ebook img

Magnetic fields in planetary nebulae and post-AGB nebulae PDF

0.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic fields in planetary nebulae and post-AGB nebulae

Mon.Not.R.Astron.Soc.000,000–000(2006) Printed5February2008 (MNLATEXstylefilev2.2) Magnetic fields in planetary nebulae and post-AGB nebulae L. Sabin1,2, Albert A. Zijlstra1 and J. S. Greaves3 1JodrellBankCentreforAstrophysics,UniversityofManchester,P.O.Box88,ManchesterM601QD,UK 2InstitutodeAstrof´ısicadeCanarias,C/V´ıaLa´ctea,38205Laguna,Tenerife,CanaryIslands,Spain 3SchoolofPhysics&Astronomy,UniversityofSt.Andrews,NorthHaugh,StAndrewsKY169SS,Scotland,UK 7 0 0 5February2008 2 n a ABSTRACT J Magnetic fields are an important but largely unknown ingredientof planetary nebulae. 3 Theyhavebeendetectedinoxygen-richAGBandpost-AGBstars,andmayplayaroleinthe 1 shapingoftheirnebulae.HerewepresentSCUBA sub-millimeterpolarimetricobservations v of four bipolar planetary nebulae and post-AGB stars, including two oxygen-rich and two 4 carbon-richnebulae,todeterminethegeometryofthemagneticfieldbydustalignment.Three 5 of the foursources(NGC7027,NGC 6537and NGC 6302)presenta well-definedtoroidal 0 magneticfield orientedalongtheir equatorialtorusor disk. NGC 6302may also show field 1 linesalongthebipolaroutflow.CRL2688showsacomplexfieldstructure,wherepartofthe 0 field alignswith the torus, whilstan other partapproximatelyalignswith the polaroutflow. 7 Italsopresentsmarkedasymmetriesinitsmagneticstructure.NGC7027showsevidencefor 0 a disorganizedfield in the south-westcorner,where the SCUBA showsan indicationforan / h outflow.Thefindingsshowaclearcorrelationbetweenfieldorientationandnebularstructure. p - Keywords: stars:AGBandpost-AGB–stars:mass-loss–method:polarimetry o r t s a : v 1 INTRODUCTION interactionsmaybefoundin25–50percentofplanetarynebulae i (Zijlstra2006),althoughvaluesof50–100percenthavealsobeen X Whether magnetic fields play a role in the shaping of planetary suggested(DeMarcoetal.2004;DeMarco&Moe2006). r nebulae(PNe)isanopenquestion.Mostofthepost-AGBnebulae a appear elliptical, bipolar or even multi-polar (Balick&Frank Ontheotherhand,themagneticfieldmayactasa“squeezer” 2002). These morphologies are amplified by the interaction aroundthecentralstarofthePNandtherebygivethedustitsdi- betweenaslowAGBwindwithafasterpost-AGBwind.However, rection(inthesenseoftheoutflow).Magneticfieldshavebeende- this amplification still requires an initial asymmetry in the slow tectedaroundAGBstars(Vlemmingsetal.2006)andafewpost- wind. This initial shaping has been mainly attributed to two AGB stars (Bainsetal. 2004) using radio observations of masers possiblephenomena:binarityandmagneticfields. (H2O, SiO,OH). Such observations measure alocal value of the strength of field, within masing high-density clumps, which may Inthebinarymodel,aclosecompanionaffectsthemass-losing differ from the global field. The origin of the magnetic field is AGB star via common envelope evolution (DeMarco&Moe unknown: a dynamo effect resulting from an interaction between 2006), mass transfer and/or tidal forces, and may lead to the a slow rotating envelope and a fast rotating core has been pro- formation of an accretion disk around the companion star. The posed(Blackmanetal.2001).Asmagnetic fieldsarenow known binary orbit provides a source of angular momentum which tobepresentintheAGBandthepost-AGBphase,theirimportance get carried by the wind, and leads to an equatorial disk. The shouldnotberuledoutprematurely. angular momentum loss by the stars may lead to a merger. The Greaves (2002) found evidence for dust alignment in two model of shaping due to this binary interaction is quite popular carbon-rich objects, NGC 7027 and CRL2688 which are respec- (Bond&Murdin 2000), (Ciardulloetal. 2005), partly because tivelyayoungandcompactbipolarPNandastronglybipolarproto- of the presumed impossibility for a single star to supply the planetarynebula(PPN).ThiswasbasedonpolarimetricScuba850- energy necessary to create a magnetic field strong enough for micron observations. The data suggests the presence of toroidal its shaping (Soker 2005). Nevertheless, there is still a lack of collimatedmagnetic fields, aswould be required for theshaping. observationalevidencefortheoccurrenceofclosebinarysystems Butthepresenceofsuchafieldwasnot conclusivelyproved, be- duringtheAGBphase.Neithercompanions(Rieraetal.2003)nor causeof theveryfew detectedvectorsand limitedspatial resolu- high orbital velocities of the AGB stars (Barnbaumetal. 1995) tion.Wepresent herenew 850-microns and thefirst450-microns are detected in a sufficient amount to establish the role of the polarimetryofpost-AGBstars,whichallowsforbetterresolution binarity as predominant (Mattetal. 2000). Evidence for binary andreducesangularsmearing.Inadditiontotheobjectsobserved 2 L. Sabinet al. byGreaves(2002),wealsoobservedNGC6537 andNGC6302. 3 THERESULTS Thesamplecontainstwocarbon-richandtwooxygen-richnebulae. 3.1 NGC6537 Weshowthepresenceofwell-alignedtoroidalfieldsinthreeofthe nebulae. The fourth object shows indications for both a toroidal NGC6537isalsoknownastheRedSpidernebula.Itisabipolar field and one aligned with the polar outflow. We conclude that planetarynebulawithaveryhotcentralstar(1.5–2.5×105K).The toroidal fields may be common in bipolar PNe, and could play a nebula suffers extinction by circumstellar dust. This extinction is roleintheshapingofthenebulae. localized mainly in a compact circumstellar shell. An extinction map (Matsuuraetal. 2005) reveals a compact dust shell with a roughlysphericalinnerradiusofabout3arcsec,withaminimum towardsthecentralstar(Matsuuraetal.2005;Cuestaetal.1995). 2 OBSERVATIONS The polar outflows (traced by high velocity winds of about ThepolarimetricdatahavebeenobtainedMay10th2005,withthe 300km/s: Corradi&Schwarz 1993) extend 2 arcminutes along polarimeterontheSub-millimeterCommon-UserBolometerArray the NE-SW direction. The Scuba 850-µm continuum map (Fig. (SCUBA),attheJCMT.Theinstrument(nowdecommissioned)is 1) shows elongation perpendicular to the outflow direction, with describedinHollandetal.(1999).TheJCMTbeamsizeis15arc- amajor-axisdiameterof approximately20arcsec.Theextinction secat850µmand8arcsecat450µm. mapisnow seen torepresent theinner edge of amore extended, SCUBAcontainstwoarraysofbolometricdetectors,covering and possibly toroidal, structure. The equatorial plane may be afieldofviewof2.3′indiameter.The850-µmarrayhas37individ- oriented a little closer to the EW direction, based on the Scuba ualdetectors,andthe450-µmarrayhas91detectors.Thetwoar- map. raysareusedsimultaneously.Thespatialresolutionofthedetector is7.5”at450µm,and14”at850µm.Thegapsbetweenthedetec- The best polarimetric results obtained with SCUBA are ob- torsarecoveredbymovingthetelescopeinsub-pixelsteps,inthe tainedat850µm.Theconsistentorientationofthepolarizationvec- so-calledjiggle-mapmode.Thestepsizeneedstobeoptimizedfor tors shows that the magnetic field (hereafter B~) has a dominant the wavelength used. The polarimeter (Greavesetal. 2003) mea- directionalong theequatorial plane, approximately perpendicular sures the linear polarization by rotating the half-waveplate in 16 totheoutflowdirection.Thedustalignmentisthereforedirectedin steps.Weusedthisincombinationwithjigglemapmode.Achop- thesamesenseastheoutflow.Thelengthofthe18differentvectors throwof45arcsecwasused. doesnotshowlargevariations,withadegreeofpolarizationvary- Good photometric images cannot be obtained at both wave- ingfrom8to14%,suggestingaconsistentmagneticfield.More- lengths simultaneously. When the jiggle pattern is optimized one overtheabsenceofsmallerpolarizationvectorstowardthecenter wave-band, the simultaneous image obtained inthe other band is of the nebula indicates that there is no change in geometry of B~ under-sampled. The size of the pixels in the final image is set towards the core (Greaves 2002). This supports a location some during the data reduction with the polarimetric package of Star- distancefromthestar(i.e.inadetachedshell),sinceotherwiseav- link.Forajigglepatterncorrespondingtoa450µmmeasurement, eraging of vectors in different directions within the JCMT beam the pixel spacing becomes 3 arcsec and for 850µm it is 6 arc- would reduce the detected net polarization at the central position sec.Thereductionofinfraredpolarimetryisdiscussedindetailby (beamdepolarization). Hildebrandetal.(2000). These observations indicate the presence of a consistent The instrumental polarization (IP) of each detector has to toroidalmagneticfield,locatedalongtheequatorialplaneofNGC be removed in order to have a correct polarization calibration. A 6537,inacircumstellartorus.Comparedtothesizeoftheoutflow newIPcalibration,providedonsite,wasused:thiscontainsare- lobes,thefieldislocatedrelativelyclosetothestar.Thepresence measurement of the central detector. For the other detectors, an ofaB~-fieldhadalreadybeensuspected, basedontheoccurrence older IP calibration was used. The IP should not vary too much offilamentsnearthecentralstar(Huggins&Manley2005). for detectors close to the center of the array. Some tests done to TheextinctionmapobtainedbyMatsuuraetal.(2005)(Fig.1- see the importance of the instrumental polarization (by changing Bottompanel)showsanasymmetry,inthattheextinctionishigher itsvaluebythesizeoftheerrorforexample)andifitcouldaffect onthewesternside(>∼2magversus<∼1.6magtowardstheeast). thepolarizationvectorslength,showedthatinourcase,theIPwas This asymmetry is also seen in the Scuba data, with a larger ex- small(at850µm:∼1.20%±0.25%andat450µm:∼3.25%±0.25% tensionandmorepolarizationvectorsonthisside.Thisisafurther )anddidn’tplayanyroleinmodifyingthevectors.Theresulting indicationthatthemagneticfieldislocatedwithinthedetacheddust polarimetricimageswerecheckedfordifferentpixelbinning,from shell. 1×1to10×10,andwedidn’tfindanysignificantchanges. Thereisnostrongindicationformagneticfieldsalongthespi- Thelinearpolarizationismeasuredasapercentagepolariza- derlobes.Thereisaslighttrendforthevectorstocurve,butthis tion, and a direction. The polarization is typically caused by the iscaused byonly afew of thevectorsandwould need confirma- alignmentofspinningdustgrains,withtheirlongaxisperpendicu- tion.Wecannotstatewithconfidencewhetherthelobesalsocarry lartothelocalmagneticfield(Greavesetal.1999).Thus,themea- amagneticfield. sured angle of polarization is 90 degrees rotated with respect to themagneticfield.Thedegreeofpolarizationdoesnotgivedirect informationonthestrengthofthemagneticfield. 3.2 NGC7027 Weobservedfourtargets:NGC6537,CRL2688,NGC6302 andNGC7027.Theywereobservedinjigglemapobservingmode The450µmjigglemapoftheyoung planetarynebulaNGC7027 atbothwave-bands,450µmand850µm.Foreachobject,themean (Fig. 2) and its near environment covers a field of about 40×36 directionandangleofpolarizationarelistedinTable1. arcsec2.Thecentralstarissurroundedbyanionizedareaof∼283 Thefiguresbelowshowthedirectionofthemagneticfield,i.e. arcsec2, which is in turn enclosed by a thin atomic and molecu- thevectorsareperpendiculartothedirectionofthegrainalignment. larlayerthat isseenforinstanceintheH2 emissionobserved by MagneticfieldsinPNe 3 Figure1.Scuba850µmresultsonNGC6537.NorthonthetopandEaston Figure2.Scuba450µmresultsonNGC7027.NorthonthetopandEast theleft.Theaxesgivetheimagescaleinarcseconds.Toppanel:the850µm ontheleft. Theaxesgivetheimagescaleinarcseconds. Toppanel: The continuummapofNGC6537,withcontoursat1%,2%,5%and10%of 450µmcontinuummapofNGC7027.Contoursaresetfrom1to5%and thepeak.Middlepanel:Magneticfieldorientation.Thegeneraloutflowdi- 10%of the peak. Middle panel: Magnetic field distribution. Thegeneral rectionofthenebulaisindicatedbyAandtheequatorialplanebyB.The outflowdirectionisindicatedbyAandtheequatorialplanebyB.Thepo- polarizationvectorscaleontheleftissetat10%.Bottompanel:Extinction larization vectorscale(showingthedegreeofpolarization) issetat10%. mappresentedbyMatsuuraetal.(2005).Thehighestlevelsofextinction Bottompanel:TheScubapolarizationvectorsareshownonancontinuum occurat∼4arcsecfromthecentralstarwithE(Hβ−Hα)>2mag,co- subtractedH2(color-inverted)mapofNGC7027(NorthonthetopandEast incidentwiththedustemissioninthe850µmmap.Thepolarizationvector ontheleft).Thefieldismostlydirectedalongtheequatorialplane.Thecen- scaleissetat10%.Themagneticfieldwhichcoincideswiththeareaofin- tralregionshowsmuchreducedpolarizationandthefieldorientationdiffers ternalextinction,ismostlyalignedalongtheequatorialplane,indicatinga ontheextremewesternside. toroidalfield.Thedustalignmentisperpendiculartothevectorsdisplayed. 4 L. Sabinet al. Coxetal.(2002).Athindarkringdelineatestheequatorial plane theemissionhereisfaintandtheuncertaintiesonthepolarization in optical images. The structure is better seen in the HST image vectorsarelarger. (Fig.2-bottom),whichshowsboththesurroundingmolecularlayer Thecomplicatedmagneticmorphologymakesitlikelythatthe (inH2)andtheinnerionizedregion.Latteretal.(2000)showsthat dynamicshaveshapedsignificantpartsofthefield,ratherthanthe theNWlobeisblue-shifted(closer)andtheSWlobeisred-shifted. magneticfieldshapingthenebula.Thestructuremayshowthesu- The dominant direction of themagnetic fieldcoincides with perpositionoftwocomponentsovermostoftheareaofthesource. the equatorial plane. But this behaviour is mainly seen on the Thelackofpolarizationinthecentresuggeststhatthebrightcore North-East side while the south-west part seems to be disturbed: isnotpolarized,oritspolarizationisaveragedoutovertheJCMT themagneticfieldmaybe“broken”.Thedegreeofpolarizationis resolution.Theoutermostfieldvectorsinthelongitudinaldirection 8.9%±0.9%)towardstheNEdirection(orlobe)and7.6%±1.3%) are along the outflow, and this may indicate afield carried along towardstheSW.Thedegreeofpolarisationismuchreducedinthe bytheoutflow.Thisismostapparentinthenorthwhenlookingat centerofthenebulaandlacksacoherentdirectionhere.Thiseffect theoutervectorsdirectioninthefigure3-bottom-left,inthesouth wasalsonotedbyGreaves(2002)andmayindicatethatcoherence the outer vectors point towards the corresponding outflow so we islostintheionizedregion. assumethatthemagneticfieldmaybecarriedbythisoutflow. Thegrainalignment,whichisperpendiculartothedirectionof themagneticfield,isinthedirectionoftheoutflowsonthewestern 3.3 CRL2688 side.Ontheeasternside,thegrainalignmentistoroidal. Theproto-planetarynebulaCRL2688(orEggNebula)isabright High resolution molecular images in the literature include carbon-richbipolarobjectcharacterizedbytwopairsofsearchlight IRAMCOJ=2-1data(Coxetal.2000)andHSTinfraredH2 im- beams superposed on a reflection nebula. The origin of the light ages (Sahaietal. 1998). The continuum-subtracted H2 image in beams has been suggested to be a very close stellar companion Fig. 4, shows multiple jets, located both in the equatorial plane (Sahaietal.1998;Kastner&Soker2004),orthepresenceofdust and towards thepolar directions. TheCO datashow these jetsto layersreflectingthelightofthecentralstar(Gotoetal.2002).The bethe tipof flowsoriginating much closer to thestar. Thesejets bipolarreflectionnebulashowsadarkequatoriallanewherealarge allfallwithintheScuba850-µmcore,indicatingthatindeedstruc- amountofdustmaybypresent. tureispresent onscalesmuchsmallerthantheJCMTbeamsize. The850-µmispresentedinFig.3-Toppanels.Itshowselon- Thus,beamdilutionandbeam-depolarizationofthemagneticfield gationinthedirectionofthepolaroutflows.Theequatorialextent islikely. islessbutatthelowestcontourthetorusismoreextendedonthe WenotethattheelongationvisibleintheScubaimage,onthe easternside.Theextentis∼60”×40”althoughitisnotclearpre- easternside,isinthesamedirectionasthelargestmolecularsub- ciselywheretheemissionends.Thebrightcoreat850µmshowsa jetE2inFig.4,orA1inCoxetal.(2000)(buttheScubastructure FWHMof16×14arcsec2,atapositionangleof25degreeswhich ismuchlarger).Thepolarizationvectorsseemunaffected.Onthe isinthesamedirectionastheoutflow.Wecouldnotmeasurethe westernside,boththemolecular andtheScubaimagesindicatea coreelongation at 450µm due totheunder-sampling. Thespatial smaller extent of the envelope. The polar outflows as seen in the resolution is insufficient to separate the two light beams, but the molecularlinesdonotshowthelightbeams,butinsteadshowrel- widthoftheemissionsuggeststhatthedusttracesthelargerlobes ativelywell-collimatedlobes. Thelobesarebrighter inthenorth. whichthelightbeamsilluminate,andthatthesebeamsthemselves Thepolar lobesintheScubaimageareconsistent withthis,both arenotpresentinthefar-infrareddata.(Theelongationofthecore indirectionandinbrightness,butagainaremuchlargerthanseen isinfactalongthelineofoneofthetwobeamsonly.) in themolecules. The molecular emission shows the wind-blown CRL2688presentsthehighestnumberofpolarizationvectors cavities,whiletheScubaemissionarisesinthesurroundingshells. inoursample.Forthisnebula,theunder-sampled450µmmapgives someadditionalandusefulindications(evenifweobservealackof 3.4 NGC6302 vectorsduetothisunder-sampling).Thepolarizationvectorscover the full nebular extent (seen at both wavelengths), as they do in Thisoxygen-richplanetarynebula(Pottasch&Beintema1999)is NGC7027.Thedegreeofpolarizationisnotuniformandstrongly aproto-typicalbutterfly-typenebula.Itshowstwoextendedlobes decreasesnearthecenter.Thisphenomenonismorevisibleinthe that result from a bipolar outflow, with a dark lane in the center. 850µm map, which suggests that beam depolarization may play It has been studied by Meaburn&Walsh (1980), Meaburnetal. a role. At 850µm, the mean value of polarization of the region (2005),Matsuuraetal.(2005)andCasassusetal.(2000). containingthebipolarlobesisabout3.2%,theouterregionhasa The Scuba observations were optimized for 450-µm. They meanvalueof8.8%,andtheregionofthedarklaneshowsamean show a bright core, of FWHM 14 ×12 arcsec2 (larger than the degreeofpolarizationof1.4%. beam),withthelongaxisinthenorth-southdirection,withanex- Ifwedrawalinepassingthroughthenebulainalongitudinal tensiontowardsthesouth-southeast (Fig.5).Weunderlinethefact direction(NNE-SSWfig.3bottom-leftpanel),wecanseedistinct that the long horizontal linein theeastern part of thenebula and behavioursofthemagneticfieldoneithersideofthisline:onthe thelongvertical lineintheSouth-West (Fig.5bottom panel), are easternside,theorientationofB~ ismainlyinthedirectionofthis artifactsfromtheHSTimageandnotScubapolarizationvectors. line,whileonthewesternside,themagneticfieldappearsperpen- Thearcsseenat25arcsecarelikelypartofthediffractionpattern diculartoit. fromtheverybrightcore.Thepolarimetricdataobtainedat450µm The450-µmmap(Fig.3-bottom-rightpanel)showsthemag- showsonlyfivepolarizationvectors.Theydonotlineupwitheither neticfieldathigherresolution,confirmingthebimodaldistribution. thedarklaneortheoutflow.However,theyarefairlywellaligned Thismapisunder-sampledandonlysomepositionsinthenebula with the ellipsoidal radio source in the center of the nebula. The are covered. The map gives a suggestion of a superposition of a radionebulashowstheinnerionizedregion,confinedbythedense toroidal field and one aligned with the polar outflows. The field torus:theelongationisperpendiculartothetorus. becomeslessorderedtowardsthetipoftheoutflowdirection,but The difference in position angle of the inner torus with the MagneticfieldsinPNe 5 Figure3.Scuba850and450µmresultsonCRL2688.NorthonthetopandEastontheleft.Theaxesgivetheimagescaleinarcseconds.Topleftpanel:The 850µmmapofCRL2688,withcontoursfrom1to5%and10%ofthepeak.Toprightpanel:The850-µmvectorpolarizationshowingthemagneticfield orientation.ThegeneraloutflowdirectionisindicatedbyAandtheequatorialplanebyB.Thepolarizationvectorscale(showingthedegreeofpolarization) is setat10%. Bottom panels: HSTimages (WFPC2,filter F606W)withthe overlaid magnetic field corresponding tothe 850µm map(left) and450µm map(right).Thedustcontinuumiselongatedalongtheoutflows.Thefieldshowsacomplicatedstructurewithcomponentsalongtheoutflowandalongthe equatorialplane.Thepolarizationvectorscale(showingthedegreeofpolarization)issetat20%forbothmaps. dark lane is interpreted as a warped disk (Matsuuraetal. 2005). 4 DISCUSSIONANDCONCLUSION Furtherfromthecentertheoutflowshavedifferentpositionangles, and eventually become east-west in the outer bipolar lobes. The Thesub-millimeterobservationsofthefourpost-AGBobjectsre- 450-µmpolarizationindicatesthatthemagneticfieldmaybeori- veal new information regarding the distribution of the magnetic entedinthedirectionoftheinneroutflow. fields,thedustemissionandthelinkbetweenthetwocomponents. Extended dust emission was seen for all four nebulae. For CRL 2688, the large polar lobes have been detected. The orien- tationofitspolar lobesisalongonlyoneofthetwolightbeams. Theequatorialemissionisalsoextended,andshowsanasymmetry Wehavenodataformagneticfieldselsewhereintheoutflows whichiscorrelated withtheappearance of the(much more com- evenat850µm. pact)equatorialjets.Thesejetsoriginateclosetothestaranditis 6 L. Sabinet al. Figure4.Continuum-subtractedH2(HST)imageshowingthejetsinCRL 2688.[NorthatthetopandEastattheleft].TheyarenamedasinSahaietal (1998).Thejetsarealllocatedwithinthecompact850-µmsource,andthe someperturbationsseenintheScubadatacanberelatedtothe“sub-jets” E2orA1. Name Band(µm) Deg(%) Angle(deg) NGC6537 850 11.2±2.2 26.5±5.7 NGC6302 450 11.4±1.6 32.7±4.6 NGC7027 450 8.2±0.9 -18.5±3.7 CRL2688 850 6.8±1.0 -22.6±4.5 Table1.MeanvaluesofthepolarimetricparametersforthePost-AGBob- jects,Deg:degreeofpolarization,Angle:positionangleofthepolarization. Thesevaluesconcernthemainbandstudiedforeachnebula. Figure5.Scuba450µmresultsonNGC6302.NorthonthetopandEast ontheleft.Toppanel:Themapshowsthemagneticfieldorientationonthe unlikelythattheyareaffectedbystructuresatmuchlargerscales. planetary nebula withcontours from1to5%, 10%,20%and25%ofthe Instead, thejetsmay affect thedust emission through heating. In peak.Thepolarizationvectorscale(showingthedegreeofpolarization)is NGC 6537, an asymmetry in the dust correlates with differences setat20%.Notethatthearcsseen20arcsecoutarepartofthebeamside intheextinctionmap,suggestingthatheretheScubamapshowsa lobes oftheverybrightcore. Bottompanel: 450µm ScubamapofNGC trueasymmetryinthedustdistribution. 6302overlaidontheF656NbandHSTimage(WFPC2).Northonthetop The presence of detectable polarization shows that at least andEastontheleft.Theexternalhexagonalcontoursdonotbelongtothe someofthedustgrainsarenotspherical. starbutarerepresentativeofthebolometers.ThemainEasternoutflowseen onthesubmillimeterimagecoincideswiththeoneobservedwiththeHST. Notethatthearcsseen25arcsecoutarepartofthebeamsidelobesand 4.1 Targets thetwolonglines(horizontalandvertical)onbothsidesofthenebula,are artifactsfromtheHSTimageandnotpolarizationvectors. Polarizationisdetectedforallfournebulae.Thisinitselfsuggests thatmagneticfieldsarecommonforthesetypesofobjects.Itisthus importanttodiscusswhattypesofobjectswereselected. nebulae have had time to expand significantly. Such fast evolu- First, the four targets are all bipolar nebulae. The least pro- tionischaracteristicforhigh-masscentralstars.Thecoolerobject nounced morphology is shown by NGC 7027, but even here the (CRL2688)mayhavealowermass,butthefactthatithasbecome molecularmapsclearlyshowtheunderlyingbipolarstructure.We a carbon star suggests it still has a relatively higher initial mass donothaveinformationontheexistenceofmagneticfieldsinless (Mi >∼ 3M⊙),aslower-massstarsexperienceinsufficientdredge- bipolar(e.g.ellipticalorspherical)nebulae. upo to become carbon rich. For NGC6302, aprogenitor mass of Second, although three of the nebulae have very hot central 4–5M⊙ hasbeensuggested,basedonthemassofthecircumstel- starsandionizedcores,allhaveextended molecularenvelopes. It larenvelope(Matsuuraetal.2005).Thepreciseinitialmassesare isarguedabovethatthedetectedfieldsarelocatedinthemolecu- notwelldetermined,buthighmassprogenitorsappearlikelyforall laroratomicregions.Thepresenceofmolecularenvelopesaround fourobjects. ionizingstarsindicatesverydensenebulae,andthereforeveryhigh Thus,theresultofthesurveycanbeinterpretedthatmagnetic masslossratesontheAGB. fields tend to be present for high mass progenitors evolving into Third,thedensenebulaewithrelativelysmallionizedregions bipolarnebulae,andthatthefieldsaredetectablewhilethenebulae implythattheirstarshaveevolvedtohightemperaturesbeforethe stillhavemolecularenvelopes. MagneticfieldsinPNe 7 4.2 Fieldlocationandorientation areseenonlyinirradiatedregions.Thecontinuumradiationfrom thedustcomponentcontainingthePAHsisonlyseenatshortwave- Overall, we see fields aligned with the polar directions and/or lengths(warmdust)andcontributesverylittletothesub-mmflux toroidalfieldsintheequatorialplane.Assumingthatthedustinthe (Kemperetal.2002;Matsuuraetal.2005).Thus,thepolarization polarflowsoriginatesfromthedustreservoirinthediskortorus, signalisseenintheoxygen-richgrains,notthePAHs. thissuggeststhatthefieldalsooriginatesthere.Thealignmentwith Iron needles could be considered as carriersof the polariza- thepolarflowisinterpretedthatthegascarriesthefieldwithit. tion:inO-richstars,someormostoftheironisincorporatedinthe NGC6302istheonlysourceinoursamplewithoutevidence silicategrains(olivinesandpyroxenes:Ferrarotti&Gail2001),but foratoroidalfield.Thisnebulahasacomplicatedmorphologywith for a C/O ratio close to and above unity, solid iron and FeSi be- awarpeddiskandthenebulaisorientedat45degreeswithrespect comemoreimportant(e.g.,Ferrarotti&Gail2002).Metallic,non- totheequatorial dustlane.Itisthereforedifficulttoascertainthe spherical iron grains may contribute to the NIR opacity in high alignment of the field with any particular morphological compo- mass-lossOH/IRstars(Kemperetal.2002). nent.However,alignmentwiththeradiocoreseemsmostlikely. The other nebulae show evidence for toroidal field compo- nents.Wethereforesuggestthattheinitialconfigurationofthefield 4.4 Comparisonlessevolved/moreevolvednebulae istoroidal,andislocatedintheequatorialtorus. The polarization in all cases appears to be seen in the neu- Theextentofthenebulaeshowsthattheobjectsdifferinage.The tral/molecular regions. Towards the central, ionized regions, the nebulaeofCRL2688(Post-AGB)andNGC7027(youngPN)are percentageoflinearpolarizationismuchreduced.Thismayinpart youngerthanNGC6537(PN)andNGC6302(PN).(Thelobesof bebecauseofthebeamaveragingoverregionsofdifferentpolar- thelastobjectextendtoover2parsecacross.) izations, but the ionized regions may also be expected to lose a Our submillimeter polarimetric data show that the magnetic directionalfield(non-constancyofB~).Thereasonfortheabsence fieldisbetterorganized for theolder nebulae. Assuming anorig- ofadetectablemagneticfieldintheionizedregioncanalsobeex- inally toroidal field, later carried by the bipolar flows, the best plainedbythelackofdust(soB~ isnotcarried).ForNGC6302,the organized field is expected if one component dominates. The fieldis aligned withthe ionized core but is likely located around bipolar flows are most massive early in the post-AGB evolution ratherthanwithinthecore. (Bujarrabaletal.2001).Astheydiminish,theremainingfieldmay Polarizationwillnotbedetectedifthefieldisorientedalong becomelessconfused.However,evolvingdustcharacteristicsmay thelineofsight.Thisisexpectedforatoroidalfieldsnearthetan- alsoplayarole:dustgrainsbecomelargerinolderdisks,andmay gentialpointsofthetorus.ThismaybepresentespeciallyinCRL showlesspolarizationasaresult.Itisnotpossiblewiththecurrent 2688,wheretwocomponentsarefoundatdifferentlocations. sampletoseparateevolutionaryandchemicaleffects,butbothare expectedtooccur. 4.3 Chemistry 4.5 Fieldstrengthandorigin The sample includes two oxygen-rich nebulae (NGC 6537 and The detected polarization contains information on the direction NGC6302, both PNewithhot central stars)and twocarbon-rich of the field, but not its strength. A method to obtain the field nebulae (NGC 7027 and CRL 2688: the latter isthe cooler post- strength out of fluctuations in polarization was suggested by AGBnebulainoursample).Thissampleistoosmalltodrawgen- Chandrasekhar&Fermi(1953).Applyingthismethodtoourdata eral conclusions. However, we point out the following points of leadstofieldstrengthsoftheorderofmG.Thisequationassumes interest,forfuturestudy. thatthemagneticfielddispersioniscausedbyAlfvenwaves.The • TheO-richPNebothpresentcollimatedmagneticfieldscon- applicabilitytooursourcesmaybeindoubt,asthedispersionmay centratednearthecentralstar.Inbothcases,wehaveanorganized bedominatedstreamingmotions. magneticfieldinthecentralregion,resistanttodistortioneffects, In neutral-dominated media, Alfven waves contribute if the butdonotdetectmoredistantfields. collisiontimesbetweenionsandneutralsareshorterthantheperiod • The two carbon-rich nebulae show extended fields covering oftheAlfvenwave.Thisisthecaseforwaveslongerthan theirentirenebula.Inbothnebulae,themagneticfieldismoredis- organizedthaninthetwoO-richstars. 0.3 B 104 3/2 10−7 λ > (1) A (cid:18)pc(cid:19)(cid:16)0.1mG(cid:17)(cid:18) n (cid:19) (cid:18) fi (cid:19) The question whether there is a chemistry-related origin to these behaviours is valid, but cannot be answered with the cur- wherenistheparticledensitypercm3,andf isthefractionalion- i rentsample.Dustchemistrycouldplayarole.First,carbongrains ization(Hildebrand1996).Foroursources,f maybehighexcept i tendtobesmallerthansilicategrains.Largergrainsmaybemore inthedensestregionsofthetori.Assumingatypicalsourcesizeof spherical,whichwouldgiveless(orno)polarization.Bothoxygen- 0.05pc,andafieldstrengthofamG,Alfvenwavesmaycontribute richnebulaeshowevidenceforcrystallineice(Molsteretal.2002) iff >10−4.Thisisaplausiblevaluefortheoutflows. i (strongestinNGC6302),indicatingcoatingsonthegrains.Second, PreviousobservationsofOHZeemansplittinghasshownfield amorphouscarbongrainsmaybeintrinsicallynon-spherical,build strengths in OH/IR stars and post-AGB stars of a few mG at upfromgraphiticcarbonsheets. 3×1015 –2×1016cmfromthestars(Bainsetal.2004,2003). For the O-rich nebulae, it is possible that only the hotter Muchlargervalueshavebeeninferredfromwatermasers:several dust,abovetheiceevaporationtemperature,leadstonon-spherical Gaussat∼2×1014cm(Vlemmingsetal.2005).Thedifferenceis grains and a polarized signal. Thus, a difference in polarization consistentwithadipolefield,whichgivesanr−3dependence,and doesnotnecessaryimplyadifferenceinmagneticfieldstructure. lessconsistentwithasolar-typefieldr−2.Watermaserstracehigh BothO-richnebulaeshowevidenceforweakPAHemissionin densityclumpsandthemeasuredfieldstrengthsmaynotbefully theircentralregions.TheoriginsofthePAHsisnotclear,butthey representativeofthesurroundingareas. 8 L. Sabinet al. Figure6..LocationoftheScubadustemission,comparedtotheHSTimages(contours).WepresentrespectivelyNGC6537,NGC7027andCRL2688. NGC6302isshowninFig.5(bottompanel). Assuming we look at typical distances of 5 arcsec at 1 kpc, icant factor inthefurther evolutionof thenebulatowards thePN ourmeasurementsareat∼5×1016cmfromthestars.Compared phase. totheOHandwatermasers,onewouldexpect afieldof1mGor lessatthisdistance.Thissuggestthatthedirectionchangesinthe fieldareduetostreamingmotions,ratherthanAlfvenwaves. The grains become aligned with the magnetic field with the Davis-Greenstein mechanism. The time scale for this to occur is (Kruegel2003,Ch.11) trel∝B−2 4.7 Summary and, for fields of the order of a few mG, is typically 106yr. The Wepresent the discovery of magnetic fieldsin four bipolar post- ageofthenebulaeis∼ 104yr.Forthistimescale,thealignment AGB stars (NGC 6537, NGC 7027, NGC 6302 and CRL 2688). ofthedustwiththemagneticfieldrequiresfieldsinexcessofthose ThisconfirmstheearlierworkofGreaves(2002)fortwoofthese. seenfromOHmaseremission.Thealignmentisthereforelikelyto Thefieldsaremappedathighresolution(forsub-mm),usingeither originateclosetothecentralstar,atr<1015cm,andismaintained 450or850µm.Thesub-mmemissiontracestheextendedemission. whilethenebulaexpands. InCRL2688, wefindevidenceforthepolarlobeswhichcontain thewell-knownsearchbeams. All objects show polarization indicative of grain alignment bymagneticfields.Toroidalfieldsarefoundforthreeobjects,and 4.6 Evolution poloidal fieldsfortwo(CRL2688showsevidence forboth).The For OH/IR stars, evidence for dipole fields has been presented alignment of thefieldwithnebula isleastcertain for NGC6302, by, e.g., Vlemmingsetal. (2005). For more evolved stars, in the where the nebula shows a multipolar structure. Our results sug- early post-AGB evolution, the presence of both toroidal (IRAS gests that magnetic fields are common in these types of targets: 20406+2953) and poloidal (OH17.7-2.0) fields are inferred from bipolarnebulaewithintermediate-massprogenitors.Thefieldsare OHobservations(Bainsetal.2004,2003).Thepoloidalfieldsarise longlivedastheyareobservedoverdifferentevolutionarystages. fromastretcheddipole.Fortheevenlaterevolutionarystagestud- The data also show evidence for elongated grains. The po- iedhere,astrongtoroidalfieldcomponentisfound,combinedwith larizationisstrongerandmoreextendedforthecarbon-richnebu- apoloidalfield. lae.Thismayshowthatamorphouscarbongrainsareintrinsically Atoroidalfieldcanformoutofadipolefieldbyrotation.This non-spherical,e.g.thesheet-likestructureofgraphite.Theoxygen- alreadymakesitlikelythattheformationofthetorusandthefor- richnebulaeshowpolarizationonlyintheircentralregions.Thisis mation of the toroidal field are related. A binary companion can interpretedin that thedust grainsin thetorii arelarger and more bethesourceof therequiredangular momentum. Rotationofthe spherical. staritselfislesslikely,asitsangularmomentumcanbeexpected Thepoloidalfieldsinthepolarflowssuggestthatherethefield to be lost early on in the mass loss. A binary companion, on the iscarriedalongbytheflowandthattheseflowsarenot magneti- otherhand, candeposit itsangular momentumduringthetimeof callyconfined.Thetoroidalcomponentsinthetorusmaybemore thepeaksuperwind,attheendoftheAGBmassloss. important,forthedynamics.AsthefieldsinAGBstarsaredipole- ThefieldsdetectedviaOHandH2Omasershavebeenclaimed like,thetoroidalfieldstructureappearstobealaterphaseofevo- to be strong enough to dominate the dynamics of the nebula lution. Wesuggest that this transitionoccurs when theequatorial (Bainsetal. 2004; Vlemmingsetal. 2005). Soker (2006) argues fieldiswound upthrough theinteractionwithacompanion. Fol- thatfieldsofthismagnitudecannotbegeneratedbythestaritself, lowing Soker (2006), we suggest that the original shaping agent andshouldbeattributedtoacompanion. Basedonthis,thebasic isabinarycompanion. Oncethefieldhasbeenwoundup,itmay shaping mechanism of the nebula is found in binarity. However, howeverbecomedynamicallyimportantforthesubsequentnebular oncethestrongfieldshavebeengenerated,theywouldbeasignif- evolution. MagneticfieldsinPNe 9 ACKNOWLEDGEMENTS KastnerJ.H.,SokerN.,2004,inASPConf.Ser.313:Asymmetri- calPlanetaryNebulaeIII:Winds,StructureandtheThunderbird L.S.thanks Mikako Matsuura for many useful comments andfor TheEggNebula(AFGL2688):DeepeningEnigma.pp57–+ providingthereducedHSTdata.TheJamesClerkMaxwellTele- KemperF.,deKoterA.,WatersL.B.F.M.,BouwmanJ.,Tielens scopeisoperatedbyTheJointAstronomyCentreonbehalfofthe A.G.G.M.,2002,A&A,384,585 Particle Physics and Astronomy Research Council of the United KemperF.,MolsterF.J.,Ja¨gerC.,WatersL.B.F.M.,2002,A&A, Kingdom, the Netherlands Organisation for Scientific Research, 394,679 andtheNationalResearchCouncilofCanada. Kruegel E.,2003, The physics of interstellar dust. IoP Seriesin astronomyandastrophysics(IoP:Bristol,UK) LatterW.B.,DayalA.,BiegingJ.H.,MeakinC.,HoraJ.L.,Kelly D.M.,TielensA.G.G.M.,2000,ApJ,539,783 REFERENCES Matsuura M., Zijlstra A. A., Gray M. D., Molster F. J., Waters Bains I., Gledhill T. M., Richards A. M. S., Yates J. A., L.B.F.M.,2005,MNRAS,363,628 2004, in ASP Conf. Ser. 313: Asymmetrical Planetary Nebu- Matsuura M., Zijlstra A. A., Molster F. J., Waters L. B. F. M., lae III: Winds, Structure and the Thunderbird The Magnetic NomuraH.,SahaiR.,HoareM.G.,2005,MNRAS,359,383 FieldandMaserStructureintheProto-PlanetaryNebulaIRAS MattS.,BalickB.,WingleeR.,GoodsonA.,2000,A&A,32,743 20406+2953.pp186–+ Meaburn J., Lo´pez J. A., Steffen W., Graham M. F., Holloway Bains I., Gledhill T. M., Yates J. A., Richards A. M. S., 2003, A.J.,2005,ApJ,130,2303 MNRAS,338,287 MeaburnJ.,WalshJ.R.,1980,MNRAS,193,631 BalickB.,FrankA.,2002,ARAA,40,439 Molster F. J., Waters L. B. F. M., Tielens A. G. G. M., Barlow BarnbaumC.,MorrisM.,KahaneC.,1995,ApJ,450,862 M.J.,2002,A&A,382,184 BlackmanE.G.,FrankA.,MarkielJ.A.,ThomasJ.H.,VanHorn PottaschS.R.,BeintemaD.A.,1999,A&A,347,975 H.M.,2001,Nature,409,485 Riera A., Garc´ıa-Lario P., Manchado A., Sua´rez O., Garc´ıa- BondH.,MurdinP.,2000, Encyclopediaof Astronomyand As- Herna´ndez A., Guerrero M. A., 2003, in Revista Mexicana de trophysics Astronomia y Astrofisica Conference SeriesGLMP 621: a Bi- Bujarrabal V., Castro-Carrizo A., Alcolea J., Sa´nchez Contreras naryPlanetaryNebula.pp97–99 C.,2001,A&A,377,868 Sahai R., Hines D. C., Kastner J. H., Weintraub D. A., Trauger CasassusS.,RocheP.F.,BarlowM.J.,2000,MNRAS,314,657 J. T., Rieke M. J., Thompson R. I., Schneider G., 1998, ApJ, ChandrasekharS.,FermiE.,1953,ApJ,118,113 492,L163+ CiardulloR.,SigurdssonS.,FeldmeierJ.J.,JacobyG.H.,2005, Soker N., 2005, inSzczerba R.,StasinskaG.,Gorny S.K.,eds, ApJ,629,499 AIPConf.Proc.804:PlanetaryNebulaeasAstronomicalTools CorradiR.L.M.,SchwarzH.E.,1993,A&A,269,462 Can We Ignore Magnetic Fields in Studies of PN Formation, Cox P., Huggins P. J., Maillard J.-P., Habart E., Morisset C., ShapingandInteractionwiththeISM?.pp89–94 BachillerR.,ForveilleT.,2002,A&A,384,603 SokerN.,2006,A&A,118,260 CoxP.,LucasR.,HugginsP.J.,ForveilleT.,BachillerR.,Guil- VlemmingsW.H.T.,DiamondP.J.,ImaiH.,2006,Nature,440, loteauS.,MaillardJ.P.,OmontA.,2000,A&A,353,L25 58 CuestaL.,PhillipsJ.P.,MampasoA.,1995,A&A,304,475 VlemmingsW.H.T.,vanLangeveldeH.J.,DiamondP.J.,2005, DeMarcoO.,BondH.E.,HarmerD.,FlemingA.J.,2004,ApJ, A&A,434,1029 602,L93 ZijlstraA.A.,2006,inSzczerbaR.,MikalojewskaJ.,eds,Sym- DeMarcoO.,MoeM.,2006,ApJ,inpress bioticstarsBinarycentralstarsofplanetarynebulae FerrarottiA.S.,GailH.-P.,2001,A&A,371,133 FerrarottiA.S.,GailH.-P.,2002,A&A,382,256 Goto M.,Kobayashi N., TeradaH.,Tokunaga A. T.,2002, ApJ, 572,276 GreavesJ.S.,2002,A&A,392,L1 GreavesJ.S.,HollandW.S.,JennessT.,ChrysostomouA.,Berry D. S., Murray A. G., Tamura M., Robson E. I., Ade P. A. R., NartalloR.,StevensJ.A.,MomoseM.,MorinoJ.-I.,Moriarty- SchievenG.,GannawayF.,HaynesC.V.,2003,MNRAS,340, 353 Greaves J. S., Holland W. S., Minchin N. R., Murray A. G., StevensJ.A.,1999,A&A,344,668 HildebrandR.H.,1996,inRobergeW.G.,WhittetD.C.B.,eds, ASPConf.Ser.97:PolarimetryoftheInterstellarMediumProb- lemsinFar-InfraredPolarimetry.pp254–+ Hildebrand R. H., Davidson J. A., Dotson J. L., Dowell C. D., NovakG.,VaillancourtJ.E.,2000,PASP,112,1215 Holland W. S., Robson E. I., Gear W. K., Cunningham C. R., Lightfoot J. F., Jenness T., Ivison R. J., Stevens J. A., Ade P. A. R., Griffin M. J., Duncan W. D., Murphy J. A., Naylor D.A.,1999,MNRAS,303,659 HugginsP.J.,ManleyS.P.,2005,A&A,117,665

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.