Long-term evolution of the North Anatolian Fault: new constraints from its eastern termination AURE´LIAHUBERT-FERRARI1,*,GEOFFREYKING2,JE´ROMEVANDERWOERD3, IGORVILLA4,ERHANALTUNEL5&ROLANDOARMIJO2 1SectiondeSismologie,ObservatoireRoyaldeBelgique,ruecirculaire3, B-1180Brussels,Belgium 2LaboratoiredeTectonique,InstitutdePhysiqueduGlobedeParis,UMR,4placeJussieu, Paris,75252Cedex05,France 3IPGS-EOST,UMRCNRS/ULP7516,5,rueReneDescartes, Strasbourg,67084Cedex,France 4InstituteofGeologicalSciences,UniversityofBern,Baltzerstrasse1-3, CH-3012Bern,Switzerland 5Dept.ofGeology,EngineeringFaculty,OsmangaziUniversity,Eskisehir,Turkey *Correspondingauthor(e-mail:[email protected]) Abstract: Thedeformationand40Ar–39Ardatingofrecentvolcanism,thatremarkablysitsacross theNorthAnatolianFaulteasternterminationinTurkey,togetherwithpreviousstudies,putstrong constraintsonthelong-termevolutionofthefault.Wearguethatafterafirstphaseof10Ma, characterizedbyasliprateofabout3mm/a,andduringwhichmostofthetracewasestablished, theslipratejumpedtoabout20mm/aonaverageoverthelast2.5Ma,withoutsubstantialincrease ofthefaultlength.Thetransitioncorrelateswithachangeinthegeometryatthejunctionwiththe EastAnatolianFaultthatmakestheextrusionprocessmoreefficient. The right-lateral North Anatolian Fault (NAF), narrow zone and that the internal deformation of together with the conjugate East Anatolian Fault Anatolia though existing (Tatar et al. 1996; (EAF), accommodates the westward extrusion of Gu¨rsoyetal.1997;Jaffeyetal.2004)isnegligible theAnatolianblocktowardtheAegeanSubduction (Fig.1).ThepresentgeodeticsliprateoftheNorth Zone (Fig. 1; McKenzie 1972; Tapponnier 1977). Anatolian Fault (22+3mm/a: McClusky et al. This process started most probably 12Ma ago (2000); 24+1mm/a: Reilinger et al. (2006) during a late phase of collision between Arabia is not significantly different from its Holocene and Eurasia (Dewey et al. 1986; McQuarrie et al. slip rate (18.5+3.5mm/a; Hubert-Ferrari et al. 2003) characterized by the uplift of the Anatolian (2002)) deduced from offset geomorphological Plateau, the end of marine sedimentation (Gelati markers. The study of the offset morphology at a 1975; S¸engo¨r et al. 1985), the onset of volcanism wide range of scales (Hubert-Ferrari et al. 2002) in eastern Anatolia (Yılmaz et al. 1987; Pearce suggests that deformation has remained localized et al. 1990) and the onset of motion of the North along the present fault zone for several million Anatolian Fault (S¸engo¨r et al. 1985; Barka 1992). years. Barka & Hancock (1984) further suggest Indeed biostratigraphic data unequivocally con- that a broad right-lateral shear zone was existing strain a Late Miocene age for all basins located beforedeformationfullylocalizedinearlyPliocene along the North Anatolian eastern strand (see time on the present strand of the North Anatolian S¸engo¨r et al. (2005) for a review). Some still Fault. The present North Anatolian Fault has also propose a later initiation time around 5+2Ma a nearly uniform total displacement of c. 85km (Barka&Kadinsky-Cade1988;Bozkurt&Koc¸yigˇit along most of the fault (Armijo et al. 1999; 1996;Bozhurt2001).Thepresent-daykinematicsof Bozkurt 2001; Westaway & Aeger 2001; Hubert- the extrusion, constrained by GPS measurements Ferrarietal.2002;S¸engo¨retal.2005)andisthus (McClusky et al. 2000; Reilinger et al. 2006), similartoatransformboundary.Thetotaldisplace- shows that deformation is localized along a single mentoftheNorthAnatolianFault,togetherwiththe From:VANHINSBERGEN,D.J.J.,EDWARDS,M.A.&GOVERS,R.(eds)CollisionandCollapseatthe Africa–Arabia–EurasiaSubductionZone.TheGeologicalSociety,London,SpecialPublications,311,133–154. DOI:10.1144/SP311.5 0305-8719/09/$15.00#TheGeologicalSocietyofLondon2009. 134 A.HUBERT-FERRARIETAL. Fig.1. ContinentalextrusionoftheAnatolianblockawayfromtheArabia–Eurasiacollisionzone.ThecurrentGPS vectorsrelativetoEurasiaareindicated(McCluskyetal.2000).NAF,NorthAnatolianFault;EAF,EastAnatolian Fault;DSF,DeadSeaFault;ASZ,AegeanSubductionZone.BoxisareaofFig.2. ageofthefault(12Ma),yieldsanaveragegeologi- (Hubert-Ferrari et al. 2002). East of the Erzincan calsliprateof7mm/a. basin a second strait segment extends for 80km WefocusontheKarliovaTripleJunctionarea, with a N1108E strike to a small pull-apart near wheretheeasternextremityoftheNorthAnatolian Yedisu. East of Yedisu, the faulting geometry is Fault joins the East Anatolian Fault. This pivotal typical of a damage fault pattern occurring at the regionmarksthetransitionbetweenthecontinental tip of strike-slip fault with slightly more diffuse shortening to the east and the extrusion regime to deformation combining fault branching, horsetail the west. In addition recent volcanism covers and reverse faulting (Kim & Sanderson 2006). A entirelytheregionandprovidesidealchronological third segment of the North Anatolian Fault splits, markers to record deformation. By mapping the about 10km SE of Yedisu, in different curved activefaultsandtheiroffsets,andbycharacterizing strands that ruptured in 1949 (Ambraseys 1988). therelationshipbetweenfaultingandvolcanism,we This segment forms a large horsetail with normal proposethattheextrusionprocesshasevolvedwith faulting deforming the eastern flank of the Turna time, with two distinct phases characterized by Mountain until the East Anatolian Fault. Farther very different slip rates. Interestingly, the Triple NE, a fourth segment extends over 30km to the Junction (TJ) evolution can be approximated by a Triple Junction and accommodates almost only simpleplate-tectonicmodel. strike-slip motion as shown in Figure 3 and by focal mechanisms of earthquake of magnitude M.5.5 (Fig. 2). The third and fourth segments ActivefaultingattheAnatolia–Eurasia– formarestrainingstep-over.Secondaryfoldingpar- Arabiatriplejunction alleltothePeric¸ayRiveroccursjustnorthofthelast segmentoftheNorthAnatolianFault. We have established a detailed map of the three EastoftheTripleJunctiontheVartofaultsystem mainfaultsystems(theNorthAnatolianFault,the extendsover50km,formingalargemostlyexten- VartoFault,andtheEastAnatolianFault)relevant sional horsetail. Most of the deformation is loca- to the triple junction deformation combining Spot lized on the Main Varto Fault that is in strait imagesanalysisandfieldwork(Figs2–5). continuation of the fourth segment of the North At its eastern extremity the North Anatolian Anatolian Fault. This main strand, located exactly Fault can be divided in 4 main segments (Fig. 2). atthefootoftheBingo¨lhalf-caldera,accommodates Tothewest,afirstsegmentoftheNorthAnatolian mostlystrike-slipfaultingthoughpartlyhiddenby FaultstrikesN1258Eandendsattheeasternextre- landslides (Fig. 4). In 1966, the Varto M 6.8 ¼ mity of the Erzincan basin. This is a complex earthquake (Wallace 1968; Ambraseys & Zatopek basin (Barka & Gu¨len 1989; Fuenzelida et al. 1968) ruptured its eastern part with aftershocks 1997; Hubert-Ferrari et al. 2002), with the having thrusting mechanism. More diffuse strike- left-lateral Ovacık fault terminating southward slip and normal deformation exists south of the (Westaway & Aeger 2001). The seismic behavior MainVartoFault,withaclearsouthwarddecreasing of the North Anatolian Fault appears to be gradientofdeformation.Thenetworkofsecondary decoupledonbothsidesofthismajordiscontinuity faults in the Varto horsetail is at a slight angle to E V O L U T IO N O F T H E N O R T H A N A T O L IA N F A U L T Fig.2. TheAnatolia/Eurasia/ArabiaTripleJunction:presentfaultgeometry,seismicity(focalmechanismsandearthquakeruptures),volcanismandsedimentarybasins (seelocationinFig.3).BoxesareareasofFigures3–7.TotaloffsetontheEastAnatolianFault(EAF)constrainedby20+5kmoffsetofametamorphicbodybounded byMiocenesedimentsandvolcanism(S¸arogˇluetal.1992). 1 3 5 136 A.HUBERT-FERRARIETAL. Fig.3. Right-laterallyoffsetmorphologyalongeasternmostsegmentoftheNorthAnatolianFault(seelocationin Fig.2).Top:Spotimage.Bottom:Interpretationconfirmedbyfieldwork,showingriveroffsetsreaching3.7km,and rivercaptures(offsetsdande). the Main Varto Fault; most splay from the 1972). The recent M 6.4 earthquake in May Triple Junction, though some splay from the East 2003 ruptured a mino¼r conjugate fault (O¨rgu¨lu¨ Anatolian Fault just SE of the town of Karliova et al. 2003), probably related to the major change (Fig. 6). The Varto horsetail is also associated instrikeoftheEastAnatolianFaultnearthetown with fissure-fed lava flows and intrusion located of Bingo¨l (Figs 1 & 4). Near the town of Goynuk mostly along faults. The largest intrusions form the East Anatolian Fault forms a small short-cut significantvolcanicdomeselongatedalongbound- pull-apart associated with lacustrine sediments ing faults (Figs 4 & 5). South of the town of intercalated with lavas ofthe Turna Mountainand Varto the fissural volcanism cross-cuts older withlignitedeposits(Fig.7). volcanicproductrelatedtotheBingo¨lhalf-caldera (Buket & Go¨rmu¨s¸ 1986; Buket & Temel 1998). Significant shortening in the Triple Junction area RecentvolcanismattheAnatolia–Eurasia– occurs only 20km south of Varto along the Mus¸ ArabiaTripleJunction fold-and-thrust belt (Fig. 2; S¸engo¨r et al. 1985; Deweyetal.1986). ThemostsalientfeatureoftheTripleJunctionisthe AttheTripleJunction,theEastAnatolianfault presence of widespread recent volcanism (Figs 2, ends against the North Anatolian and Main Varto 6a; Dewey et al. 1986) that has spectacularly Fault systems. Its last 75km segment smoothly recordedthecumulateddeformation. bendseastwardasitapproachestheTripleJunction. AlongtheNorthAnatolianFault,weareableto ItrupturednearBingo¨lduringaM 6.9earthquake reconstructasinglevolcanicedificefromtwooffset ¼ in1971(Arpat&S¸arogˇlu1972;Seymen&Aydın, structures (Fig. 6). The first structure, neatly cut EVOLUTIONOFTHENORTHANATOLIANFAULT 137 Fig.4. DeformationsplayingeastofKarliovaTripleJunctionformingthelargeVartohorsetail(seelocationinFig.2). MainVartoFaultatthefootoftheBingo¨lCalderaaccommodatesmainlyright-lateraldeformationwithathrusting componentatitseasternextremity.Secondaryright-lateralandnormaldeformationassociatedwithvolcanic domesoccurstosouth.Top:Spotimage.Bottom:Interpretationconfirmedbyfieldwork.Inset:beheaded drainagesystemalongtheMainVartofaultconfirmingright-lateralmotion. tothesouthbytheMainVartoFault,istheBingo¨l Both structures are composed of volcanic rocks half-calderaeastofKarliova.Thesecondstructure, having similar stratigraphic ages (Yılmaz et al. cuttothenorthbytheNorthAnatolianFault,isthe 1987; S¸arogˇlu & Yılmaz 1987, 1991). We can semi-circular Turna Mountain west of Karliova. restorethepositionoftheTurnaMountainopposite 138 A.HUBERT-FERRARIETAL. Fig.5. PhotosofthevolcanicdomesassociatedwiththeVartoFaultsystem(viewpointsinFig.4). totheBingo¨lhalf-calderabyaleft-lateraldisplace- variable amounts of aqueous high- and low- ment of 50km along the mean direction of the temperature alteration, especially of the ground- North Anatolian and Main Varto Fault systems mass. Geologically meaningful results have been (Fig. 6b). As a result a volcano with a nearly reported in spite of the alteration (e.g. Fleming conical morphology can be reconstructed. The etal.(1997)andreferencestherein).Inthepresent caldera palaeo-topographyalong the NorthAnato- work we will show that consistent results can be lianFaulthasbeenstronglymodifiedbystrike-slip obtainedfromwholerocksamplesbythedeconvo- faulting and related enhanced erosion. Secondary lutionoftheleastalteredAr-bearingphasesfromthe normal faulting affecting the Turna half-caldera alterationproductsusingtheCa–KandCl–Kratios (Fig.6c)hasalsoalteredtheinitialvolcanicstruc- derivedfromArisotopesystematic(seeVillaetal. ture. Despite the alterated original morphology, 2000).Tounraveltheeffectsofalteration,themost the reconstructed volcanic topography excludes reliable criterion is a low Cl–K ratio, as Cl is any significant relative long-term vertical move- observedtobecharacteristicallyhighinsecondary ment across the North Anatolian Fault. Indeed the minerals. Steps having a constant and low Cl/K topographicprofileinFigure5cacrosstheTurna/ signature(whichusuallycoincideswithaconstant Bingo¨l volcano shows a coherent triangular shape and low Ca–K ratio, typical of groundmass) are which centre location is nearly identical to the termed ‘isochemical’ and used to calculate a centre location of the Bingo¨l half caldera as weighted average age. In two cases, no constant definedbyitssummitalshape. chemicalratioswereobtained,butCl–Kratioscor- The age of the volcanism around the Karliova relatewithage,sothatweperformedaregressionto TripleJunctionisconstrainedby40Ar–39Ardating zerochlorine(seeFig.8). (Figs7,8&Tables1and2).40Ar–39Arageswere ThefactthatlavasformingtheTurnaMountains obtained on groundmass samples of lavas, with K andtheBingo¨lhalf-calderahavesimilarages(Figs7 concentrations ranging from 0.8% to 3.3%. As in & 8) but distinct from the surrounding volcanism practicallyallterrestrialbasalts,oursamplesshow supports the morphological restoration of the EVOLUTIONOFTHENORTHANATOLIANFAULT 139 Fig.6. Volcanoreconstructionbya50kmleft-lateraldisplacementalongNorthAnatolianandMainVartoFault systems(seelocationinFig.2).(a)PresentmorphologyofthejunctionoftheNorthandEastAnatolianFaultswith activefaultsinblackandvolcanism.Thicklines:mainfaults;thinlines:secondaryfaults;lineswithticks:normal motioncomponent.(b)Afterrestorationof50km,theTurnaandBingo¨lmountainsareputinfrontofeachother, reconstructingasinglevolcanicedifice.Volcanopalaeo-topographyisstronglymodifiedalongtheNorthAnatolianand MainVartoFaultsystems.OnitsSEflank,normalfaultingalsodeformsthetopography.ThesomitalshapeoftheBingo¨l half-calderahasanellipticalshapereflectingaslightelongationofthevolcanoinaNW–SEdirection.(c)Topographic profileacrosstherestoredvolcano.Thelocationofvolcanocenterextrapolatingupwardthevolcanoflanksisnearly identicaltotheonederivedfromthesomitalshapeoftheBingo¨lhalfcalderashowingthatlong-termupliftacrossthe NorthAnatolianFaultisnegligible. caldera. The Turna Ar–Ar age of 2.85+0.05Ma (Chataigner et al. 1998; Poidevin 1998; Bigazzi (sample Tu1 in Fig. 8c coherent with sample Tu2 et al. 1998). The Bingo¨l half-caldera lies to the in Figs 8c & d) precisely matches the ages of the NW on the 6.9 to 5.6Ma old volcanism of the Bingo¨l half-caldera (samples Bi1: 3.13+0.09 Arasvalley(Innocentietal.1982a)andtotheNE Ma, Bi2: minimum age 3.11+0.33Ma, Bi3: on the 8.3 to 6.0Ma old Erzurum volcanism 3.1+0.29Ma in Figs 8a & b); these ages are [8.3+0.1Ma to 6.0+0.3Ma (Innocenti et al. coincident with, and are more reliable than, the 1982a); 6.9+0.32 (Bigazzi et al. 1994); whole-rock K–Ar ages obtained by Pearce et al. 6.83+0.36 (Bigazzi et al. 1997); 8.4+0.2Ma (1990) (see Fig. 7). Both half calderas rest on top (Chataigneretal.1998)].Onthecontrarythevol- of older volcanic rocks (Figs 2 & 7). The Turna canism south of the Main Varto Fault is more volcanismliesonthe7.3to4.1MaoldSolhanfor- recent than the Bingo¨l half-caldera as attested by mation(seeFig.7,andsampleSo1inFig.8f).The fissure-fed lava flows and fault-related intrusions ageofthisformationisquitewellconstrainednear cross-cutting Bingo¨l related volcanic products the East Anatolian Fault because its volcanism (Buket & Go¨rmu¨s¸ 1986; Buket & Temel 1998). was an obsidian source during prehistoric time The latter is also supported by 40Ar–39Ar dating 140 A.HUBERT-FERRARIETAL. Fig.7. Detailmappingofvolcanismatthetriplejunctionwithlocationofvolcanicsamplesandages(seelocationin Fig.2,agespectrainFig.8,andgeochemicalcompositioninTable1).MappingoftheTurnaandBingo¨lvolcanismdone combiningfieldwork,Landsatimages,andreinterpretedpublishedgeologicalmaps(Altinli1961;Bingo¨letal.1989; Tarhan1993,1994;Buket&Temel1998;Herece&Akay2003).LocationsofsamplesofPearceetal.(1990),Buket& Temel(1998),Poitevin(1998)usedinFig.9areshown.SamplesfromBingo¨lMt.(Bi1:3.1+0.09Ma;Bi2:min.age 3.1Ma;Bi3:3.1+0.3Ma)andTurnaMt.(Tu1:2.88+0.06Ma;Tu2:2.323.9Ma)showsimilar40Ar–39Arages, whileSohlanvolcanismsouthofTurnaMt.(So1:5.39+0.12Ma)isolderandfissuralVartovolcanismisyounger (Va1andVa2sampledatthebaseofthedomesalongincisedrivervalleyhaveagesof2.6+0.12,2.2+0.23Ma respectively,whereasVa3andVa4sampledontheflankofthedomeshaveagesof0.46+0.24Maand0.73+0.4Ma respectively).Agesobtainedarecoherentwithotherpublished40Ar–39Ar,K–Ar,andfissiontrackages. (Fig.8)withsamplestakenatthebaseofandonthe volcanic domes are 0.46+0.24Ma and twomainvolcanicdomesrelatedtotheVartohorse- 0.73+0.39Ma old (Fig. 8g and h). Those ages tail(Fig.4).The40Ar–39Arages(Fig.8),although are coherent with ages of fissure volcanisms oflowerprecision,indicatesthatvolcanismsouthof further south along the Murat river across the the Bingo¨l half caldera started 2.2+0.23 to Mus¸ fold-and-thrust belt (Fig. 7; Bigazzi et al. 2.6+0.12Maago(Fig.8e)andthatthetwomain 1996,1998). EVOLUTIONOFTHENORTHANATOLIANFAULT 141 (a) (b) (AMgae) Bi1, isochemical age is 3.13 ±0.09 Ma Age Bi2,zeroCl minimum age is 3.11 ± 0.33 Bi2, minimum age is 3.11 ± 0.33 (Ma) 88 Bi3, isochemical age 3.1 ± 0.29 Ma 8 66 6 44 4 22 2 0 000 20 40 60 80 % 39 Ar100 0 0,0005 0,001 0,0015 Cl/K 0,002 (c) (d) Age (AMgae) TTuu21,, aislotecrhaetmionicsa bl augt ea g2e.8 i8n± t0h.e0 6r aMnage of 2.3-3.9 Ma (Ma) TTuu21,, 8 5 alteration trend 6 4 3 2 1 0 0 0.001 Cl/K 0.002 0 20 40 60 80 % 39 Ar100 (e) (f) Age Age (Ma) So1, isochemical age is 5.39±0.12 Ma (Ma) Va1, isochemical age is 2.60 ± 0.12 Ma 8 8 Va2, isochemical age is 2.22 ± 0.23 Ma 6 6 4 4 2 2 0 00 20 40 60 80 % 39 Ar 100 0 20 40 60 80 % 39 Ar 100 (g) (h) Age Age Va4,Zero-Caregression age is 0.46 ±0.24 (Ma) Va3,Cl/K-Zero-Caregression age is 0.46 ±0.24 (Ma) 8 Va4, isochemical age is 0.73 ±0.39 Ma 3 6 2 4 2 1 0 0 0 20 40 60 80 % 39 Ar 100 0 2 4 6 8 10 12 Ca/K 14 Fig.8. 40Ar–39Ardatingagespectraforlavasnearthetriplejunction(seesamplelocationsinFig.7anddatainTable 2).AnalyticalproceduresofthestepwizeheatingexactlyfollowedtheonesdetailedinVillaetal.(2000).(a)Age spectrumforsampleBi1,Bi2,Bi3;Bi1isochemicalageis3.13+0.09Ma(1sigmaerror)usingsteps5–7havingCl–K ratio,0.0046;Bi2zeroClminimumageis3.11+0.33Ma;forBi3,steps3and4,havingCl–Kratio,0.0052and Ca–Kratio,3,defineanisochemicalageof3.11+0.29Ma.(b)Three-isotopecorrelationplotforBi2;thezero-Cl minimumageis3.11+0.33Mausingaregressiononsteps1–5.(c)AgespectrumforsampleTU1andTU2;TU1 isochemicalageis2.88+0.06Mausingsteps4–7havingCl–Kratio,0.00015.(d)Three-isotopecorrelationplotfor TU1andTU2.Theusualcriteria(lowCl–KandCa–Kratios)producenosimplepatternforTU2.Steps3–6with relativelylowCl–Kratiohaveagesintherange2.3–3.9Ma.ComparisonwithlessalteredTU1,andwithothermore alteredsamplesoftheNorthAnatolianFaultsuite,suggeststhattwodistinctalterationepisodesarerecorded,both revealedbyhighCl–Kratios.Zero-Clextrapolationsofthetwotrendsarecompatiblewiththe2.85MaageofTU1.(e) AgespectrumforsamplesVa1andVa2.ForVa2,theCa–Kratiosarebimodallydistributedandrequiretwophases;the isochemicalage,calculatedontheK-richsteps1–4,is2.22+0.23Ma.ForVa1,theisochemicalageonsteps1–6, havingCl–Kratio,0.008,is2.60+ 0.12Ma.(f)AgespectrumforsampleSO1.Theisochemicalageis 5.39+0.12Maonsteps2–7.(g)AgespectrumforsamplesVa3andVa4.TheVa4isochemicalageis0.73+0.39Ma onsteps1–4.(h)Three-isotopecorrelationplotforsampleVa3.Thezero-Caregressionageis0.46+0.24Mausing steps2–5.BothVa3andVa4samplesrobustlydefineanage ,1MaforthelatestphaseofVartofissuralvolcanism southofBingo¨lhalf-caldera. FinallytheBingo¨l/Turnalavashaveanundistin- rocks form a well defined trend from basaltic guishablegeochemistryconsideringmajorortrace trachy-andesitetotherhyolitefield,andcanbecon- elements, quite distinctive from the surrounding sideredtobetransitionalbetweensub-alkalineand volcanism. In total alkali versus SiO diagram mildlyalkalineincharacter.Themorerecentdyke 2 (Fig. 9a & Table 1) the Bingo¨l/Turna volcanic volcanismjustsouthoftheBingo¨lHalfCalderais 142 A.HUBERT-FERRARIETAL. BinBugkoetl eMt Tte.m veol l(c19. 9:8) 140 Pearce et al. (1990) 10 Turna Mt. volc. : 120 Varto fissural volc. : NaO+KO) wt. %22 68 SPooBwsiCAsesoutlooeeaahlukauussvtettaattitthetn khhoon p e m effomet tttv feT hhe aTeoteetlaum.a l. EEr .c(b neAA1b.o l9 oFFM :(d,,9d1ty89y.)9:8) Ni ppm146800000 ( 4 east of EAF (Goynuk) 20 east of EAF(Karliova) Poitevin et al. (1998): east of EAF (Cavular- 0 2 Orta Duz) 0 50 100 150 200 250 300 350Cr ppm 40 50 60 70 80 SiO2 wt. % 2 200 %1,5 ppm150 wt. Rb O 2 1 100 Ti 0,5 50 0 0 40 50 60 70 80 SiO2 wt. % 0 100 200 300 400 500 600 Sr ppm 140 18 120 16 100 % m O wt. 2 14 Ni pp 6800 Al2 12 40 10 20 8 40 50 60 70 80 SiO2 wt. % 0 20 30 40 50 60 Y ppm 0,5 5 0,4 4 PO wt. %2300,,23 KO wt. %223 0,1 1 0 0 0 40 50 60 70 80 SiO2 wt. % 50 100 150 200 250Rb ppm 600 500 400 m pp300 Sr 200 100 0 0 20 40 60 80 Mg*100/(Mg+Fe) molar ratio Fig.9. Plotofsomemajor,minorandtraceelementsforsampleslocatedinFigure7.DatashowthattheBingo¨land Turnavolcanismsaresimilar,whereasthevolcanismssouthoftheBingo¨lhalf-calderaandalongtheEastAnatolian Faulthavedifferentcharacteristics.VolcanismsouthofthemetamorphicbodymappedinFigure7oneithersideofthe EastAnatolianFaultisidenticalconfirmingatotaloffsetof20 + 5kmontheEastAnatolianFaultandanactivation
Description: