknowntobe mechanicallyactivatedbyforcespresentinmuscle[35,36,53].Ourruptureforcesarealsosim- ilartoorslightlyhigherthanthosepredictedbyMDsimulationsofthefocaladhesionproteins talinandvinculin(250–400pNfornanosecondscaleactivationoftalin[54,55]and100pNfor sub-nanosecondactivationofvinculin[56],respectively).WethenusedboththeHSmodel [44]andtheBSKmodel[45]tofittheobservedruptureforcesasafunctionoftheloadingrate. ThisprovideduswithasetofcompatiblemodelparametersΔG,Dandx ,whereΔGdenotes b theactivationenergy,Dtheeffectivediffusivityandx theseparationbetweentheinactivestate b andthetransitionstate.Focusingonthoseparametercombinationsthatcorrespondtoaphysi- ologicallyplausiblespontaneousactivationrateofnomorethank =10−3Hz,weobtaineda 0 numberofbest-fitestimatesfromwhichwederivedtheforce-dependentactivationratek(F) usedinourkineticmodel(Fig4AandS6Fig).Wenotethatmodelparameterscorresponding toanunphysiologicallyhighspontaneousdissociationratecanimproveourfittotheobserved forcefluctuations(S7andS8Figs).Onthisbasisitmightbespeculatedthatthereexistsasec- ondenergybarrieratalargervalueofx thatguaranteesthermalstabilityatlowforces,but b vanishesunderthehighforcesusedinourMDsimulations.Nevertheless,thisdoesnotinvali- dateourqualitativefindingsonFK-FAKactivationasforcesensitivityincreasesexponentially withthebarrierlocationx (seetheS1Textforamoredetailedanalysis). b Discussion Wehereprovidecomputationalevidenceforaforce-inducedactivationmechanismofFAK,in whichtensileforcerelievestheblockageofitsactivesite,aswellasitscentralTyr576/577 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 8/16 FAKMechanosensing Fig4.FAKmechano-signaling.A)RuptureforceFasafunctionoftheloadingrateF_,whereFisdefinedasthemaximalforceobservedduringFK-FAK activation(arrowintheinset).LightgreydotsrepresentindividualruptureforcesFobservedinourmembrane-freeFPMDsimulations.Darkgreydots representtheiraverages(foreachloadingrateF_).ThesolidlineshowsthemeanruptureforcehFipredictedbytheBSKmodel[45]forΔG=28.5k T,x = B b 0.86nm,andD=6.6×106nm2/s.AfitwiththeHS[44]modelyieldssimilarmodelparameters(notshown).Dashedlinesshowthevariationoftherupture forcespredictedbytheBSKmodel(2standarddeviations,seeS1Textforadetailedanalysis).Pullingmembrane-boundFK-FAKdiagonallyyieldedsimilarly largeruptureforces(greendots).Verticalpullingresultedinsignificantlylowerruptureforces(pinkdots),asthisdirectionpromotesthelessresistantzipper- likedissociationmechanismdescribedinS4BandS4CFig)Timeatwhich50%ofinactiveFAK(B)andGDP-boundRasprotein(C)areconsumed,under varyingexternalforce.Timesobtainedforthreesetsofparameters(1to3)correspondingtothethreefitspresentedinS6Fig. doi:10.1371/journal.pcbi.1004593.g004 phosphorylationsite,imposedbytheautoinhibitoryFERMdomain.Thereleaseofautoinhibi- tionislikelytomakethekinaseactivesiteaccessibleforitssubstrate,Tyr397ofthesameor anotherFAKmolecule[42,57],and/ortorenderTyr576/577accessibletoSrc.Itisnon-trivial thattheexertionofapullingforceatoppositesitesoftheFERMandkinasedomainsleadsto theirdissociation.OtherlikelyscenariosareproteinunfoldingandPIP -proteindissociation, 2 bothofwhichwouldinactivateFAK,becauseanintactkinasestructureandalsoPIP binding 2 [18]arerequiredforFAKactivity.Infact,α-helicalproteinsareknowntounfoldatforcestypi- callylowerthanβ-sheetproteins[58],andboththekinaseC-lobeandtheFERMF2domain featuremainlyα-helicalsecondarystructure.Inthisregard,force-inducedFAKunfolding wouldbeanexpectedresultandwasindeedpreferredoverFERM-kinasedissociationwhen pullingtheFERMF1-orF3-lobeawayfromthekinaseC-terminus.Instead,intheparticular– andphysiologicallyrelevant–casethatforceisappliedtothePIP bindingsiteandthekinase 2 C-terminus,wefounddomain-domaindissociationtobestronglypreferredoverunfoldingor membranedetachment,overalargerangeofpullingvelocities,androbustwithregardtothe pullingdirectionandpresenceofmembraneinteractions.Thus,theα-helicalregionssubjected tothepullingforcemostlyrefrainfromunfolding,andtheyinsteadtransducetheloadtothe F2/C-lobeinterface,whichreadilyopenspriortosubstantialkinaseunfolding.Wesuggestthat itisthezipper-liketopology,withtheforceapplicationsitesbothlocatedatthemembrane- proximalbasisofthetwodomains,thatmechanicallyweakensthedomaininterface,resulting inefficientFAKopeningandactivation.Forcetransductionthroughthetwotermini,incon- trast,resultsinshearingthetwodomainsrelativetoeachother,makingthemlesspronetodis- sociate.Thelowermechanicalresistanceofzipperversusshear-typetopologieshasbeen describedearlier(e.g.[53]),andFAKforce-induceddomain-domainruptureandactivation appearstobeanothervariationofthistheme. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 9/16 FAKMechanosensing Ourfindingsnotonlydecidedlyargueforamechano-sensingfunctionofFAK,butalso emphasizethecrucialroleofthemembraneinmechanotransduction.First,membranebinding allowsforcetopropagatetotheF2-lobeofFAK.Second,theFAK-membraneinteractionwith- stoodtheexternalloadonlyinthecaseofPIP -enrichedmembranes(15%PIP ).Incontrast, 2 2 FAKdetachedfromlowPIP -contentmembranes.ThissupportsthenotionofPIP clustering 2 2 asarequirementforFAKactivationatFAs[18,51].WenotethatFAKcanbeactivatedinvitro bythesoleactionofPIP andSrc,i.e.intheabsenceoftensileforcesactingonmembrane- 2 boundFAKatFAsinstretchedcells.However,ithasbecomeclearthatFAKactivationcan proceedalongdifferentroutes,dependingonthecellularenvironment,andpotentiallycanalso involvepHchanges[59],and/orgrowthfactorreceptors[16].Wehereproposeforcetosubsti- tuteorcomplementsomeoftheseactivatorsshapingthemulti-dimensionallandscapeofFAK activity. UsingTRFDA,werecoveredthestabilizingroleofY180,M183,V196andF596,ahydro- phobiccorepreviouslyshownbymutagenesistostabilizetheautoinhibitedstate[14],validat- ingoursimulationdata.Inaddition,wefoundD200andR598tocontributetotherupture force,andpredicttheirmutationtoresultinincreasedFAKactivity. Thequestionarises,howforcefeedsintoFAK-mediatedRasGDP/GTPexchangeandregu- latesERK-dependentgeneexpression,analogoustothechemicalstimulationofgrowthfactor receptor-dependentRassignaling(S9Fig)[27].ToassesshowFAKasamechanosensorcou- plesmechanicalsignalsintothedownstreambiochemicalnetwork,wedefinedforce-dependent FAKactivationastheinitialstepofakineticmodelfortheRassignalingpathway(S10Fig) [46–49].BothFAKopeningandGDP/GTPexchangeinRasareacceleratedbyexternalforces, asexpected(Fig4Band4CandS11AFig).Intriguingly,whileFAKforce-inducedactivation showsanearlylineardependencyonforceonthelogarithmicscale(Fig4B),Ras-GTPproduc- tionshowsahighlynon-lineardependencyandsaturatesbeyondacriticalforce(Fig4C).The reasonisthatactivatedFAKincomplexwithitspartners,Grb2andSOSviac-SrcandSHC, actsasanenzymeforRasactivation.Asadirectconsequence,Rasactivationfollowsmechano- enzymatickineticsreminiscentofaninhibitoryMichaelis-Mentenmechanisms(S11BFig) [60],inwhichforceregulatestheenzymeconcentration. Inconclusion,ourcomputationalstudyprovidesdirectevidenceatthemolecularlevelfora mechano-sensoryroleplayedbyFAKatPIP -enrichedmembranesofFAs.Throughaspecific 2 domainopeningmechanismregulatedbyforce,FAKcanintegratemechanicalandchemical stimuliintodownstreamsignalingtothenucleus.Wesuggestthemechano-enzymaticsofFAK andRastoprovideacaponthecell’smechano-response.Ourresults,onFAKactivationand signaling,aredirectlytestableamongothersbymolecularforcesensors[61,62]andcell stretchingexperiments.Howotherputativelymechano-activatedkinases,suchastherelated Srckinase,followsimilarmechanisms,atfocaladhesionsorelsewhere,remainstobeshown. SupportingInformation S1Fig.Partialunfoldingofthekinasedomain.A)Distancebetweenthepulledgroupsatthe momentofdissociation(De−e)asafunctionoftheappliedloadingrate.Dissociationwasmoni- toredbetweentheFERMF2-lobeandthekinaseC-lobe(F2-C)andbetweentheFERMdomain andtheTyr576–577phosphorylationsite(F-YY).Eachdotcorrespondstoonesimulationrun andthelineisapolynomialfittoallthepointsasaguidetotheeye,indicatingaslightaugment inDe−ewithincreasingloadingrate.B)NumberofunstructuredresiduesNUNasafunctionof thetime,forasimulationdisplayingalargeDe−evalue(circleinA).Timetraceisshownin blackandapolynomialfitasaguidetotheeyeinblue.Residualunfoldingofaround30resi- dueswasobservedattheC-terminus.Thenumberofunstructuredresidueswasobtainedusing PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 10/16

Description:
enzyme at focal adhesions, using molecular dynamics simulations and kinetic modelling. We show that Creative Commons Attribution License, which permits unrestricted Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, et al. The role of the . Bisswanger H. In: Enzyme Kinetics: Section 2.1–2.5.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.