Magnetoresistance and Anomalous Hall Effect of Cu MnAl, Co MnSi and Co MnGe Heusler alloy 2 2 2 thin films Dissertation to obtain the degree Doctor Philosophiae (Doctor of Philosophy, PhD) at the Faculty of Physics and Astronomy Ruhr-University Bochum Submitted by Mohamed Zakaria Obaida From Cairo, Egypt Bochum 2011 1. Supervisor Prof. Dr. K. Westerholt 2. Supervisor Prof. Dr. Dr. h. c. H. Zabel Date of Disputation 15-12-2011 Magnetwiderstand und anomaler Hall-Effekt in Cu MnAl, Co MnSi and Co MnGe Heusler- 2 2 2 Dünnschichtsystemen Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Physik und Astronomie der Ruhr-Universität Bochum vorgelegt von Mohamed Zakaria Obaida aus Kairo, Ägypten Bochum 2011 1. Gutachter Prof. Dr. K. Westerholt 2. Gutachter Prof. Dr. Dr. h. c. H. Zabel Datum of Disputation 15-12-2011 Dedication To My Parents Brother& Sister Rasha Omar & Malak Lastly but not least To the spirits of the martyrs of revolution, January 25 Acknowledgements I am deeply indebted to Prof. Kurt Westerholt for giving me the opportunity to conduct this work and who was an excellent supervisor, supporting me throughout the entire time of my thesis, read this manuscript and taught me how to publish my data. I am heartily thankful to Prof. Hartmut Zabel, whose give me the chance to work in his group. Besides, his guidance, support, interest, fruitful discussions and critical comments from the initial to the final level were invaluable. Moreover I would like to thank to Dr. Dirk Sprungmann and Hassan Inam for their helpful and suggestive comments done during several steps in my work. I would also like to thank the head of the research group, Prof. Dr. Andreas Wieck for use of the research facilities and some useful discussion. I’d also like to thank Arne Ludwig and Nadine Viteritti, for their help. My special thanks to thank to all the persons responsible for the machines that had to be utilized for the work of the thesis. Without their great care and proper maintenance a lot from this work could not be done, especially Mr. Peter Stauche and Mrs. Sabine Erdt-Böhm for their help and orientation they offered me throughout the work in these years. Furthermore, my thanks appertain to the secretaries Mrs. B. Öztmaur and Mrs. C. Wulf for helping and organizational matters with great personal efforts to promptly settle. My regards and pleasing to my colleagues in department of Solid State Physics for creating an inspiring environment and providing constant support. I would like to thank the ministry of higher education and scientific research, Egypt for the financial support during my PhD study here in Germany. Last but not least, my parents, brother, sister; Rasha, Omar and Malak, there are no words that say thank you enough for everything you have done for me. Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 I. Magnetoresistance Phenomena and Theoretical Background 3 1. Introduction 4 1.1. Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Magnetoresistancephenomena . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1. Ordinarymagnetoresistance(OMR). . . . . . . . . . . . . . . . . . . . 6 1.2.2. Anisotropicmagnetoresistance(AMR) . . . . . . . . . . . . . . . . . . 7 1.2.3. Giantmagnetoresistance(GMR) . . . . . . . . . . . . . . . . . . . . . 9 1.2.4. Tunnelingmagnetoresistance(TMR) . . . . . . . . . . . . . . . . . . . 11 1.3. Spintronicapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1. Spinvalve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.2. ApplicationinHDDreadheads . . . . . . . . . . . . . . . . . . . . . 16 1.3.3. ApplicationinMRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. TheoreticalConceptsandLiteratureSurvey 20 2.1. Magneticmaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.1. Ferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2. Quantumtheoryofmagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.1. Exchangeinteractionstypes . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1.1. Directexchangeinteraction . . . . . . . . . . . . . . . . . . 27 2.2.1.2. Indirectexchangeinteraction . . . . . . . . . . . . . . . . . 29 2.2.1.3. Super-exchangeinteraction . . . . . . . . . . . . . . . . . . 30 2.3. Ferromagneticbandstructures . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.1. TheWeissmeanfieldmodelofferromagnetism . . . . . . . . . . . . . 31 2.4. Energycontributionstoferromagneticfilms . . . . . . . . . . . . . . . . . . . 33 2.5. Magneticanisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1. Magnetocrystallineanisotropy . . . . . . . . . . . . . . . . . . . . . . 35 i 2.5.2. Shapeanisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6. Domainwalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.7. Electrical resistivity: temperature dependence and the weak localization phe- nomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8. TheHalleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8.1. OrdinaryHalleffect . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8.2. TheanomalousHalleffect(AHE) . . . . . . . . . . . . . . . . . . . . 46 2.9. Heusleralloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.9.1. FerromagneticfullHeusleralloys . . . . . . . . . . . . . . . . . . . . 50 2.9.2. Halfmetallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.10. Cu MnAl,Co MnSiandCo MnGeHeusleralloy: : surveyoftheliterature . . 56 2 2 2 2.10.1. Thefull-Heusleralloys . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.10.1.1. Cu MnAl . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 2.10.1.2. Co MnSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2 2.10.1.3. Co MnGe . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2 II. Experimental Work 86 3. PreparationMethodsandMeasurementTechniques 87 3.1. Samplepreparationtechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1.1. Thinfilmdeposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1.2. Thesputteringsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.2. Filmgrowthmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.2.1. Macroscopicmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.2.2. Microscopicmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.3. Epitaxialgrowthmechanism . . . . . . . . . . . . . . . . . . . . . . . 96 3.3. Substratechoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4. UVlithographytechnique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4.1. DesignoftheUVlithographymask . . . . . . . . . . . . . . . . . . . 102 3.5. SamplefabricationandpatterningwithUV-lithography . . . . . . . . . . . . . 103 3.6. Samplecharacterizationtechniques . . . . . . . . . . . . . . . . . . . . . . . . 106 3.6.1. X-RayDiffraction(XRD) . . . . . . . . . . . . . . . . . . . . . . . . 106 3.6.2. ElectricaltransportandHalleffectmeasurements . . . . . . . . . . . . 108 3.6.3. VibratingSampleMagnetometer(VSM) . . . . . . . . . . . . . . . . . 110 ii III. Experimental Results and Discussion 113 4. ResultsandDiscussion 114 4.1. Anoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.2. Developmentofmagnetizationonannealing . . . . . . . . . . . . . . . . . . . 116 4.3. Structuralproperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.1. X-rayreflectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.2. X-raydiffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3.3. Hysteresisloopsmeasurements . . . . . . . . . . . . . . . . . . . . . 123 4.4. Resistivitymeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5. Magnetoresistance(MR)measurement . . . . . . . . . . . . . . . . . . . . . . 129 4.5.1. Highfieldmagnetoresistance . . . . . . . . . . . . . . . . . . . . . . . 130 4.5.1.1. ThetemperaturedependenceoftheMR . . . . . . . . . . . 133 4.5.2. Lowfieldoranisotropicmagnetoresistance . . . . . . . . . . . . . . . 135 4.5.2.1. AMRcrossoverphenomenon . . . . . . . . . . . . . . . . . 136 4.6. AnomalousHallcoefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.6.1. TemperaturedependenceoftheAHE . . . . . . . . . . . . . . . . . . 141 4.6.1.1. AHEcrossover . . . . . . . . . . . . . . . . . . . . . . . . 143 4.6.2. TheoriginoftheAHE . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5. Conclusions&Outlook 147 iii Preface Preface Sincealongtimeagothehumanitywasfascinatedbythepropertiesofmagnetsandmag- netization. Magnetic properties have been observed since approximately 2500 years ago in AncientGreece[1]andithasbeenclaimedthattheChinesewereusinglodestoneincompasses fornavigationbefore2500B.C.[2]. Thomson discovered the magnetoresistance (MR) effect in 1857[3]. The MR is defined as the change of the resistance of a material when an external magnetic field is applied. A magneto-resistance exists in non-ferromagnetic as well as in ferromagnetic compounds and is usuallyquitesmall. oftheorderofonepercent,orsmallerintypicallaboratoryfields. Amuch largerMReffect,thesocalledgiantmagneto-resistance(GMR)wasdetectedindependentlyby GrünbergandFert[4,5]in1980s. Thiseffectcanbeobservedinthinfilmstructuresconsisting oftwoferromagneticelectrodesseparatedbyametallic, non-magneticlayer. Itmanifestsitself in a pronounced change of the sample’s resistance of up to more than 100 % [6] as a function ofthemagnetizationorientationoftheadjacentferromagneticelectrodes. Theenormousimpact of their work is underlined by the fact, that Grünberg and Fert have been awarded the Nobel Price in Physics 2007 for this invention. The GMR was followed by the discovery (or in some casesthere-discovery)ofsimilareffects,suchasColossalMagnetoresistance(CMR),Balliastic Magnetoresistance (BMR), and Tunneling Magnetoresistance (TMR). Subsequent to its discov- ery, the magnetoresistance (MR), became very popular thanks to its great potential in terms of applicationsinelectronicsdevices[7]. Magnetoresistiveeffectsfindapplicationsinmanyfieldsofelectronicstodaynotonlyinan ordinarymagneticfieldsensors[8],butalsousedasreadoutandstorageelementsinnon-volatile data storage devices, such as hard disk drives (HDD) and magnetic random access memories (MRAM) [9]. In particular, research and development related to GMR has been pushed at a tremendous pace, so that it took less than ten years from its first demonstration in the labora- tory to the beginning of large-scale production of HDD using GMR read heads at IBM in 1997 [10]. This thesis relates to the recently emerging and rapidly growing field of spin-electronics, orspirntronics. Spintronicsdevicesutilizethefundamentalfactthatconductionelectronscarry not only charge but also spin. In magnetic materials, where the spin up (majority) and spin down(minority)electronnumbersarenotequal,anelectriccurrentinthesematerialsshouldbe naturallybespinpolarized. Inthiscase, amagneticfieldcanbeused to manipulatespinpolar- ized electrical currents, providing an additional channel ofinformation as well as an additional degreeoffreedomfordesigninganovelspintronicdevices. 1
Description: