Conference Proceedings of the Society for Experimental Mechanics Series W. Carter Ralph · Raman Singh · Gyaneshwar Tandon Piyush R. Thakre · Pablo Zavattieri · Yong Zhu Editors Mechanics of Composite and Multi-functional Materials, Volume 7 Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics Conference Proceedings of the Society for Experimental Mechanics Series Series Editor Kristin B. Zimmerman, Ph.D. Society for Experimental Mechanics, Inc. Bethel,CT,USA Moreinformationabout thisseries athttp://www.springer.com/series/8922 W. Carter Ralph (cid:129) Raman Singh (cid:129) Gyaneshwar Tandon (cid:129) Piyush R. Thakre (cid:129) Pablo Zavattieri (cid:129) Yong Zhu Editors Mechanics of Composite and Multi-functional Materials, Volume 7 Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics Editors W.CarterRalph RamanSingh SouthernResearch OklahomaStateUniversity Birmingham,AL,USA Tulsa,OK,USA GyaneshwarTandon PiyushR.Thakre UniversityofDaytonResearchInstitute TheDowChemicalCompany Dayton,OH,USA Midland,MI,USA PabloZavattieri YongZhu PurdueUniversity NorthCarolinaStateUniversity WestLafayette,IN,USA Raleigh,NC,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-41765-3 ISBN978-3-319-41766-0 (eBook) DOI10.1007/978-3-319-41766-0 LibraryofCongressControlNumber:2016951852 #TheSocietyforExperimentalMechanics,Inc.2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherightsof translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateof publication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface MechanicsofCompositeandMultifunctionalMaterialsrepresentsoneoftenvolumesoftechnicalpaperspresentedatthe 2016 SEM Annual Conference & Exposition on Experimental and Applied Mechanics organized by the Society for Experimental Mechanics and held in Orlando, FL, June 6–9, 2016. The complete Proceedings also includes volumes on DynamicBehaviorofMaterials;ChallengesInMechanicsofTime-DependentMaterials;AdvancementofOpticalMethods in Experimental Mechanics; Experimental and Applied Mechanics; Micro and Nanomechanics; Mechanics of Biological SystemsandMaterials;Fracture,Fatigue,FailureandDamageEvolution;ResidualStress,Thermomechanics&Infrared Imaging,HybridTechniquesandInverseProblems;andJoiningTechnologiesforCompositesandDissimilarMaterials. This volume presents early findings from experimental and computational investigations in an important area within Composite,Hybrid,andMultifunctionalMaterials. Compositesareincreasinglythematerialofchoiceforawiderangeofapplicationsfromsportingequipmenttoaerospace vehicles.Thisincreasehasbeenfueledbyincreasesinmaterialoptions,greaterunderstandingofmaterialbehaviors,novel design solutions, and improved manufacturing techniques. The broad range of uses and challenges requires a multidisci- plinaryapproachbetweenmechanical,chemical,andphysicalresearcherstocontinuetherapidrateofadvancement. New materials are being developed from recycled source materials, leading to composites with unique properties and moresustainablesources.Existingmaterialsarebeingusedinnewandcriticalapplications,requiringdeeperunderstanding oftheirbehaviorsandfailuremechanismsonmultiplescales.Inaddition,theuniquepropertiesofcompositespresentmany challengesinmanufacturingandinjoiningthemwithothermaterials.Testingneedstobeperformedonthesematerialsto characterizetheirpropertiesandnewtestmethods,andtechnologiesmustbedevelopedinordertoperformthesestudiesand toevaluatepartsduringmanufactureanduse. Birmingham,AL W.CarterRalph Tulsa,OK RamanSingh Dayton,OH GyaneshwarTandon Midland,MI PiyushR.Thakre WestLafayette,IN PabloZavattieri Raleigh,NC YongZhu v Contents 1 MechanicalandTribologicalPropertiesofScrapRubberBasedComposites ReinforcedwithGlassFiber,AlandTiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 L.M.P.Ferreira,I.Miskioglu,E.Bayraktar,andD.Katundi 2 InvestigatingHempConcreteMechanicalPropertiesVariabilityDuetoHempParticles. . . . . . . . . . . 9 Ce´sarNiyigena,SofianeAmziane,andAlaaChateauneuf 3 RecyclingofScrapAluminium(AA7075)ChipsforLowCostComposites. . . . . . . . . . . . . . . . . . . . . . 19 L.F.P.Ferreira,E.Bayraktar,M.H.Robert,andI.Miskioglu 4 ScrapRubberBasedCompositesReinforcedwithCeramicOxidesandSilica. . . . . . . . . . . . . . . . . . . 27 D.Zaimova,L.-M.P.Ferreira,E.Bayraktar,andI.Miskioglu 5 MechanicalandTribologicalPropertiesofScrapRubberReinforcedwithAl O Fiber, 2 3 AluminiumandTiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2 L.M.P.Ferreira,I.Miskioglu,E.Bayraktar,andD.Katundi 6 Thermo-mechanicalInvestigationofFusedDepositionModelingbyComputational andExperimentalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 KoohyarPooladvandandCosmeFurlong 7 Non-LinearContactAnalysisofSelf-SupportingLattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 A.Aremu,I.Ashcroft,R.Wildman,andR.Hague 8 ProcessParameterEffectsonInterlaminarFractureToughnessofFDMPrintedCoupons. . . . . . . . . 63 G.P.Tandon,T.J.Whitney,R.Gerzeski,H.Koerner,andJ.Baur 9 ConstitutiveEquationsforSeverePlasticDeformationProcesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 RobertGoldstein,SergeiAlexandrov,andMarkoVilotic 10 MergingExperimentalEvidenceandMolecularDynamicsTheorytoDevelopEfficient ModelsofSolidsFracture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 C.A.Sciammarella,F.M.Sciammarella,andL.Lamberti 11 ComparisonofPatchandFullyEncircledBondedCompositeRepair. . . . . . . . . . . . . . . . . . . . . . . . . . 101 StephenA.TheisenandMichaelW.Keller 12 ComparisonofCompositeRepairPerformanceonDrilledandSimulatedDefects. . . . . . . . . . . . . . . . 107 O.RamirezandM.W.Keller 13 MeasuringHowOverlapAffectstheStrengthofCompositeTubesinBending-Torsion. . . . . . . . . . . . 115 SeanRohdeandPeterIfju vii viii Contents 14 ThermalCyclingandEnvironmentalEffectonTensileImpactBehavior ofAdhesiveSingleLapJointsforFiberMetalLaminate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 N.Mehrsefat,S.M.R.Khalili,andM.Sharafi 15 DesignofHybridCompositesfromScrapAluminumBronzeChips. . . . . . . . . . . . . . . . . . . . . . . . . . . 131 L.F.P.Ferreira,E.Bayraktar,I.Miskioglu,andD.Katundi 16 ImpactResponseofWastePolyEthyleneTerephthalate(PET)CompositePlate. . . . . . . . . . . . . . . . . 139 IbrahimBilici,AliKurs¸un,andMerveDeniz 17 ParticlesReinforcedScrapAluminumBasedCompositesbyCombinedProcessing Sintering þ Thixoforging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 L.F.P.Ferreira,E.Bayraktar,M.H.Robert,andI.Miskioglu 18 RecycleofAluminium(A356)forProcessingofNewCompositesReinforced withMagneticNanoIronOxideandMolybdenum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 L.F.P.Ferreira,E.Bayraktar,I.Miskioglu,andM.H.Robert 19 ANewMultiscaleBioinspiredCompliantSensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 HughA.Bruck,ElisabethSmela,MiaoYu,YingChen,andJoshuaSpokes 20 EffectofMicrostructureonMechanicalResponseofMAXPhases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 PrathmeshNaikParrikar,RogelioBenitez,MiladinRadovic,andArunShukla 21 ControlledPlacementofMicrocapsulesinPolymericMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 MatthewD.CrallandMichaelW.Keller 22 ConverseMagneto-ElectricCoefficientofCompositeMultiferroicRings. . . . . . . . . . . . . . . . . . . . . . . 185 MarioLopezandGeorgeYoussef 23 In-SituSensingofDeformationandDamageinNanocompositeBondedSurrogate EnergeticMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 EnginC.SengezerandGaryD.Seidel 24 Quasi-StaticCharacterizationofSelf-HealingDentalComposites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 DhyaaKafagy,KevinAdams,SharukhKhajotia,andMichaelKeller 25 LoadMonitoringUsingSurfaceResponsetoExcitationMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 S.Tashakori,A.Baghalian,M.Unal,V.Y.Senyurek,H.Fekrmandi,D.McDaniel,andI.N.Tansel 26 ElevatedTemperatureDigitalImageCorrelationUsingHighMagnification OpticalMicroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 W.CarterRalph,KevinB.Connolly,andCheriB.Moss 27 DesignofHybridCompositesfromScrapAluminumReinforcedwith(SiC+TiO +Gr+Ti+B). . . . . . . 225 2 A.Kursun,L.F.P.Ferreira,E.Bayraktar,andI.Miskioglu 28 ManufacturingofLowCostCompositeswithPorousStructuresfromScrap Aluminium(AA2014)Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 L.F.P.Ferreira,F.Gatamorta,E.Bayraktar,andM.H.Robert 29 DevelopmentofFunctionallyGradedNodularCastIronReinforced withRecycledWCParticles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 RodolfoLeibholz,MariaHelenaRobert,HenriqueLeibholz,andEminBayraktar 30 AluminiumMatrixCompositesReinforcedbyNanoFe O Doped 3 4 withTiO byThermomechanicalProcess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 2 L.F.P.Ferreira,I.Miskioglu,E.Bayraktar,andM.H.Robert 31 ImplementationoftheSurfaceResponsetoExcitationMethodforPipes. . . . . . . . . . . . . . . . . . . . . . . 261 A.Baghalian,S.Tahakori,H.Fekrmandi,M.Unal,V.Y.Senyurek,D.McDaniel,andI.N.Tansel Contents ix 32 ThermalMethodsforEvaluatingFlawsinCompositeMaterials:ANewApproach toDataAnalysis. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. . . . .. . . .. . . .. . . .. . . .. . . .. 267 DavidePalumboandUmbertoGalietti 33 CharacterisingtheInfraredSignatureofDamagedCompositesforTestControl. . . . . . . . . . . . . . . . . 277 J.E.Thatcher,D.A.Crump,P.B.S.Bailey,andJ.M.Dulieu-Barton 34 ThermoelasticStressAnalysisandDigitalImageCorrelationtoAssessComposites. . . . . . . . . . . . . . . 283 J.M.Dulieu-BartonandG.P.Battams 35 AStudyonMechanicalPropertiesofRawSisalPolyesterComposites. . . . . . . . . . . . . . . . . . . . . . . . . 287 G.L.EaswaraPrasad,B.S.KeerthiGowda,andR.Velmurugan 36 HPHTIn-SituStrainMeasurementofPolymerCompositesforOilfieldApplications. . . . . . . . . . . . . . 295 DanielSequera,YushengYuan,andJohnWakefield 37 EvaluationofViscoelasticCharacteristicsofPolymerbyUsingIndentationMethod. . . . . . . . . . . . . . 303 KenichiSakaue Chapter 1 Mechanical and Tribological Properties of Scrap Rubber Based Composites Reinforced with Glass Fiber, Al and TiO 2 L.M.P.Ferreira,I.Miskioglu,E.Bayraktar,andD.Katundi Abstract Scraprubber/EpoxycompositesreinforcedwithAluminium,GlassFibre(GF)andTiO particleswereprepared 2 andmechanicalandtribologicalpropertiesofthesecompositeswereinvestigated.Basically,thesecompositesareaimedto use in automotive and aeronautics applications. A detail microstructure and matrix/reinforcement interface analyze was made by means of Scanning Electron Microscope (SEM) The wear performance of hard particles reinforced composites wereevaluated.QuasistaticanddynamiccompressiontestswerecarriedoutanddamagedspecimenswerestudiedbySEM. The hardness (shorttest) values of the composites were reviewed related to the reinforcement elements, Glass Fibre-fiber andTiO addedinthematrix. 2 Keywords Recyclingmaterials•Rubber/epoxycomposites•Low-costengineering•Wearresistance 1.1 Introduction Inengineeringapplications,therearemanypossibilitiesforusageofrecyclingofscraprubberandmostofthemareusedin automotive industry and domestic area, etc. Other main areas such as the aerospace and microelectronics industries have enourmous demand for high performance (ductile and high toughness) structural adhesive systems like epoxy and/or elastomers reinforced composites [1–9]. Today, additionally, the main component of these waste rubbers is styrene– butadienerubber(SBR)and,inspite ofthedifferent usesfor recycling it,theresearchfor new applications is stillaneed becauseoftheextremelyhighamountofwasterubberproducedeveryyear[5–8,10–16]. Additionally, these materials are commonly used for long term applications at ambient or at moderately elevated temperatureconditions.Conformingtotheseneeds,elastomers(rubbers)shouldbeusedbysimpleprocessingwithvarious materialsindifferentconditionsbyadditionofnewalloyingelements[7–11]. The present work reviews manufacturing facilities of scrap elastomers (SBR-rubbers) + epoxy resin composites with different proportions of particulate reinforcements. Main objective of this research was to determine the ductility and toughness of scrap elastomer (SBR rubber) matrix composites containing GF, TiO , B, etc. as basic reinforcements. 2 Basically,thesecompositesareaimedtouseinautomotiveandaeronauticsapplicationsasbumpersandasinternalfurniture as ductile and tough and sound materials. Scanning electron microscopy (SEM) was used to study the microstructure and fracturesurfacesofthesecomposites. L.M.P.Ferreira MaterialsScienceDepartment,UNICAMP—UniversityofCampinas,Campinas,Sa˜oPaulo,Brazil SchoolofMechanicalandManufacturingEngineering,Supmeca-Paris,Paris,France I.Miskioglu DepartmentofME-EM,MichiganTechnologicalUniversity,Houghton,MI,USA E.Bayraktar(*) SchoolofMechanicalandManufacturingEngineering,Supmeca-Paris,Paris,France e-mail:[email protected] D.Katundi MaterialsScienceDepartment,UNICAMP—UniversityofCampinas,Campinas,Sa˜oPaulo,Brazil #TheSocietyforExperimentalMechanics,Inc.2017 1 W.C.Ralphetal.(eds.),MechanicsofCompositeandMulti-functionalMaterials,Volume7, ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries,DOI10.1007/978-3-319-41766-0_1 2 L.M.P.Ferreiraetal. 1.2 Experimental Conditions At the beginning of the composite design, scrap rubber powders were chemically treated by toluene, acrylic acid and vinyltriethoxysilane(2 %)thendriedinanoventoeliminatetraceofthechemicals.Afterchemicaltreatment,60 %ofscrap rubber and 40 % of epoxy were mixed used as matrix. TiO was chosen as main reinforcing element together; with 2 aluminum,glass-fiber,asminorreinforcementelements,boronandCuwerealsoaddedinthematrix(Table1.1). FourbasiccompositionswerepreparedafterherewillbecalledRETIG-1,2,3and4. Afterpreliminaryblendingofthebasicelements(scraprubber + epoxy)ofthecomposites,reinforcementelementswere added in the structure and entire of the mixture have been milled for 2 h to obtain a homogenous compound. At the final stage, the specimens were manufactured by hot compacting (double uniaxial action) under a pressure of 70 MPa at the temperatureof180(cid:1)C.Thedwelltimeforthecompactingprocesswas15min.Allofthespecimens(30mmdiameter,6mm thick) were cooled down slowly. The post curing was concluded under isothermal conditions at 80 (cid:1)C for 48 h. Shore D hardness test was performed on the polished flat surfaces of the specimens according to ASTM D 2240 using durometer Shoretestdevice,(typeHBD-100-0).ShoreDwasalsoperformedforthesamplesexposedtoUltraViolet(UV)conditions duringexposingtime:2months(everyweekduringmonths)toevaluateresistanceofthesecompositesagainstdegradation byUV. Macroindentationtestwascarriedoutatroomtemperatureusingastainlesssteelballwith3mmdiameter.Forthistest, tenspecimensforeachcompositionwerepreparedwithdiameterof40mm.Thicknessofthespecimenswasvariablefrom 6upto10mm.Maximumforce(F )atfailureandfracturesurfacewereevaluatedbySEManalysis. max Again, dynamic compression (drop weight tests) was carried out using a universal drop weight test device, Dynatup Model8200machine,withatotalweightof1.9kg,punchheightof600mmandwithanimpactvelocityofaround3m/s. Wearresistancewereevaluatedbynanoindentationtestsundertwodifferentnormalloads(20and50mN)appliedovera lineartrackof500μmfor50cycles.Wearisperformedwithaconicaltipthathas90degreeapexangle.Onecycleisdefined asapassandreturnofthetipoverthetrack;thetotaldistanceforonetestwas0.050m.Thespeedofthetipduringweartests was50μm/s.Atotalof10weartestwasperformedforeachsample. 1.3 Results and Discussion GeneralmicrostructureofthespecimenswaspresentedintheFig.1.1forfourcompositions.Allofthemicrostructuresofthe composites presented here are more and less homogenous. Chemical fusion bonding of rubber with epoxy powders were madeperfectlythankstotheinitialchemicaltreatmentofthescraprubber. Certain area in the structure shows weakly agglomeration of the reinforcements. This type of agglomeration can be improvedbymillinginlongertime. Comparisonofhardness(ShoreD)resultswerecomparedintheFig.1.2forfourdifferentcompositionsafterexposingto ultraviolet (UV) during 7, 14, 21, 28 and 45 days. As seen from this graphics, there is no change significantly on the measuredvaluesforeachperiod.Inreality,allofthespecimenshavekepttheiroriginalstructureanydecohesionbetween chemicalbindings(notchemicaldeterioration).Additionofboronisalwaysapositiveeffectonthehardnessbehaviourof thesecompositesevenifitspercentageisverylow.However,somesmallcracksappearedonthethinspecimensattheendof longexposingtime(around2months).Thisbehaviourisworthyforthepiecesaimedontheproductionofexternalpartsused forexampleinthecarindustry(i.e.bumpers)[7–13].Allofthefourcompositesgavethesamelevelofhardness. Table1.1 Generalcompositionsoftherubberbasedcomposites(RETIG) Matrix Rubber60% Compositions Epoxy40% Al Glass-fiber TiO B Cu 2 RETIG-1 B 7 7 0 1 1 RETIG-2 B 7 7 7 1 1 RETIG-3 B 7 7 10 1 1 RETIG-4 B 7 7 15 1 1
Description: