ebook img

Mathematical methods for physicists PDF

478 Pages·2020·4.471 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical methods for physicists

MATHEMATICAL METHODS FOR PHYSICISTS 11315_9789811201578_TP.indd 1 18/9/19 11:14 AM June16,2015 14:37 BC:9335-Kernel-basedApproximationMethodsusingMATLAB FasshauerMcCourtBook pagevi TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk ATHEMATICAL M METHODS FOR PHYSICISTS Danilo Babusci INFN, Italy Giuseppe Dattoli ENEA, Italy Silvia Licciardi ENEA, Italy Elio Sabia ENEA, Italy World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO 11315_9789811201578_TP.indd 2 18/9/19 11:14 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. MATHEMATICAL METHODS FOR PHYSICISTS Copyright © 2020 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-120-157-8 ISBN 978-981-120-268-1 (pbk) For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/11315#t=suppl Desk Editor: Nur Syarfeena Binte Mohd Fauzi Typeset by Stallion Press Email: [email protected] Printed in Singapore Syarfeena - 11315 - Mathematical Methods for Physicists.indd 1 18-09-19 11:44:13 AM September18,2019 14:57 MathematicalMethodsforPhysicists 9.61inx6.69in b3642-main pagev v \If you intend to mount heavy mathematical artillery again during your com- ing year in Europe, I would ask you not only not to come to Leiden, but if possible not even to Holland, and just because I am really so fond of you and want to keep it that way. But if, on the contrary, you want to spend at least your (cid:12)rst few months patiently, comfortably, and joyfully in discussions that keep coming back to the same few points, chatting about a few basic questions with me and our young people - and without thinking much about publishing - then I welcome you with open arms!! " Eherenfest in a letter to Oppenheimer, Summer 1928 June16,2015 14:37 BC:9335-Kernel-basedApproximationMethodsusingMATLAB FasshauerMcCourtBook pagevi TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk September18,2019 14:57 MathematicalMethodsforPhysicists 9.61inx6.69in b3642-main pagevii Contents Abstract xiii 1 Matrices, Exponential Operators and Physical Applications 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Applications of 2(cid:2)2 Matrices . . . . . . . . . . . . . . . . . . 12 1.3.1 Classical Optics: Ray Beam Propagation and ABCD Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . 19 1.3.3 Particle Physics: Kaon Mixing . . . . . . . . . . . . . . 22 1.4 Cabibbo Angle and See-Saw Mechanism . . . . . . . . . . . . 29 1.5 Gell-Mann and Pauli Matrices . . . . . . . . . . . . . . . . . . 33 1.5.1 Spin Composition . . . . . . . . . . . . . . . . . . . . . 33 1.5.2 Gell-Mann Matrices . . . . . . . . . . . . . . . . . . . . 36 1.5.3 Flavors and Spin . . . . . . . . . . . . . . . . . . . . . 38 1.5.4 Color and QCD . . . . . . . . . . . . . . . . . . . . . . 41 1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 43 1.6.1 Vector Di(cid:11)erential Equations and Matrices . . . . . . . 44 1.6.2 Matrices, Vector Equations and Rotations . . . . . . . 47 1.6.3 Cabibbo-Kobayashi-Maskawa Matrix . . . . . . . . . . 50 1.6.4 Frenet-Serret Equations . . . . . . . . . . . . . . . . . 51 1.6.5 Matrix, Rotations and Euler Angles . . . . . . . . . . . 52 1.6.6 4-Vectors and Lorentz Transformations . . . . . . . . . 53 1.6.7 Dirac Matrices . . . . . . . . . . . . . . . . . . . . . . 55 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vii September18,2019 14:57 MathematicalMethodsforPhysicists 9.61inx6.69in b3642-main pageviii viii Mathematical Methods for Physicists 2 Ordinary and Partial Di(cid:11)erential Equations, Evolution Operator Method and Applications 63 2.1 Ordinary Di(cid:11)erential Equations, Matrices and Exponential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2 Partial Di(cid:11)erential Equations and Exponential Operators, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3 Partial Di(cid:11)erential Equations and Exponential Operators, II . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.4 Operator Ordering . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5 Schro(cid:127)dinger Equation and Paraxial Wave Equation of Classical Optics . . . . . . . . . . . . . . . . . . . . . . . . 79 2.6 Examples of Fokker-Planck, Schr(cid:127)odinger and Liouville Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 88 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3 Hermite Polynomials and Applications 101 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.2 Hermite Polynomials Generating Function . . . . . . . . . . . 104 3.2.1 Introducing the Generating Function . . . . . . . . . . 104 3.2.2 Generating Function Applications . . . . . . . . . . . . 106 3.3 Hermite Polynomials as an Orthogonal Basis . . . . . . . . . . 109 3.4 Hermite Polynomials in Quantum Mechanics: Creation and Annihilation Operators . . . . . . . . . . . . . . . . . . . . . . 113 3.5 Quantum Mechanics Applications . . . . . . . . . . . . . . . . 117 3.6 Coherent or Quasi-Classical States of Harmonic Oscillators . . 121 3.7 Jaynes-Cummings Model . . . . . . . . . . . . . . . . . . . . . 127 3.8 Classical Optics and Hermite Polynomials . . . . . . . . . . . 129 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4 Laguerre Polynomials, Integral Operators and Applications 135 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2 Laguerre Polynomials Generating Function . . . . . . . . . . . 140 4.3 Orthogonality Properties of Laguerre Polynomials . . . . . . . 141 4.4 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.5 Associated Laguerre Polynomials . . . . . . . . . . . . . . . . 148 4.6 Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . . 151 September18,2019 14:57 MathematicalMethodsforPhysicists 9.61inx6.69in b3642-main pageix Contents ix 4.7 Miscellaneous Applications and Comments . . . . . . . . . . . 153 4.8 App(cid:19)el Polynomials and Final Comments . . . . . . . . . . . . 158 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5 Exercises and Complements I 167 5.1 Pauli and Jones Matrices and Mueller Calculus . . . . . . . . 167 5.2 Magnetic Lenses and Matrix Description . . . . . . . . . . . . 174 5.3 Miscellanea on the Matrix Formalism and Solution of Evolution Problems . . . . . . . . . . . . . . . . . . . . . . 182 5.3.1 Matrices and Quaternions . . . . . . . . . . . . . . . . 182 5.3.2 Matrix Solution of Evolution Problems . . . . . . . . . 183 5.4 Lorentz Transformation . . . . . . . . . . . . . . . . . . . . . . 186 5.5 Hyperbolic Trigonometry and Special Relativity . . . . . . . . 189 5.6 A Touch on Elliptic Functions . . . . . . . . . . . . . . . . . . 194 5.7 Concluding Comments . . . . . . . . . . . . . . . . . . . . . . 207 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 6 Exercises and Complements II 217 6.1 Ordinary Di(cid:11)erential Equations and Matrices . . . . . . . . . 217 6.2 Crofton-Glaisher Identities and Heat Type Equations . . . . . 230 6.3 Gamma Function and De(cid:12)nite Integrals . . . . . . . . . . . . . 235 6.4 Complex Variable Method and Evaluation of Integrals . . . . . 244 6.5 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 250 6.6 Fourier Transform and the Solution of Di(cid:11)erential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 6.7 Fourier-Type Transforms . . . . . . . . . . . . . . . . . . . . . 262 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7 Exercises and Complements III 273 7.1 Second Solution of Hermite Equation . . . . . . . . . . . . . . 273 7.2 Higher Orders Hermite Polynomials . . . . . . . . . . . . . . . 275 7.3 Multi-Index Hermite Polynomials . . . . . . . . . . . . . . . . 280 7.4 Creation-Annihilation Operators Algebra and Physical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 7.5 Eisenstein Integers . . . . . . . . . . . . . . . . . . . . . . . . 290 7.6 Harmonic Oscillator Hamiltonian Formal Aspects and Further Miscellaneous Considerations . . . . . . . . . . . . . . . . . . 295 7.7 Time-Dependent Hamiltonians . . . . . . . . . . . . . . . . . . 298

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.