Measurement of electron neutrino CCQE-like cross-section in MINERvA 5 1 0 2 Jeremy Wolcott∗, for the MINERvA collaboration n a UniversityOfRochester,Rochester,NewYork14610USA J E-mail: [email protected] 1 2 Theelectron-neutrinocharged-currentquasi-elastic(CCQE)cross-sectiononnucleiisanimpor- ] x tant input parameter to appearance-type neutrino oscillation experiments. Current experiments e - typically work from the muon neutrino cross-section and apply corrections from theoretical ar- p gumentstoobtainapredictionfortheelectronneutrinocross-section,buttodatetherehasbeen e h no experimental verification of the estimates for this channel at an energy scale appropriate to [ such experiments. We present a preliminary result from the MINERvA experiment on the first 1 measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the v 4 cross-sectionforaCCQE-likeprocess. Theresultisgivenbothasdifferentialcross-sectionsvs. 1 theelectronenergy,electronangle,andQ2,aswellasatotalcross-sectionvs. neutrinoenergy. 2 5 0 . 1 0 5 1 : v i X r a 16thInternationalWorkshoponNeutrinoFactoriesandFutureNeutrinoBeamFacilities 25-30August,2014 UniversityofGlasgow,UnitedKingdom ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott 1. Introduction Current terrestrial neutrino oscillation experiments searching for fundamental information in the neutrino sector, such as the neutrino mass hierarchy and whether CP violation occurs for lep- tons,usuallyemployexperimentaldesignswhichrelyonthepartialoscillationofabeamofmuon neutrinosintoelectronneutrinos.[1,2]Theseexperimentsbuildlargedetectorsofheavymaterials tomaximizetherateofneutrinointeractions,andthenexaminetheenergydistributionoftheneu- trinos that do interact with the detector, comparing the observed spectrum with predictions based onhypothesesofnooscillationoroscillationwithgivenparameters. Correct prediction of the observed energy spectrum for electron neutrino interactions—on whichtheseoscillationresultsdepend—requiresanaccuratemodeloftheratesandoutgoingparti- clekinematics. This,inessence,boilsdowntoaneedforpreciseν cross-sectionsonthedetector e materials in use. And yet, because of the difficulties associated with producing few-GeV electron neutrino beams, even when including very recent results, only two such cross-section measure- ments exist[3, 4]. Furthermore, the small statistics and inclusive nature of both of these measure- ments make their use as model discriminators challenging. Instead, most simulations begin from thewealthofhigh-precisioncross-sectiondataavailableformuonneutrinosandapplycorrections suchasthosediscussedinref. [5]toobtainapredictionforν . e Weofferhereapreliminaryresultinanefforttoproduceahigher-statisticscross-sectionfora quasi-elastic-likeelectronneutrinoprocess,whichisamongthedominantreactionmechanismsat mostenergiesofinteresttooscillationexperiments. WeusetheMINERνAdetector,whichconsists of a central sampling scintillator region, built from strips of fluoror-doped scintillator glued into sheets, then stacked transverse to the beam axis; both barrel-style and downstream longitudinal electromagnetic and hadronic sampling calorimeters; and a collection of upstream passive targets oflead,iron,graphite,water,andliquidhelium. Thedetectordesignandperformancearediscussed infulldetailelsewhere.[6]MINERνAoccupiesspaceintheNuMIν beam,whereitwasexposed µ toafluxof∼99%ν and∼1%ν mostlybetween3-5GeVforthisdataset. Wealsocomparethe µ e resultforν toasimilar,previousMINERνAresultforν toevaluatehowsimilartheyare. e µ 2. Signaldefinition In traditional charged-current quasi-elastic neutrino scattering, CCQE, the neutrino is con- verted to a charged lepton via exchange of a W boson with a nucleon, resulting in the following reaction: ν n→l−p. (Antineutrinoscatteringreversestheleptonnumberandisospin: ν¯ p→l+n.) l l BecausetheMINERνAdetectorisnotmagnetized,wecannotdifferentiatebetweenelectronsand positrons on an event-by-event basis. Moreover, hadrons exiting the nucleus after the interaction canre-interactandchangeidentityorejectotherhadrons[7];furthermore,pairsofnucleonscorre- latedwithintheinitialstatemaycausemultiplenucleonstobeejectedbyasingleinteraction[8,9]. Therefore,wedefinethesignalprocess“phenomenologically,”byitsfinal-stateparticles: wesearch for events with either an electron or positron, no other leptons or photons, any number of nucle- ons, and no other hadrons. We call this type of event “CCQE-like.” We also demand that events originatefroma5.57-tonvolumefiducialvolumeinthecentralscintillatorregionofMINERνA. 2 MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott 3. Eventselectionandbackgrounds Candidate events are selected from the data based on three major criteria. First, a candidate must contain a reconstructed cone object of angle 7.5◦, originating in the fiducial volume, which is identified as a candidate electromagnetic cascade by a multivariate PID algorithm. The latter combines details of the energy deposition pattern both longitudinally (mean dE/dx, fraction of energy at downstream end of cone) and transverse to the axis of the cone (mean shower width) usingak-nearest-neighbors(kNN)algorithm. Secondly,weseparateelectronsandpositronsfrom photonsbycuttingeventsinwhichtheenergydepositionattheupstreamendoftheconeisconsis- tentwithtwoparticlesratherthanone(sincephotonstypicallyinteractinMINERνAbyproducing an electron-positron pair). At this point, the cone object becomes the electron candidate. Our fi- nalcriterionisanattempttoselectCCQE-likeinteractionsusingaclassifierwecall“extraenergy fraction,”Ψ,which,whenanevent’svisibleenergynotinsidetheelectroncandidateorasphereof radius30cmcenteredaroundtheconevertexisdenoted“extraenergy,”isdefinedas: E extra Ψ= (3.1) E electron Ourcutisafunctionofthetotalvisibleenergyoftheevent. Thecutatthemostprobabletotalvisi- bleenergy,E =0.4GeV,isillustratedinfig. 1. Finally,weretainonlyeventswithreconstructed vis electronenergyintherange1GeV≤E ≤10GeV.Herethelowerboundexcludesaregionwhere e the background estimate is still under further study, and the upper bound restricts the sample to events where the uncertainties on flux prediction are tolerable. The distribution of events selected bythissequenceisshowninfig. 2. Figure1: SamplecutonΨ(definedinthetext)atthemostprobableeventvisibleenergy,E =0.4 vis GeV. 3 MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott Figure2: Eventsampleafterallselectioncuts. Asfig. 2shows,evenafterthefinalselection,asignificantfractionofthesampleispredicted to be from background processes. We attempt to constrain the background model by examining sidebands in two of the variables already mentioned. The first of these is in the dE/dx measured atthefrontoftheelectroncandidate; bychoosingasampleatlargervalues, wecanobtainaside- band rich in photon background events. The second sideband is in the extra energy fraction Ψ; a sample of events at larger Ψ constitutes a sideband rich in inelastic background. We use these sidebands together to fit the normalizations of the three major backgrounds: ν non CCQE-like, e non-ν coherentpion,andotherinelasticevents. Thethreebackgroundclasses’normalizationsare e fittedsimultaneously,usingdistributionsinbothreconstructedcandidateelectronangleandenergy, acrossthetwosidebands,toobtainasinglescalefactorthatrepresentsthebestestimateofthetotal normalization of the background as compared to the prediction from GENIE. We obtain a scale factor of 0.69; this overall reduction is a similar trend to that observed when similar procedures were performed on other MINERνA analyses. Subsequent to the constraint, we scale the back- groundsinthesignalregionandsubtractthemfromthedata. Wethencompareittothesimulated predictionofthesignalprocess. 4. Cross-sectionresult We calculate three differential cross-sections in electron angle, electron energy, and four- momentum transfered from neutrino to nucleus Q2, as well as the total cross-section vs. neu- trino energy. For neutrino energy and Q2, we employ the commonly-used CCQE approximations (assumingastationary targetnucleon)whichallow ustocomputethemfrom justtheleptonkine- 4 MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott matics: m2−(m −E )2−m2+2(m −E E ) EQE = n p b e p b e (4.1) ν 2(m −E −E +p cosθ ) p b e e e Q2 =2EQE(E −p cosθ )−m2 (4.2) QE ν e e e e Differentialcross-sectionsarecalculatedinbinsiaccordingtothefollowingruleforsamplevari- able ξ, with ε representing signal acceptance, Φ the flux integrated over the energy range of the measurement,T thenumberoftargets(CHmolecules)inthefiducialregion,∆ thewidthofbini, n i andU amatrixcorrectingfordetectorsmearinginthevariableofinterest: ij (cid:18) (cid:19) dσ 1 (cid:16) (cid:17) = ×∑U Ndata−Nbkndpred (4.3) dξ εΦT (∆) ij j j i i n i j (The formula for the total cross-section differs only in that the flux is integrated only over the energyofbini,ratherthanthewholeenergyrange,andthatwethereforedonotneedtodivideby thebinwidth∆.) i WeperformunfoldinginthesefourvariablesusingaBayesiantechnique[10]withasingleit- eration. TheunfoldingmatricesU neededasinputarepredictedbyoursimulation. Ourprediction ij for the neutrino flux Φ by which we then divide is derived from a GEANT4-based simulation of theNuMIbeamline(describedfurtherinref. [11]). Inaddition,weuseaninsituMINERνAmea- surementbasedonelasticscatteringofneutrinosfromatomicelectrons[13]toprovideadata-based constraintforthefluxestimate. The cross-section vs. electron angle obtained from this procedure is given in fig. 3. We note thatthesimulationpredictssubstantiallymoreeventsinthemostforwardbinsthanweobservein our data. In addition, the measured cross-section vs. Q2 , shown in fig. 4a, appears to exhibit QE a noticeable migration from low to high Q2 as compared to the prediction. This is in contrast to the analogous cross-section measured in MINERνA using muon neutrinos, fig. 4b, which agrees muchbetter—ifnotperfectly—withGENIE’smodel. 5. Conclusions Thoughtheν cross-sectionisvitallyimportantforneutrinooscillationsearches,experimental e challengeshavepreventedextensivemeasurementofthisquantityuntilrecently. Inthispreliminary resultfromMINERνA,weobserveadiscrepancyatlowanglesbetweenthemodelinGENIE2.6.2 and our data in dσ/dθ . Furthermore, we find that the Q2 spectrum we observe appears to be e QE harderforν CCQEthanitisforν CCQE,incontrasttothepredictionofGENIE.Ifsubstantiated e µ byfurtherstudy,theseobservationswillnecessitatemodificationstothemodelscurrentlyinusein neutrinogeneratorssoastoensuretheycorrectlysimulatetheelectronneutrinokinematics. Work isstillongoingtocharacterizethebackgroundsintheE <1GeVregion,andafullresultwillbe e publishedsoon. References [1] K.Abeetal.(T2Kcollaboration),TheT2KExperiment,NIMA659106 [physics.ins-det/1106.1238]. 5 MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott 5 H) MINERνA Preliminary C Absolutely normalized (3.34× 1020 P.O.T.) e / 4 Data e Simulation r g e 3 d / 2 m 2 c 9 3 0 1 1 ( σ e θ dd 0 0 5 10 15 20 25 30 35 40 45 θ (deg) e Figure3: Differentialcross-sectionvs. electronangle. Innererrorsarestatistical;outerarestatisti- caladdedinquadraturewithsystematic. CH) 120 Absolutely normMaIlNizEeRd ν(A3 .3P4r×e 1l0i2m0 iPn.Oa.rTy.) ×10 36 MINERνA Preliminary • ν Tracker → CCQE 2 / GeV 100 DSiamtaulation eutrons) 0.01.21 DMaotnate Carlo 2 / m 80 2/6 nV 0.08 39 c10 4600 2/Gecm 00..0046 σd (2QQE20 2dQ (QE 0.02 d σ/d 00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 Q2 (GeV2) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 QE Q2 (GeV2) (b)ν (measurementfromref. [12]) QE µ (a)ν e Figure4: Differentialcross-sectionvs. Q2 (definedinthetext)forelectronandmuonneutrinos. QE Innererrorsarestatistical;outerarestatisticaladdedinquadraturewithsystematic. [2] D.S.Ayresetal.(NOvAcollaboration),TheNOvATechnicalDesignReport, FERMILAB-DESIGN-2007-01. [3] J.Blietschauetal.(Gargamellecollaboration),Totalcrosssectionsforν andν¯ interactionsand e e searchforneutrinooscillationsanddecay,Nucl.Phys.B133205. [4] K.Abeetal.(T2Kcollaboration),MeasurementoftheInclusiveElectronNeutrinoChargedCurrent CrossSectiononCarbonwiththeT2KNearDetector,PRL113241803[hep-ex/1407.7389]. 6 MeasurementofelectronneutrinoCCQE-likecross-sectioninMINERvA JeremyWolcott [5] M.DayandK.S.McFarland,DifferencesinQuasi-ElasticCross-SectionsofMuonandElectron Neutrinos,PRD86053003[hep-ph/1206.6745]. [6] L.Aliagaetal.(MINERνAcollaboration),Design,Calibration,andPerformanceoftheMINERvA Detector,NIMA743130[physics.ins-det/1305.5199]. [7] O.Lalakulich,U.Mosel,andK.Gallmeister,Energyreconstructioninquasielasticscatteringinthe MiniBooNEandT2Kexperiments,PRC86054606[nucl-th/1208.3678]. [8] M.MartiniandM.Ericson,Quasielasticandmultinucleonexcitationsinantineutrino-nucleus interactions,PRC87065501[nucl-th/1303.7199]. [9] J.Nieves,M.Valverde,andM.J.VicenteVacas,InclusiveNucleonEmissionInducedby Quasi–ElasticNeutrino–NucleusInteractions,PRC73025504[hep-ph/0511204]. [10] G.D’Agostini,AmultidimensionalunfoldingmethodbasedonBayes’theorem,NIMA362487. [11] L.Fieldsetal.(MINERvAcollaboration),MeasurementofMuonAntineutrinoQuasi-Elastic ScatteringonaHydrocarbonTargetatE ∼3.5GeV,PRL111022501[hep-ex/1305.2234]. ν [12] G.A.Fiorentinietal.(MINERvAcollaboration),MeasurementofMuonNeutrinoQuasi-Elastic ScatteringonaHydrocarbonTargetatE ∼3.5GeV,PRL111022502[hep-ex/1305.2243]. ν [13] J.Park,DirectMeasurementoftheNuMIFluxwithNeutrino-ElectronScatteringinMINERνA, FNALJETPseminar,20Dec2013. 7