ebook img

Measurements of $\phi_s$ at the LHCb experiment PDF

0.61 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurements of $\phi_s$ at the LHCb experiment

Measurements of φ at the LHCb experiment s 7 1 0 Greig A. Cowan∗† 2 UniversityofEdinburgh,UK n a E-mail: [email protected] J 0 3 These proceedings present the current status of measurements of theCP-violating phase φ by s ] the LHCb collaboration, reviewing the measurements in channels such as B0s →J/ψφ, B0s → x J/ψπ+π− andB0→ψ(2S)φ. TheobservationoftheB0→η φ decaymodeispresentedforthe e s s c - firsttime,whichcanbeusedtomeasureφ withlargerdatasamplesthatwillbecollectedoverthe p s e coming years by the LHCb experiment. Finally, the expected increase in precision from LHCb h measurementsofφ overthenextdecadeispresented. [ s 1 v 0 8 5 8 0 . 1 0 7 1 : v i X r a 9thInternationalWorkshopontheCKMUnitarityTriangle 28November-3December2016 TataInstituteforFundamentalResearch(TIFR),Mumbai,India ∗Speaker. †OnbehalfoftheLHCbcollaboration (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ Measurementsofφ atLHCb GreigA.Cowan s Candidates / (0.2 ps) 111100001243 LHCb Candidates / 0.05112233505050500000000000000 LHCb Candidates / 0.05112233505050500000000000000 LHCb p rad)Candidates / (0.05112233050505500000000000000 LHCb 10-1 5 De1c0ay time [ps] 0-1 -0.5 0 0.5 cosqm1 0-1 -0.5 0 0.5 cosqK1 0 -2 0 2j h [rad] Figure 1: Projections of B0 →J/ψφ data onto the decay time and three helicity angles. The projection s of the total fit model is shown (blue) along with the individualCP-odd (green),CP-even (red) and S-wave (purple)contributions. 1. Introductionandmotivation AkeyobservabletobemeasuredintheB0 mesonsystemistheCP-violatingphase,φ ,which s s arises due to the interference between B0 meson mixing and decay processes. It is defined as s (cid:16) (cid:17) φ ≡−arg(λ )≡−arg qAf ,whereq,parecomplexeigenvaluesrelatedtoB0mixingandA (A ) s f pAf s f f arethecomplexamplitudesforB0(B0)mesondecaytofinalstate f. Globalfitstoexperimentaldata s s giveaprecisepredictionforφ intheStandardModelof−0.0376±0.0008rad[1]. Anydeviation s from this prediction would be a clear sign for non-Standard Model physics, strongly motivating the need for precise experimental measurements of this quantity. In this article I will review the measurements of this observable from the LHCb collaboration and discuss new measurements of B0 meson decay channels that can be used to measure φ in the future. All measurements shown s s here use 3fb−1 of data collected by the LHCb experiment [2] in pp collisions at the LHC during 2011and2012. 2. State-of-the-artofφ measurements s 2.1 φ fromB0→J/ψφ andB0→J/ψπ+π− s s s The so-called “golden mode" for measuring φ is using a flavour-tagged time-dependent an- s gular analysis of the B0 → J/ψφ decay, where J/ψ → µ+µ− and φ → K+K−. This b → ccs s mediateddecayhasahighbranchingfractionandthepresenceoftwomuonsinthefinalstateleads to a high trigger efficiency. The angular analysis is necessary to disentangle the interfering CP- oddandCP-evencomponentsinthefinalstate,whichariseduetotherelativeangularmomentum between the two vector resonances. In addition, there is a small (∼2%) CP-odd K+K− S-wave contribution that must be accounted for. The LHCb detector has excellent time resolution (∼45 fs [3]) and tagging power (∼4% [4]), both of which are crucial to the measurement. In Run 1, the LHCb collaboration used a sample of ∼96000 B0 →J/ψφ decays to measure φ , the width s s difference between the light and heavy B0 mass eigensates (∆Γ ), the average decay time (Γ ), s s s mixing frequency (∆m ) and direct CP violation parameter (|λ|). Figure 1 shows the results of s thisanalysis,whichgaveφ =−0.058±0.049±0.006rad,∆Γ =0.0805±0.0091±0.0032ps−1 s s and Γ =0.6603±0.0027±0.0015 ps−1 [5]. These are the most precise determinations of these s parameters to date and are consistent with SM predictions [1,6]. The dominant systematic uncer- taintiesinthesemeasurementarisefromknowledgeaboutthedecaytimeandangularefficiencies. 1 Measurementsofφ atLHCb GreigA.Cowan s 2)cCandidates / (2.5 MeV/1024680000000000 LHCb andidates / ( 0.274 ps )110012 LHCb Candidates / ( 0.1 )11223505050000000 LHCb 0 5350 m(y (2S)K5+4K00-) [MeV/c2] C10-1 5 10 t [ps] 0-1 -0.5 0 0.5 cosq K1 Candidates / ( 0.1 )112205050000 LHCb dates / ( 0.314 rad )112205050000 LHCb 50 di 50 n 0-1 -0.5 0 0.5 1 Ca 0 -2 0 2 cosq m j [rad] Figure 2: Distribution of ψ(2S)φ invariant mass of selected B0 →ψ(2S)φ candidates and projections of s B0→ψ(2S)φ dataandfitmodel(seeFigure1forlegend). s ItispossiblethatduetounknownhadroniceffectsorbeyondtheSMphysics,thevaluesofφ s and|λ|couldbedifferentforeachofthefourpolarisationstates[7,8]. Forthefirsttime,theLHCb collaborationrelaxedthisassumptionintheanalysis, findingthatnopolarisationdependencewas visiblewithintheavailablestatisticalprecision. TheLHCbcollaborationhasalsousedasimilaranalysisofB0→J/ψπ+π−decaystomeasure s φ [9]. Here,thefullπ+π− massspectrumisusedinthemeasurement,whichhaspreviouslybeen s studied and found to be >97.7% completelyCP-odd [10], dominated by the f (980) component. 0 Withthistime-dependentamplitudeanalysis,φ wasmeasuredtobe0.070±0.068±0.008rad,the s dominant systematic uncertainty coming from knowledge about the composition of resonances in theπ+π− spectrum. SincethefinalstateisalmostallCP-odd,asimplifiedtaggedfittoonlytheB0 s decaytimedistributionyieldscompatibleresults. CombiningtheB0→J/ψφ andB0→J/ψπ+π− s s resultsgivesφ =−0.010±0.039rad. s 2.2 φ fromB0→ψ(2S)φ s s OtherB0decaymodeswithb→ccstransitionscanbeusedtomeasureφ . InRef.[11],LHCb s s studiedtheB0→ψ(2S)φ (withψ(2S)→µ+µ−)decaysforthefirsttimeusingthesameanalysis s techniquesasRef.[5]. Figure2shows∼4500signaldecaysinRun1data,selectedusingaboosted decisiontreethathasbeentrainedusingsimulatedsignaleventsandabackgroundsamplefromthe high-masssideband. Figure2alsoshowstheprojectionsofthedataandfitontothedecaytimeand helicity angles, demonstrating a good fit to the data. In addition to ∆Γ and Γ , φ was measured s s s tobe0.23+0.29±0.02rad. Forthefirsttimethemagnitudeofthetransversityamplitudesandtheir −0.28 phasesweremeasuredforthisdecay,whicharedifferenttothoseinB0→J/ψφ asexpected[12]. s 2.3 Globalcombination The global combination of φ and ∆Γ measurements from the Heavy Flavour Averaging s s Group[13]isshowninFigure3,usingmeasurementsfromtheLHCbcollaborationdiscussedhere along with those from the CDF [14], D0 [15], ATLAS [16] and CMS [17] collaborations. They 2 Measurementsofφ atLHCb GreigA.Cowan s Figure3: HFAGcombination[13]ofφ and∆Γ fromseveralexperiments. s s find ∆Γ =0.085±0.006ps−1 and φ =−0.030±0.033 rad. The results are dominated by those s s fromtheLHCbcollaborationandareconsistentwiththeSMpredictions. Thereremainsspacefor new physics contributions at the ∼20% level, however, as the experimental precision improves, it is essential that there is good control over hadronic effects (so-called “penguin pollution") that couldmimictheeffectfrombeyond-the-SMphysics. 2.4 φsss fromB0→φφ s s ArelatedCP-violatingphase, φsss, canbemeasuredbyapplyingsimilarmethodsasaboveto s B0 mesondecaysthatgoviaab→ssstransition. TheLHCbcollaborationhasperformedsuchan s analysis using B0 →φφ [18], measuring φ =−0.17±0.15±0.03 rad, which is consistent with s s the Standard Model predictions, all of which are very close to zero [19–21]. An upcoming study ofB0→K+π−K+π− decayswillprovideanotheravenueformeasuringthisquantity[22]. s 3. Futureprospectsformeasuringφ s The measurement of φ using B0 →J/ψφ decays has so far restricted to using the region of s s K+K− phasespaceneartheφ(1020)resonance. AfullamplitudeanalysisoftheB0→J/ψK+K− s system was performed in Ref. [23], indicating a significant contribution from other K+K− reso- nancessuchasthe f(cid:48)(1525)thatcanbeusedwhenmeasuringφ toincreasethestatisticalprecision. 2 s ThisapproachwillrequiretheapplicationofthesameanalysisformalismasinRef[9]. Similarly, therecentlyobservedB0→φπ+π− decay[23]couldbeusedwithfuturedatasamplesfromRun2 s andbeyondtomeasureφsss,againwithaflavour-tagged,decay-timedependentamplitudeanalysis, s includingallappropriateπ+π− resonances. 3.1 ObservationofB0→η φ s c AtthisconferencetheLHCbcollaborationannouncedapreliminaryobservationoftheB0 → s η φ decay mode, with η →K+K−π+π−,π+π−π+π−, K+K−K+K−,pp [24]. This decay is an- c c otherb→ccstransitionthatcouldbeusedtomeasureφ . Figure4showstheinvariantmassofthe s B0systemintheppmodealongwiththeppspectrum,withtheη andJ/ψ charmoniumresonances s c clearlyvisible. Asimultaneousamplitudefitisperformedusingallmodesandincludingcontribu- tionsfrominterferingnon-resonantcomponents. Thebranchingfractionisextractedrelativetothe J/ψ channelandfoundtobeB(B0→η φ)=(5.01±0.53(stat)±0.27(syst)±0.63(B))×10−4. s c FirstevidenceoftheB0→η π+π− decaywasalsopresented. s c 3 Measurementsofφ atLHCb GreigA.Cowan s 2)Candidates/(6.0 MeV/c 123456789000000000 LHCb DTBBBBCCBos0s0000ooa ttmmfififififiaalbb PpppppiinnDpppppaafKKKfFttoo+++rrKKpiiaa---ll ppppKf+K- 2)Candidates / (7.0 MeV/c11010-0121 LHDTBBos0s0aC ttfifiaal b PhJD/cy(Ffi(fi p pp)pf)f 0 10-2 5200 5300 5400 5500 2.9 3 3.1 m(ppK+K-) [MeV/c2] m(pp) [GeV/c2] Figure4: InvariantmassdistributionsforselectedK+K−pp(left)and pp(right)candidates. 2)cCandidates/ (12 MeV/123450000000000 LHCb Candidates/ (0.202 ps)11100023 LHCb 0 5200 5400 5600 2 4 6 8 10 M(J/y h ) [MeV/c2] t [ps] Figure 5: Distributions of J/ψη invariant mass and decay time for selected B0 →J/ψη decays. Combi- s natorialbackground(green),partiallyreconstructedbackground(orange)andbackgroundfromB0→J/ψη decays(blue)areshown. 3.2 B0→J/ψη effectivelifetime s TheLHCbcollaborationhasrecentlyobservedtheB0→J/ψη(→γγ)decay[25]anduseditto s measuretheB0 effectivelifetime. AsthismodeisaCP-eveneigenstatetheeffectivelifetimegives s a measurement of Γ . The final state is challenging, containing only two charged tracks and the L invariantmassresolutionis∼48MeV/c2 (seeFigure5),comparedto∼8MeV/c2 forB0→J/ψφ s decays. Using ∼ 3000 signal candidates, the lifetime was measured to be τ = 1.479±0.034± 0.011ps, consistent with other measurements of the CP-even lifetime [26,27]. In the future the B0→J/ψη modecanbeusedtomeasureφ fromaflavour-taggedfittothedecaytimedistribution. s s An update of the HFAG averages of ∆Γ and Γ was presented, showing good consistency s s between all measurements and the SM predicitions [6]. The ∆Γ prediction has an uncertainty s morethanthreetimeslargerthantheexperimentalaverage. 4. Summary TheLHCbcollaborationhasmadeleadingmeasurementsoftheCP-violatingphaseφ andB0 s s mesonlifetimesusingRun-1data. Sofarallmeasurementsareconsistentwithpredictionsfromthe StandardModel. Newb→ccsdecaymodeshavebeeninvestigatedandmeasurementsperformed to either measureCP violating effects or make preparations for such measurements in the future. Figure 6 shows how the precision on φ and φsss will reduce as a function of time for key decay s s channels discussed in these proceedings. The precision is expected to reach ∼ 0.01rad at end of Run 3 [28] (the LHCb upgrade era) which is further discussed in Ref. [29]. As the precision improves it will be essential to control hadronic effects that can hide small contributions from non-StandardModelphysics[30]. 4 Measurementsofφ atLHCb GreigA.Cowan s d] stat [ra)s00..1124 BBB0s0s0s fififi JJf//fyy LpfH pLC HLbCHbCb f( 0.1 SM upper limit on |fssss| B0s fi ff s 0.08 SM s(fcscs) B0s fi J/yf 0.06 0.04 0.02 0 2020 2030 Year Figure6: Projectionofhowprecisiononφ fromLHCbmeasurementswillscaleasafunctionoftimefor s differentdecaymodes. InformationtakenfromRef.[28]. 5. Acknowledgements The author thanks the organisers of the CKM2016 meeting and acknowledges the support of theScienceandTechnologyFacilitiesCouncil(UK)grantST/K004646/1. References [1] J.Charlesetal.,CurrentstatusoftheStandardModelCKMfitandconstraintson∆F =2New Physics,Phys.Rev.D91(2015),no.~7073007,arXiv:1501.05013. [2] LHCbcollaboration,A.A.AlvesJr.etal.,TheLHCbdetectorattheLHC,JINST3(2008)S08005. [3] LHCbcollaboration,R.Aaijetal.,MeasurementofCPviolationandtheB0mesondecaywidth s differencewithB0→J/ψK+K−andB0→J/ψπ+π−decays,Phys.Rev.D87(2013)112010, s s arXiv:1304.2600. [4] LHCbcollaboration,R.Aaijetal.,Neural-network-basedsamesidekaontaggingalgorithm calibratedwithB0→D−π+andB∗ (5840)0→B+K−decays,JINST11(2015)P05010, s s s2 arXiv:1602.07252. [5] LHCbcollaboration,R.Aaijetal.,PrecisionmeasurementofCPviolationinB0→J/ψK+K− s decays,Phys.Rev.Lett.114(2015)041801,arXiv:1411.3104. [6] M.Artuso,G.Borissov,andA.Lenz,CPviolationintheB0system,Rev.Mod.Phys.88(2016), s no.~4045002,arXiv:1511.09466. [7] S.Faller,R.Fleischer,andT.Mannel,PrecisionPhysicswithB0→J/ψφ attheLHC:TheQuestfor s NewPhysics,Phys.Rev.D79(2009)014005,arXiv:0810.4248. [8] B.Bhattacharya,A.Datta,andD.London,ReducingPenguinPollution,Int.J.Mod.Phys.A28 (2013)1350063,arXiv:1209.1413. [9] LHCbcollaboration,R.Aaijetal.,MeasurementoftheCP-violatingphaseφ inB0→J/ψπ+π− s s decays,Phys.Lett.B736(2014)186,arXiv:1405.4140. [10] LHCbcollaboration,R.Aaijetal.,AnalysisoftheresonantcomponentsinB0→J/ψπ+π−,Phys. s Rev.D86(2012)052006,arXiv:1204.5643. [11] LHCbcollaboration,R.Aaijetal.,FirststudyoftheCP-violatingphaseanddecay-widthdifference inB0→ψ(2S)φ decays,Phys.Lett.B762(2016)253,arXiv:1608.04855. s 5 Measurementsofφ atLHCb GreigA.Cowan s [12] G.HillerandR.Zwicky,(A)symmetriesofweakdecaysatandnearthekinematicendpoint,JHEP03 (2014)042,arXiv:1312.1923. [13] Y.Amhisetal.,Averagesofb-hadron,c-hadron,andτ-leptonpropertiesasofsummer2016, arXiv:1612.07233. [14] CDFcollaboration,T.Aaltonenetal.,MeasurementoftheBottom-StrangeMesonMixingPhasein theFullCDFDataSet,Phys.Rev.Lett.109(2012)171802,arXiv:1208.2967. [15] D0collaboration,V.M.Abazovetal.,MeasurementoftheCP-violatingphaseφJ/ψφ usingthe s flavor-taggeddecayB0→J/ψφ in8fb−1of pp¯collisions,Phys.Rev.D85(2012)032006, s arXiv:1109.3166. [16] ATLAScollaboration,G.Aadetal.,MeasurementoftheCP-violatingphaseφ andtheB0meson s s decaywidthdifferencewithB0→J/ψφ decaysinATLAS,JHEP08(2016)147, s arXiv:1601.03297. [17] CMScollaboration,V.Khachatryanetal.,MeasurementoftheCP-violatingweakphaseφ andthe s√ decaywidthdifference∆Γ usingtheB0→J/ψφ(1020)decaychannelinppcollisionsat s=8 s s TeV,Phys.Lett.B757(2016)97,arXiv:1507.07527. [18] LHCbcollaboration,R.Aaijetal.,MeasurementofCPviolationinB0→φφ decays,Phys.Rev.D90 s (2014)052011,arXiv:1407.2222. [19] M.Beneke,J.Rohrer,andD.Yang,Branchingfractions,polarisationandasymmetriesofB—>VV decays,Nucl.Phys.B774(2007)64,arXiv:hep-ph/0612290. [20] M.Bartsch,G.Buchalla,andC.Kraus,B—>V(L)V(L)DecaysatNext-to-LeadingOrderinQCD, arXiv:0810.0249. [21] H.-Y.ChengandC.-K.Chua,QCDFactorizationforCharmlessHadronicB DecaysRevisited,Phys. s Rev.D80(2009)114026,arXiv:0910.5237. [22] J.GarciaPardinas,CPVresultsfromtime-dependentanalysisofB →(K+π−)(K−π+),these s proceedings(2016). [23] LHCbcollaboration,R.Aaijetal.,ObservationofthedecayB0→φπ+π−andevidencefor s B0→φπ+π−,Phys.Rev.D95(2017),no.~1012006,arXiv:1610.05187. [24] LHCbcollaboration,R.Aaijetal.,FirstobservationofB0→η h+h−, LHCB-PAPER-2016-028,in c preparation. [25] LHCbcollaboration,R.Aaijetal.,MeasurementoftheeffectivelifetimeinB0→J/ψη decays, s LHCb-PAPER-2016-017,inpreparation. [26] LHCbcollaboration,R.Aaijetal.,MeasurementoftheB0→D−D+andB0→D−D+effective s s s s s lifetimes,Phys.Rev.Lett.112(2014)111802,arXiv:1312.1217. [27] LHCbcollaboration,R.Aaijetal.,EffectivelifetimemeasurementsintheB0→K+K−,B0→K+π− s andB0→π+K−decays,Phys.Lett.B736(2014)446,arXiv:1406.7204. s [28] LHCbcollaboration,ImpactoftheLHCbupgradedetectordesignchoicesonphysicsandtrigger performance, Tech.Rep.LHCb-PUB-2014-040.CERN-LHCb-PUB-2014-040.,CERN,Geneva, Aug,2014. [29] C.Veronika,Mid-andlong-termprospectsofmeasurementsofmixingandmixinginducedCP violationatLHCb(Bsystem),theseproceedings(2016). [30] S.Akar,Measurementsofpenguinpollutioneffects,theseproceedings(2016). 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.