ebook img

Locating positions of γ-ray--emitting regions in blazars PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Locating positions of γ-ray--emitting regions in blazars

Mon.Not.R.Astron.Soc.000,000–000 (0000) Printed17January2011 (MNLATEXstylefilev2.2) Locating positions of γ-ray–emitting regions in blazars H. T. Liu1,2⋆, J. M. Bai1,2⋆ and J. M. Wang3,4⋆ 1 1National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, 1 Kunming, Yunnan 650011, China 0 2Key Laboratory for the Structure and Evolution of CelestialObjects, Chinese Academy of Sciences, 2 Kunming, Yunnan 650011, China 3Key Laboratory for Particle Astrophysics, Institute of HighEnergy Physics, Chinese Academy of Sciences, n 19B Yuquan Road, Beijing 100049, China a J 4Theoretical Physics Centerfor Science Facilities, Chinese Academy of Sciences, Beijing 100049, China 4 1 Accepted .Received ] O C ABSTRACT Weproposeanewmethodtolocatetheγ-ray–emittingpositionsR fromthemeasured . γ h time lags τob of γ-ray emission relative to broad emission lines. The method is also p applicabletolowerfrequencies.Rγ dependsonparametersτob,RBLR,vd andθ,where - o RBLR is the size of broad-line region, vd is the travelling speed of disturbances down r the jet and θ is the viewing angle of the jet axis to the line of sight. As τob = 0, st τob < 0 or τob > 0, the broad lines zero-lag, lag or lead the γ-rays, respectively. It a is applied to 3C 273, in which the lines and the radio emission have enough data, [ but the γ-rays have not. We find τob < 0 and τob > 0 for the 5, 8, 15, 22 and 37 GHz emission relative to the broad lines Hα, Hβ and Hγ. The lag may be positive or 1 v negative, however current data do not allow to discriminate between the two cases. 4 The measured lags are on the order of years. For a given line, τob generally decreases 2 as radio frequency increases. This trend most likely results from the radiative cooling 8 ofrelativisticelectrons.Thenegativelagshaveanaverageofτob =−2.86yearsforthe 2 37 GHz emission, which represents that the lines lag the radio emission. The positive 1. lags have τob = 3.20 years, which represents that the lines lead the radio emission. 0 We obtainthe radio emitting positions Rradio =0.40–2.62pc and Rradio =9.43–62.31 1 pc forthe negative andpositive lags,respectively.Fromthe constraintofRγ .Rradio 1 (e.g. Dermer & Schlickeiser 1994; Jorstad et al. 2001), we have R . 0.40–2.62 pc γ : for the negative lags. For the positive lags, 4.67–30.81 < R . 9.43–62.31 pc. These v γ estimatedR are consistentwith those of otherresearches.These agreementsconfirm i γ X the reliability of the method andassumptions. The method may be also applicable to r BL Lacertae objects, in which broad lines were detected. a Key words: γ-rays:theory–galaxies:active–galaxies:jets–quasars:emissionlines – quasars: individual: 3C 273. 1 INTRODUCTION The first component is from the synchrotron process, and the second one, generally peaking at the γ-ray regime, is Theγ-raysofblazarsaregenerally believedtobegenerated generated by the IC emission of the same electron pop- byinverseCompton(IC)emissionfromarelativisticjetori- ulation responsible for the synchrotron emission (see e.g. entedatasmallangletothelineofsight(Blandford & Rees Ghisellini et al. 1998; B¨ottcher 1999). However, the posi- 1978). Two of the most accepted scenarios for broad-band tionsofγ-ray–emittingregionsarestillanopenandcontro- emission from radio to γ-rays are the synchrotron self- versial issue in the researches on blazars. It was suggested Compton (SSC) and external Compton (EC) models (see that γ-rays are produced within broad-line region (BLR) e.g. Ghisellini et al. 1998). The broad-band spectral en- andthattheγ-ray–emittingpositionsR rangeroughlybe- ergy distributions (SEDs) of blazars consist of two broad γ tween 0.03 and 0.3 parsec (pc) (Ghisellini & Madau 1996). bumps (see e.g. Fossati et al. 1998; Ghisellini et al. 1998). Blandford & Levinson(1995)alsosuggestedasub-pcγ-ray– emitting region. It was argued that the radiative plasma in relativistic jets of powerful blazars are inside the BLR ⋆ E-mail: [email protected]; [email protected]; (Georganopoulos, Kirk & Mastichiadis 2001). On the con- [email protected] 2 H. T. Liu, J. M. Bai and J. M. Wang trary, it was also argued that the γ-ray–emitting regions jets of AGNs and microquasars (e.g. Marscher et al. 2002; are outside the BLR (Lindfors, Valtaoja & Tu¨rler 2005; Chaterjee et al. 2009; Arshakian et al. 2010). The events Sokolov & Marscher2005).Internalabsorptionfor10GeV– in the central engine, where the X-rays are produced, will 1 TeV γ-rays were used to constrain R (Liu & Bai 2006; have a direct effect on the events in the radio jets (e.g. γ Liu, Bai & Ma2008;Bai, Liu & Ma2009).Variabilityofthe Marscher et al. 2002; Chaterjee et al. 2009). The disc-jet highenergyfluxindicatesthattheγ-ray–emittingpositions connectionwassuggestedbycorrelationsofemissionlinelu- cannot be too distant from the central supermassive black minosityandradiopowerofjetsforvarioussamplesofAGNs hole (Ghisellini & Madau 1996; Ghisellini & Tavecchio (Rawlings & Saunders 1991; Falcke, Malkan & Biermann 2009),whilethephoton-photonabsorption implies that the 1995; Celotti, Padovani & Ghisellini 1997; Serjeant et al. emittingpositionscannotbetooclosetotheblackholeand 1998; Cao & Jiang 1999, 2001; Wang & Ho 2003; its accretion disc (Ghisellini & Madau 1996; Wang 2000; Gu, Cao & Jiang 2009). The relativistic jets can be Liu & Bai 2006; Liu, Bai & Ma 2008; Sitarek & Bednarek ejected from inner accretion disc in the vicinity of the cen- 2008; Bai, Liu & Ma 2009; Ghisellini & Tavecchio 2009; tral black hole (see e.g. Penrose 1969; Blandford & Znajek Tavecchio & Mazin 2009). Bracketed by thetwolimits, one 1977; Blandford & Payne 1982; Meier, Koide & Uchida obtains a few hundreds of Schwarzschild radii as the pre- 2001). The close connection between accretion disc and ferred jet location where most of the dissipation occurs jets indicates that the central disturbances are likely trans- (Ghisellini & Tavecchio 2009). Jorstad et al. (2001) estab- porteddownthejets.Forexample,thecentraldisturbances lished a connection between ejections of superluminal ra- that drive variations of the central ionizing continuum dio knots and γ-ray outbursts observed by EGRET. They may be transported with the outward Alfv´en waves (see concluded that the radio and γ-ray events are originating e.g. Meier, Koide & Uchida 2001; Koide et al. 2002). By from the same region of a relativistic jet. Wagner (2008) magnetohydrodynamic mechanisms (Kudoh & Shibata found that the blazar γ-ray emission might depend on the 1999), the transported disturbances may be converted into mass of the central black hole and that very high energy thelocal energies of plasma far from thecentralblack hole. (VHE) γ-ray–emitting active galactic nuclei (AGNs) have Thusthedisturbancesinthecentralenginewould influence the black hole masses larger than 108 solar masses. Bloom the γ-rays emitted by the relativistic jet aligned with the (2008)confirmedtheradioandγ-raycorrelationofEGRET line of sight. At the same time, these disturbances can lead blazars.Thompson(2008)reportedthatacentralfeatureof to the variations of the central ionizing continuum that the EGRET results is the high degree of variability seen in drives broad emission lines from BLR. Hence, the broad many γ-ray sources, indicative of the powerful central en- lines from the BLR and the γ-rays from the relativistic jet gines at work in objects visible to γ-ray telescopes. may be both coupled to the disturbances in the central The operation of Fermi Gamma Ray Space Telescope engine. (Fermi)–Large Area Telescope (LAT) (see e.g. Abdoet al. Based on the photoionization assumption and the 2009,2010a)presentsanexceptionalopportunityforunder- time lags between broad lines and continuum, rever- standingthecentralenginesoperating inblazars. TheFirst beration mapping observations are able to determine LAT AGN Catalog includes 709 AGNs, comprising 300 BL the sizes of the BLRs for type 1 AGNs (see e.g. Lacertaeobjects(BLLacs),296flatspectrumradioquasars Kaspi & Netzer 1999; Wandel, Peterson & Malkan 1999; (FSRQs),41AGNsofothertypesand72AGNsofunknown Kaspi et al. 2000, 2005, 2007; Peterson et al. 2000, 2004, types (Abdoet al. 2010a). The distribution of γ-ray pho- 2005; Vestergaard & Peterson 2006). According to the re- tonspectralindexisfoundtocorrelatestronglywithblazar verberationmappingmodel(e.g.Blandford & McKee1982), subclass (Abdoet al. 2010a,c). Abdoet al. (2010b) found the variations of broad lines can reflect the disturbances in for Fermi blazars that variation amplitudes are larger for thecentralenginesofblazars,eventhoughthebeamedemis- FSRQsandlow/intermediatesynchrotronfrequencypeaked sionfromtherelativisticjetstronglyaffectstherealionizing BLLacs.Ghisellini, Tavecchio & Ghirlanda(2009)obtained continuum from accretion disc so that no appropriate con- a few hundreds of Schwarzschild radii as the preferred jet tinuum could be used as the reference to estimate the time dissipation region. Ghisellini et al. (2010) found for bright lags relative to the broad lines. If the broad lines from the Fermi blazars that the jet dissipation region is within the BLRandtheγ-raysfromtherelativisticjetarebothcoupled BLRforFSRQs.Kovalev et al.(2009)identifiedthepc-scale to the disturbances in the central engine, the disturbances radio core as a likely location for both the γ-ray and radio should similarly influenceboth variations of the γ-rays and flares. Sikora et al. (2009) suggested that the blazar emis- thebroad lines. Thusthereshould becorrelations and time sion zone is located at pc-scale distances from the nucleus, lags between the broad lines and the γ-rays. The time lags andtheyalsoproposedthatthepc-scaleblazaractivitycan shouldberelated toRγ.Inthepaper,weattempttolocate be occasionally accompanied by dissipative events taking Rγ from thetimelagsbetweenbothvariationsofthebroad place at sub-pcdistances. Ghisellini, Maraschi & Tavecchio lines from theBLR and theγ-raysfrom therelativistic jet. (2009) argued that the bulk of the most luminous blazars already detectedbyFermi shouldbecharacterized bylarge black hole masses, around 109 solar masses. Kovalev et al. 2 METHOD (2009) found for Fermi blazars that the γ-ray photon flux correlates with the compact radio density flux. The broad lines from the BLR and the γ-rays from the Disturbances in the central engine are likely trans- relativistic jet may be both coupled to the disturbances ported down the relativistic jets. This was supported by in the central engine. Thus the disturbances could sim- observations that dips in the X-ray emission are followed ilarly influence both variations of the broad lines and by ejections of bright superluminal knots in the radio the γ-rays emitted by the jet aligned with the line of Locating positions of γ-ray–emitting regions 3 sight. The outbursts seen in light curves are physically thetimelagofthelinesrelativetotheγ-rays(seeFig.1a).In linked to the ejections of superluminal radio knots (e.g. thiscase(hereafterCaseB),wehaveR +R R c/v = γ BLR γ d − Tu¨rler, Courvoisier & Paltani 2000).Theeventsin thecen- cτ /(1+z),and then ob tral engine will have a direct effect on the events in the R cτob radio jets (e.g. Marscher et al. 2002; Chaterjee et al. 2009). R = BLR− 1+z , (2) Thus it is likely that the γ-ray outbursts are caused by the γ c 1 vd − disturbances from the central engine, but not the local dis- where z is the redshift of source, τ > 0 and τ is the turbancesproduced in thejets. Hence,there should becor- ob ob observed time lag of the broad lines relative to theγ-rays. relations between the γ-ray outbursts and the variations of Outside segment AG, the γ-rays will lag the lines. As broadlines.Itispossiblethattherearetimelagsinthecor- the disturbances reach point H, where the γ-rays are pro- relations and the time lags are related to the positions R . γ duced, i.e. R = AH, the line photons reach point L. The ThusR couldbelocatedbythetimelagsbetweentheγ-ray γ γ lighttravellingtimeeffectsfortheγ-rayphotonsfrompoint outburstsandthevariationsofbroadlines.Inthefuture,the J toL,i.e.from pointH toM,resultinthetimelagofthe quasi-simultaneous observations of γ-rays with Fermi/LAT γ-rays relative to the lines (see Fig. 1a). In this case (here- andbroadlineswithopticaltelescopesontheorderofyears afterCaseC),wehaveR c/v =R +R +cτ /(1+z), may be employed to test this expectation. The method of γ d γ BLR ob and then locating R is also applicable to infrared, optical and radio γ emission. R = RBLR+ c1τ+ozb, (3) First,itisassumedthatthedisturbancesinthecentral γ c 1 vd − engine are transported outward by some process, and the disturbancescouldsimilarlyinfluencebothvariationsofthe whereτob >0andτob istheobservedtimelagoftheγ-rays broadlinesfrom theBLRandtheγ-raysfromtherelativis- relative to the broad lines. Equations (1), (2) and (3) can tic jet aligned with the line of sight. Second, we assume a beunified into simplegeometry(seeFig.1a)thatissimilartotheschemes R + cτob in the classical reverberation mapping of the broad lines Rγ = BLcR 11+z , (4) (see e.g. Kaspi & Netzer 1999; Wandel,Peterson & Malkan vd − 1999; Kaspi et al. 2000, 2005, 2007; Peterson et al. 2000, whereτ is theobserved timelags of theγ-raysrelative to ob 2004, 2005; Vestergaard & Peterson 2006). The differences the broad lines and is zero, negative or positive. As τ = ob between this method and the classical mapping are as fol- 0 (Case A), equation (4) becomes equation (1). As τ < ob lows.Intheclassical mapping,apartofionizingcontinuum 0 (Case B), equation (4) becomes equation (2). As τ > ob drives the broad lines from the BLR, and another directly 0 (Case C), equation (4) becomes equation (3). Once τ , ob reaches observers. Thus the broad lines lag the continuum R andv areknown,R canbeobtainedfromequations BLR d γ due to light travelling time effects, and the time lag corre- (1)–(4). spondstothesizeoftheBLR.Inthemethodproposedhere, Thecalculationsaboveareundertheconditionofθ=0, the ionizing photon signals directly detected by telescopes whereθistheanglebetweenthejetaxisandthelineofsight. in the classical mapping are replaced with the transporting In fact, the approaching relativistic jets of blazars are ori- disturbancesfrom thecentralenginedown thejet and then entedatasmallangletothelineofsight(Blandford & Rees withthejetemissionsignalsatRγ.Thusthemethodwould 1978).Thusθ=0.Consideringtheactualinclinationofthe be valid even if the BLR has a complex configuration, such jetaxiswithre6specttothelineofsight(seeFig. 1b),were- as a spherical shell. For simplicity for graphic illustration, deducetheexpression ofCase C. Asthedisturbancesreach we choose the BLR to be a ring (see Fig. 1a). The trans- point H, where the γ-rays are produced, the line photons porting speed of disturbances down the jet cannot exceed reachpointL.Thelighttravellingtimeeffectsfortheγ-ray thespeed of light. photonsfrompointO toL,i.e.frompointH toS,resultin Because Rγ is unknown, the γ-rays may lag, lead or thetimelagoftheγ-raysrelativetothelines(seeFig.1b).In zero-lag the broad lines. First, we try to find the position thiscase,wehaveR c/v =R +R cosθ+cτ /(1+z), γ d BLR γ ob wheretheγ-raysareproducedandzero-lagthebroadlines. and then As the disturbances reach point G (see Fig. 1a), where the R + cτob γph-roatyosnasrterapvreoldfruocmedp,oi.ien.tRAγt=oBAGan,dththeeiolinniezipnhgoctoonntsitnruauvmel Rγ = BcLR cos1+θz . (5) vd − frompointBtoI intimeintervalR /v .Inthecaseofzero- γ d Itisobviousthatequation(5)containsCasesA,BandC.As lag (hereafter Case A), we have (R +R )/c = R /v , BLR γ γ d θ=0,equation(5)becomesequation(4).Theobservedline and then photonsarefromtheBLRofring,andthentheobservedlag R =R vd , (1) isan ensembleaverage overall pointsof thering.Forpoint γ BLRc−vd T,wehaveRγc/vd =RBLR+TW+Rγcosθ+cτob/(1+z) and TW =R sinαsinθ (see Fig. 1b), and then wherev isthetravellingspeedofdisturbancesdownthejet BLR d and c is the speed of light. For Case A,Rγ >RBLR. R = RBLR(1+sinαsinθ)+ c1τ+ozb, (6) WithinsegmentAG,thelineswilllagtheγ-rays.Asthe γ c cosθ disturbancesreach pointF,wheretheγ-raysare produced, vd − i.e. R = AF, the ionizing continuum photons reach point where α is the angle between AB and AT and varies from γ E. The light travelling time effects for theionizing photons 0 to 2π. For a given source, i.e. given R , R , v , θ and γ BLR d frompointEtoBandthelinephotonsfromBtoKresultin z,τ varieswith α,i.e. τ =τ (α).Calculating ensemble ob ob ob 4 H. T. Liu, J. M. Bai and J. M. Wang (cid:1)(cid:2)(cid:3) (cid:2) (cid:5) (cid:12) (cid:9) (cid:7) (cid:3) The blue-bump of 3C 273 is thermal continuum emission fromtheinneraccretiondisc(Shields1978).FeKαlinesob- (cid:11) served in 3C 273 were shown to be from an accretion disc around a supermassive black hole (Yaqoob & Serlemitsos (cid:4) 2000; Torres et al. 2003). If the assumptions in the method (cid:12)(cid:13)(cid:4) arecorrect,itisexpectedfor3C273thatthereshouldexist (cid:10) (cid:8) (cid:4) (cid:12)(cid:1)(cid:13)(cid:4) (cid:1) (cid:6) (cid:13) time lags between the broad lines from the BLR and the (cid:14)(cid:5)(cid:7)(cid:11)(cid:2)(cid:15)(cid:16)(cid:17) γ-raysfrom the relativistic jet. (cid:4)(cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:1)(cid:2)(cid:5)(cid:6) (cid:4)(cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:1)(cid:2)(cid:12)(cid:13) (cid:4)(cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:1)(cid:2)(cid:9)(cid:10) (cid:4)(cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:1)(cid:2)(cid:7)(cid:8) 3.1 Data of 3C 273 (cid:4)(cid:5)(cid:6)(cid:7)(cid:2)(cid:8)(cid:9)(cid:10)(cid:5)(cid:11)(cid:1)(cid:2)(cid:3)(cid:4) (cid:1) (cid:1) (cid:1) This paper makes use of the 3C 273 database hosted by the ISDC (Tu¨rler et al. 1999). This database is one of the most complete multi-wavelength databases currently avail- (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:2)(cid:9)(cid:9)(cid:11)(cid:5)(cid:10) (cid:9)(cid:10)(cid:9)(cid:15)(cid:9)(cid:9)(cid:4)(cid:9)(cid:3)(cid:16)(cid:17)q(cid:9)qqq (cid:12)(cid:13)(cid:14) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:2)(cid:9)(cid:9)(cid:11)(cid:12)(cid:4) (cid:11)(cid:5)(cid:9)(cid:15)(cid:9)(cid:11)(cid:12)(cid:9)(cid:3)(cid:16)(cid:17)q(cid:9)qqq able for one AGN. For 3C 273, the γ-ray light curves are (cid:10)(cid:11)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:2)(cid:9)(cid:4)(cid:10)(cid:5)(cid:12) (cid:9)(cid:4)(cid:9)(cid:15)(cid:9)(cid:11)(cid:12) very sparsely sampled and/or the error bars of γ-ray fluxes (cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:2)(cid:9)(cid:4)(cid:5)(cid:6)(cid:7) (cid:9)(cid:10)(cid:9)(cid:15)(cid:9)(cid:11)(cid:5) are also very large. Of course with Fermi taking data since (cid:10)(cid:11)(cid:1) June 2008 this is no longer the case (see e.g. Abdoet al. (cid:9) (cid:4) (cid:18)(cid:2)(cid:4)(cid:9)(cid:5)(cid:19)(cid:20)(cid:17) (cid:3) qqqq 2010b). However, the sampling over the dates of interest, (cid:7) and, in general over the timescales of interest is still sparse a aaa (cid:10) (seethelinelight curvesinthefollowing paragraphs).Thus it should be unreliable to employ the γ-ray light curves (cid:2) (cid:8) (cid:1) (cid:12) to estimate the time lags. Hence for these blazars lacking qqqq adequate γ-ray light curves, the synchrotron emission, es- (cid:11) (cid:6) pecially the radio emission, could be used to derive the (cid:5) timelags relative tothebroad lines. Thesynchrotron flares from the relativistic jet dominate energy output from ra- Figure 1. Sketch of the geometry assumed, and it is similar to dio to millimeter and extend up to the infrared–optical that used in the reverberation mapping method of broad emis- regimes (Robson et al. 1993; Tu¨rler, Courvoisier & Paltani sion lines. RBLR is the size of BLR. (a) the angle between the 2000; Soldi et al. 2008). Radio light curves are better than line of sight and the jet axis θ = 0. (b) θ 6= 0. The jet axis is perpendicular to the plane of BLR. (b) the planes ABU and millimeter ones in the samplings and the features of syn- HNOP are perpendicular to the line of sight. ∵ TV ⊥ AV, ∴ chrotron flares. Gamma-ray detections correspond to rising TV = ATsinα = RBLRsinα. ∵ TW k BL, ∴ TW ⊥ WV and radio fluxes (e.g. Ulrich, Maraschi & Urry 1997). Thus the TW ⊥ AV. TW ⊥ AV and TV ⊥ AV give WV ⊥ AV. ∵ radio light curves are adopted to be analyzed. Though the TV ⊥ AV and WV ⊥ AV, ∴ ∠TVW = θ. ∵ ∠TVW = θ and synchrotronflaresextenduptotheinfrared–opticalregimes, ∠TWV =π/2,∴TW =TV sinθ=RBLRsinαsinθ. the flares are sparse (denoted by red color in the 3C 273 database).Intheintervalsamongtheseflares,theinfrared– opticallightcurvesmaybecontaminatedbyotheremission average over α in equation (6), we have components.Thusitisexpectedthatthereshouldbenosig- R + chτobi nificant features in the cross correlation functions between Rγ = BcLR cos1+θz , (7) the broad lines and the light curves. Considering that the vd − synchrotronemissionpeaksaroundtheinfraredbandfor3C where τ is the ensemble average of τ (α) and is the 273(seee.g.Ghisellini et al.1998),theinfraredlightcurves ob ob h i measured time lag between the γ-ray and line light curves are also adopted to be analyzed and to test the expecta- (and 1+sinαsinθ = 2π(1+sinαsinθ)dα/2π =1). It is tionabove.Inthelightcurvesadoptedhere,onlygooddata h i R0 obvious that equation (7) contains Cases A, B and C. As (Flag>=0) are adopted. θ = 0, equation (7) becomes equation (4). In the following Light curvesof 5, 8, 15, 22 and 37 GHz aretaken from sections, we will calculate R based on equation (7). the3C273database,fortheselightcurveshaveenoughdata γ (Tu¨rler et al. 1999). These radio light curves are presented in Fig. 2. There are four distinct outbursts in each radio light curve after 1980 (see Fig. 2). The data of 22 and 3 APPLICATION TO 3C 273 ∼ 37 GHzare adoptedfrom 1980, for observations are very ∼ 3C 273 was first identified as aquasar at redshift z=0.158 sharply sampled before 1980 (see Fig. 2). From 1973 to ∼ bySchmidt(1963).ItisoneofthebeststudiedAGNsinall 1978, there is a gap of 5 years without observations of 5 bands(see e.g. Lichti et al. 1995; von Montigny et al. 1997; GHz. Considering the four distinct outbursts in each radio Tu¨rler et al. 1999; Soldi et al. 2008). The database site1 of light curve, the data from 1980 are adopted for the light ∼ 3C 273 provides a series of about 70 light curves as well as curveof5GHz.Also,thedatafrom 1980areadoptedfor ∼ some spectra. The jet of 3C 273 is one-sided, with no signs the light curves of 8 and 15 GHz. The sampling rates of 5, of emission from the counterjet side (Unwin et al. 1985). 8, 15, 22 and 37 GHz are 29, 40, 40, 44 and 46 times per yearfor theadopted data, respectively. Light curves of broad lines Hα, Hβ and Hγ are taken 1 http://isdc.unige.ch/3c273/ fromKaspi et al.(2000),andallthedatainthelightcurves Locating positions of γ-ray–emitting regions 5 (cid:18) (cid:18) (cid:4)(cid:6) (cid:4)(cid:4) (cid:13) (cid:4)(cid:6) (cid:13) (cid:12) (cid:9)(cid:4) (cid:4)(cid:15)(cid:16)(cid:17) (cid:14) (cid:12) (cid:9)(cid:4) (cid:5)(cid:15)(cid:16)(cid:17) (cid:14) (cid:22) (cid:9)(cid:6) (cid:11) (cid:9)(cid:6) (cid:11) (cid:21) (cid:18)(cid:8)(cid:4) (cid:18) (cid:19)(cid:20) (cid:8)(cid:4) (cid:8)(cid:6) (cid:7)(cid:4) (cid:8)(cid:6) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6)(cid:18) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6)(cid:18) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:3)(cid:6) (cid:3)(cid:6) (cid:4)(cid:10)(cid:6)(cid:6) (cid:1)(cid:4)(cid:15)(cid:16)(cid:17) (cid:14) (cid:13) (cid:12) (cid:4)(cid:10)(cid:6)(cid:6) (cid:7)(cid:7)(cid:15)(cid:16)(cid:17) (cid:14) (cid:13) (cid:12) (cid:19)(cid:20)(cid:21)(cid:22) (cid:8)(cid:9)(cid:6)(cid:6) (cid:11) (cid:18)(cid:8)(cid:9)(cid:6)(cid:6) (cid:11) (cid:18) (cid:7)(cid:6) (cid:7)(cid:6) (cid:1)(cid:6) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:18) (cid:18) (cid:3)(cid:6) (cid:3)(cid:6)(cid:6) (cid:4)(cid:10)(cid:6)(cid:6) (cid:8)(cid:3)(cid:15)(cid:16)(cid:17) (cid:14) (cid:13)(cid:18) (cid:12) (cid:10)(cid:4)(cid:6) (cid:16)a (cid:10)(cid:6)(cid:6) (cid:22) (cid:9)(cid:6) (cid:21) (cid:8)(cid:6) (cid:11) (cid:18)(cid:4)(cid:4)(cid:6) (cid:18) (cid:19)(cid:20) (cid:7)(cid:6) (cid:4)(cid:6)(cid:6) (cid:1)(cid:6) (cid:9)(cid:4)(cid:6) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:18) (cid:18) (cid:7)(cid:6)(cid:6) (cid:2)(cid:6) (cid:5)(cid:4) (cid:1)(cid:1)(cid:5)(cid:2)(cid:6)(cid:6) (cid:16)b (cid:3)(cid:5)(cid:4)(cid:6) (cid:16)g (cid:3)(cid:6) (cid:22)(cid:1)(cid:3)(cid:6) (cid:10)(cid:4) (cid:19)(cid:20)(cid:21)(cid:1)(cid:1)(cid:4)(cid:10)(cid:6)(cid:6) (cid:18)(cid:4)(cid:4)(cid:10)(cid:6)(cid:4)(cid:6) (cid:18) (cid:1)(cid:9)(cid:6) (cid:9)(cid:4) (cid:9)(cid:6) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:7)(cid:6)(cid:6)(cid:6) (cid:7)(cid:6)(cid:6)(cid:4) (cid:11)(cid:23)(cid:24)(cid:25)(cid:18)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30) (cid:11)(cid:23)(cid:24)(cid:25)(cid:18)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30) Figure 2. Light curves of the radio emission and the Balmer lines. The y-axis is in units of Jy. For lines, the y-axis is in units of 10−14 ergcm−2 s−1.A,B,CandDdenotethefourdistinctoutburstsafter∼1980. are adopted to calculate the time lags relative to the ra- DCF,thereisanothermethodofestimatingtheCCFinthe dio emission. The sampling rates of the lines are around 5 caseofnonuniformlysampledlightcurves,thez-transformed times per year. The line light curves are also presented in discrete correlation function (ZDCF; Alexander 1997). The Fig. 2, wherein all the light curves show the same time in- ZDCF is a binning type of method as an improvement of terval.It can beseen in Fig. 2that thelinelight curvesare the DCF technique, but it has a notable feature in that sharply sampled relative to the radio light curves adopted. the data are binned by equal population rather than equal Especially, there is only one data point in each of several bin width as in the DCF. It has been shown in practice valley-bottomsintheHαandHβlightcurves,andthetrend thattheZDCFismorerobustthantheICCFandtheDCF of variations can be changed if the points in these valley- whenappliedtosparselyandunequallysampledlightcurves bottomsareexcludedfromtheHαandHβ lightcurves(see (see e.g. Edelson et al. 1996; Giveon et al. 1999; Roy et al. Fig. 2).Thesharp samplings will affect thechoiceof analy- 2000). Liu et al. (2008) analyzed the ZDCFs between un- sismethodforthecrosscorrelation betweenthebroad lines equally sampled light curves of AGNs, and they obtained and the radio emission. The infrared light curves of J, H, inter-band time lags. In practice, the ZDCF is applicable K and L bandsarealso adopted from the3C 273 database. and reliable to analyze the unequally sampled light curves. The data before 1998 are adopted for the J, H and L light Thus the ZDCF will be calculated in the paper because of curves. The data before 2000 are adopted for the K light thesharp samplings of theBalmer lines. curve. In general, it seems to be true that the time lag is better characterized by the centroid τ of the DCF and cent the ICCF than by the peak value τ , namely, the time 3.2 Analysis of time lags peak lagwherethelinearcorrelation coefficienthasitsmaximum Cross-correlation function (CCF) analysis is a standard valuer (see e.g. Peterson et al. 2004,2005).In both the max technique in time series analysis for finding time lags be- DCF and the ICCF, τ is much less stable than τ , peak cent tween light curves at different wavelengths, and the defi- but τ is much less stable in the DCF than in the ICCF peak nition of the CCF assumes that the light curves are uni- (Peterson et al. 2005). Thus we prefer the time lag to be formlysampled.However,inmostcasesthesamplingisnot characterized by the centroid τ of the ZDCF. The cen- cent uniform.Theinterpolatedcrosscorrelationfunction(ICCF) troidtimelagτ iscomputedusingallthepointswithcor- cent method of Gaskell & Peterson (1987) uses a linear interpo- relation coefficients r >0.8r in the ZDCF bumps closer max lation scheme to determine the missing data in the light tothezero-lag (see Fig. 3). Thecalculated ZDCFsbetween curves.Ontheotherhand,thediscretecorrelation function the radio and broad-line light curves are presented in Fig. (DCF;Edelson & Krolik1988)canutilizeabinningscheme 3.The horizontal and verticalerror bars in Fig. 3represent toapproximatethemissingdata.ApartfromtheICCFand the68.3% confidenceintervalsinthetimelagsandtherele- 6 H. T. Liu, J. M. Bai and J. M. Wang Table 1. Time lags between emission lines and radio emission. The sign of thetimelagisdefinedasτcent=tradio−tline.Timelagsareinunitsofyrs. Lines 5GHz 8GHz 15GHz 22GHz 37GHz Hα −1.23+0.02 −1.99+0.06 −2.77+0.02 −3.14+0.02 −3.30+0.02 −0.07 −0.01 −0.08 −0.09 −0.08 Hβ −0.19+0.03 −1.06+0.08 −2.40+0.02 −2.27+0.03 −3.27+0.02 −0.09 −0.02 −0.07 −0.09 −0.08 Hγ −0.35+0.03 −1.13+0.07 −1.57+0.02 −1.82+0.02 −2.01+0.02 −0.09 −0.01 −0.07 −0.08 −0.07 Hα 4.72+0.08 4.20+0.06 3.43+0.08 3.21+0.07 3.06+0.08 −0.02 −0.02 −0.02 −0.02 −0.03 Hβ 4.31+0.07 4.13+0.07 3.72+0.07 3.45+0.07 3.26+0.09 −0.02 −0.01 −0.02 −0.02 −0.03 Hγ 6.19+0.10 4.13+0.06 3.73+0.07 3.78+0.08 3.29+0.08 −0.04 −0.01 −0.02 −0.03 −0.03 vantcorrelationcoefficients,respectively.TheZDCFbumps Semenov,Dyadechin & Punsly 2004). In most cases, the closer to the zero-lag have a good profile in Fig. 3. The bulk velocity of jet v is close to the escape speed j measured time lags are listed in Table 1. Thecentroid τ (Kudohet al. 1998). The escape speed is around 0.9c cent is calculated by τ = τ(i)r(i)/ r(i), where τ(i) and near the ergosphere of the rapidly spinning black hole cent P P r(i) are the values of i-th data pair with r > 0.8r . The (Meier, Koide& Uchida 2001). Most supermassive black max errors of τ are calculated by ∆τ± = [∆τ±(i)r(i)+ holes are spinning rapidly (Elvis, Risaliti & Zamorani τ(i)∆r±(i)c]ent r(i) τ(i)r(i) ∆cren±t(i){/P[ r(i)]2,where 2002). Thus v 0.9c. If the disturbances in the cental en- j ∆τ±(i) andP∆r±(i−) aPre the relePvant error}s oPf τ(i) and r(i), ginearetranspo∼rtedwiththejetitself,v =v 0.9c.Thus d j ∼ respectively. we would haveR 9R from equation (1). γ BLR ∼ Our results show two possibilities that the broad-line For 3C 273, the jet has v =0.95c and cosθ = 0.95 on j variations lag or lead the radio ones (see Fig. 3). The mea- 100 pc scales (Davis, Unwin,Muxlow 1991). The pc-scale suredtimelagsareontheorderofyears(seeTable1).Fora jet was constrained to have θ < 15◦ and the bulk Lorentz givenline,therelevanttimelagsgenerallydecreaseasradio factor Γ > 10 (Unwin et al. 1985). The actual value of θ frequency increases from 5 to 37 GHz (see Table 1). The cannot be too small, unlike better aligned blazars, because calculatedZDCFsbetweentheinfraredandHαlightcurves it has a strong big blue bump (Shields 1978; Courvoisier are presented in Fig. 4 for illustration. For the ZDCFs in 1998). Thus it is likely that θ be larger than 10◦. The ratio Fig. 4, there are no significant common features closer to of the jet to counterjet flux is R = [(1+v cosθ/c)/(1 j − thezero-lag. Also, thereare nosignificant common features v cosθ/c)]3+α for discretemovingblobs (Lind & Blandford j closertothezero-lagfortheZDCFsoftheHβ andHγ lines 1985).R>104 wasobservedfor3C273andv canbeupto j relative to the infrared emission. On the contrary, the ZD- 0.995c (see e.g. Georganopoulos et al. 2006). The observed CFs in Fig. 3 have significant common features closer to spectralindexα=0.8(Unwin et al.1985).Itisobviousthat the zero-lag. The absence of significant features tests the θ.21◦ and0.9c6v 60.995careallowedbyR>104.The j expectation in subsection 3.1. This test indicates that the disturbances are transported from the central engine down infraredsynchrotronemissiondoesnotdominatetheenergy the jet, and then it is possible that v = v = 0.9–0.995c d j outputintheintervalsbetweenthesynchrotronflaresinthe and θ = 12◦–21◦. For a given line, the relevant time lags infrared–opticalbands.Thelagτob isthelagτcent measured generally decreaseasradiofrequencyincreases from 5to37 here. Hereafter, τcent is equivalent to τob and τob . GHz(seeTable1).Weadopt themeasured timelags of the h i linesrelativetothe37GHzemission.Thenegativelagshave an average of τ− = 2.86 years. The positive lags have an 3.3 Calculations average of τ+ o=b 3.2−0 years. There is no zero-lag. In the ob For 3C 273, Kaspi et al. (2000) determined the Hα, Hβ following calculations, vd =0.9–0.995c and θ=12◦–21◦ are and Hγ lags τ relative to the optical continuum, and adopted, and these values estimated from τob are denoted Paltani & Tu¨rler (2005) determined their lags relative to byRradio. tthameiUnVatecdonbtyinnuounm-t.hTerhmeaolpetmicaislsicoonn,tipnoususimblyisrsetlraotnedglytoctohne- 0.995Fcr,omθ =τ−ob12=◦–2−12◦.8a6ndyeeaqrus,atRioBnLR(7=), w2.e70calyn,ovbdta=in0t.9h–e relativisticjet,andthereforeitappearsunsuitableforstudy- radioemittingpositionRradio =0.40–2.62pc(CaseB).The ing the lags between the ionizing continuum and the lines typicalsizeof RBLR =2.70 ly=0.83 pcis within therange (Paltani, Courvoisier & Walter 1998). The Hα, Hβ and Hγ of Rradio estimated in Case B. The radio emitting regions lags relative to the UV continuum are more reliable than in Case B are at distances of pc-scale from the central en- those relative to the optical continuum (Paltani & Tu¨rler gineandarearoundtheBLR,i.e.likelyinsidetheBLR,co- 2005). Thus we adopt the Hα, Hβ and Hγ lags determined located withtheBLRoroutsidetheBLR.Fromτ+ =3.20 ob byPaltani & Tu¨rler (2005).Here,theaverage ofrest-frame years, RBLR = 2.70 ly, vd = 0.9–0.995c, θ = 12◦–21◦ and lags of these lines, τ = 2.70 years, is adopted as a char- equation (7), we can obtain Rradio = 9.43–62.31 pc (Case acteristic value of τ. Thus the BLR has a typical size of C). The estimated sizes are much larger than the typical RBLR =2.70 ly. size of RBLR =0.83 pc. The radio emitting regions in Case Simulations show that the relativistic jets can C are at distances of tens of pc from the central black hole be driven from a region just outside the ergosphere and are far away from theBLR. of a Kerr black hole (see e.g. Meier, Koide& Uchida Kovalev et al. (2009) identified the pc-scale radio core 2001; Koide et al. 2002; Koide 2004; Komissarov 2004; as a likely location for both the γ-ray and radio flares. Locating positions of γ-ray–emitting regions 7 (cid:9) (cid:9) (cid:9) (cid:8)(cid:7)(cid:6) (cid:9) (cid:8)(cid:7)(cid:6) (cid:9) (cid:19)(cid:17) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:12)(cid:14)(cid:20)(cid:20)(cid:18)(cid:21)(cid:18)(cid:14) (cid:6)(cid:6)(cid:7)(cid:7)(cid:4)(cid:3) (cid:1)(cid:4)(cid:3) (cid:6)(cid:6)(cid:7)(cid:7)(cid:4)(cid:3) (cid:1)(cid:8)(cid:3) (cid:6)(cid:6)(cid:7)(cid:7)(cid:4)(cid:3) (cid:1)(cid:17)(cid:3) (cid:6)(cid:6)(cid:6)(cid:7)(cid:7)(cid:7)(cid:4)(cid:3)(cid:2) (cid:1)(cid:11)(cid:3) (cid:6)(cid:6)(cid:6)(cid:7)(cid:7)(cid:7)(cid:4)(cid:3)(cid:2) (cid:1)(cid:15)(cid:3) (cid:19)(cid:9)(cid:10) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:14)(cid:15)(cid:16)(cid:17)(cid:18)(cid:12)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:1)(cid:9)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9) (cid:12)(cid:11)(cid:11)(cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:10) (cid:13)(cid:9)(cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:12)(cid:13)(cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:10)(cid:11) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:22)(cid:16)(cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)a(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:5)(cid:5)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)a(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:8)(cid:31)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)a(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:2)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)a(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:31)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)a(cid:30) (cid:19)(cid:17) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:14) (cid:21)(cid:18) (cid:6)(cid:7)(cid:3) (cid:1)(cid:2)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:7)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:9)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:12)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:14)(cid:3) (cid:14)(cid:20)(cid:20)(cid:18) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:12) (cid:19)(cid:9)(cid:10) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:14)(cid:15)(cid:16)(cid:17)(cid:18)(cid:12)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:1)(cid:9)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9) (cid:12)(cid:11)(cid:11)(cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:10) (cid:13)(cid:9)(cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:13) (cid:12)(cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:10)(cid:11) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:22)(cid:16)(cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)b(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:5)(cid:5)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)b(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:8)(cid:31)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)b(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:2)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)b(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:31)(cid:27)(cid:9)(cid:28)(cid:29)(cid:1)(cid:28)b(cid:30) (cid:19)(cid:17) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:6)(cid:7)(cid:2) (cid:14) (cid:21)(cid:18) (cid:6)(cid:7)(cid:3) (cid:1)(cid:5)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:10)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:13)(cid:3) (cid:6)(cid:7)(cid:3) (cid:1)(cid:16)(cid:3) (cid:14)(cid:20)(cid:20)(cid:18) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:6)(cid:7)(cid:4) (cid:12) (cid:19)(cid:9)(cid:10) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:6)(cid:7)(cid:5) (cid:14)(cid:15)(cid:16)(cid:17)(cid:18)(cid:12)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:1)(cid:9)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9)(cid:1)(cid:6)(cid:6)(cid:7)(cid:7)(cid:5)(cid:6) (cid:9) (cid:12)(cid:11)(cid:11)(cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:1)(cid:6)(cid:7)(cid:4) (cid:10) (cid:13)(cid:9)(cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:1)(cid:6)(cid:7)(cid:3) (cid:13) (cid:12)(cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:1)(cid:6)(cid:7)(cid:2) (cid:10)(cid:11) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:1)(cid:2) (cid:1)(cid:3) (cid:1)(cid:4) (cid:1)(cid:5) (cid:6) (cid:5) (cid:4) (cid:3) (cid:2) (cid:22)(cid:16)(cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:28)(cid:29)(cid:1)(cid:28)g(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:5)(cid:5)(cid:27)(cid:28)(cid:29)(cid:1)(cid:28)g(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:8)(cid:31)(cid:27)(cid:28)(cid:29)(cid:1)(cid:28)g(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:2)(cid:27)(cid:28)(cid:29)(cid:1)(cid:28)g(cid:30) (cid:22)(cid:16)(cid:23)(cid:24)(cid:31)(cid:27)(cid:28)(cid:29)(cid:1)(cid:28)g(cid:30) Figure 3.ZDCFbetween Hαand (a) 37, (b) 22, (c)15, (d) 8and(e) 5GHz; ZDCFbetween Hβ and(f) 37, (g) 22, (h)15, (i) 8and (j)5GHz;ZDCFbetweenHγ and(k)37,(l)22,(m)15,(n)8and(o)5GHz.Thex-axisisinunitsofyrs. (cid:16) (cid:16) (cid:6)(cid:9)(cid:1)(cid:11) (cid:6)(cid:9)(cid:10)(cid:4) (cid:6)(cid:9)(cid:1)(cid:10) (cid:6)(cid:9)(cid:10)(cid:6) (cid:27)(cid:15)(cid:6)(cid:6)(cid:9)(cid:9)(cid:1)(cid:1)(cid:1)(cid:8) (cid:13)(cid:18)(cid:15) (cid:28) (cid:6)(cid:9)(cid:8)(cid:4) (cid:13)(cid:29)(cid:15) (cid:30) (cid:24)(cid:25)(cid:16)(cid:13)(cid:26)(cid:21)(cid:6)(cid:6)(cid:6)(cid:9)(cid:9)(cid:9)(cid:6)(cid:6)(cid:1)(cid:7)(cid:2)(cid:6) (cid:6)(cid:6)(cid:16)(cid:9)(cid:9)(cid:1)(cid:8)(cid:4)(cid:6) (cid:16) (cid:22)(cid:23)(cid:6)(cid:9)(cid:6)(cid:5) (cid:16)(cid:6)(cid:9)(cid:6)(cid:3) (cid:16) (cid:6)(cid:9)(cid:1)(cid:6) (cid:16) (cid:6)(cid:9)(cid:6)(cid:7) (cid:6)(cid:9)(cid:6)(cid:2) (cid:6)(cid:9)(cid:6)(cid:5) (cid:6)(cid:9)(cid:6)(cid:7) (cid:27)(cid:15)(cid:6)(cid:9)(cid:6)(cid:3) (cid:13)(cid:14)(cid:15) (cid:21) (cid:6)(cid:9)(cid:6)(cid:5) (cid:13)(cid:31)(cid:15) (cid:21) (cid:26)(cid:6)(cid:9)(cid:6)(cid:4) (cid:6)(cid:9)(cid:6)(cid:3) (cid:24)(cid:25)(cid:16)(cid:13)(cid:6)(cid:9)(cid:6)(cid:11) (cid:6)(cid:16)(cid:9)(cid:6)(cid:4) (cid:16) (cid:22)(cid:23)(cid:6)(cid:9)(cid:6)(cid:10) (cid:6)(cid:9)(cid:6)(cid:11) (cid:6)(cid:9)(cid:6)(cid:8) (cid:6)(cid:9)(cid:6)(cid:10) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:7)(cid:6) (cid:1)(cid:2)(cid:7)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:8)(cid:6)(cid:6)(cid:6) (cid:8)(cid:6)(cid:6)(cid:4) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:5)(cid:6) (cid:1)(cid:2)(cid:5)(cid:4) (cid:1)(cid:2)(cid:7)(cid:6) (cid:1)(cid:2)(cid:7)(cid:4) (cid:1)(cid:2)(cid:2)(cid:6) (cid:1)(cid:2)(cid:2)(cid:4) (cid:8)(cid:6)(cid:6)(cid:6) (cid:8)(cid:6)(cid:6)(cid:4) (cid:16)(cid:17)(cid:18)(cid:16)(cid:19)(cid:20) (cid:17)(cid:16)(cid:18)(cid:19)(cid:20) (cid:1)(cid:9)(cid:6) (cid:6)(cid:9)(cid:7) (cid:6)(cid:9)(cid:3) (cid:13)(cid:20)(cid:15) (cid:6)(cid:9)(cid:11) (cid:13)"(cid:15) ((cid:19) (cid:6)(cid:9)(cid:8) (cid:14)’(cid:20)(cid:12)(cid:6)(cid:6)(cid:9)(cid:9)(cid:6)(cid:8) (cid:16) (cid:16) (cid:20)""’(cid:12)(cid:6)(cid:9)(cid:11) %(cid:12)(cid:6)(cid:9)(cid:3) %((cid:16)#(cid:12)(cid:6)(cid:9)(cid:7)(cid:12)(cid:7) (cid:12)(cid:5) (cid:12)(cid:3) (cid:12)(cid:4) (cid:12)(cid:11) (cid:12)(cid:10) (cid:12)(cid:8) (cid:12)(cid:1) (cid:6) (cid:1) (cid:8) (cid:10) (cid:12)(cid:7) (cid:12)(cid:5) (cid:12)(cid:3) (cid:12)(cid:4) (cid:12)(cid:11) (cid:12)(cid:10) (cid:12)(cid:8) (cid:12)(cid:1) (cid:6) (cid:1) (cid:8) (cid:10) %$$(cid:20)(cid:23)(cid:18)(cid:19)’ (cid:6)(cid:1)(cid:9)(cid:9)(cid:7)(cid:6) (cid:30)(cid:18)!(cid:13)(cid:28)(cid:16)(cid:12) a (cid:15) (cid:30)(cid:18)!(cid:13)(cid:30)(cid:16)(cid:12) a (cid:15) # (cid:6)(cid:9)(cid:3) (cid:13)!(cid:15) (cid:13))(cid:15) &&(cid:16) (cid:6)(cid:9)(cid:11) % (cid:6)(cid:9)(cid:8) #$ (cid:6)(cid:9)(cid:6) (cid:16) (cid:16) (cid:12)(cid:6)(cid:9)(cid:8) (cid:12)(cid:6)(cid:9)(cid:11) (cid:12)(cid:6)(cid:9)(cid:3) (cid:12)(cid:6)(cid:9)(cid:7) (cid:12)(cid:7) (cid:12)(cid:5) (cid:12)(cid:3) (cid:12)(cid:4) (cid:12)(cid:11) (cid:12)(cid:10) (cid:12)(cid:8) (cid:12)(cid:1) (cid:6) (cid:1) (cid:8) (cid:10) (cid:12)(cid:7) (cid:12)(cid:5) (cid:12)(cid:3) (cid:12)(cid:4) (cid:12)(cid:11) (cid:12)(cid:10) (cid:12)(cid:8) (cid:12)(cid:1) (cid:6) (cid:1) (cid:8) (cid:10) (cid:30)(cid:18)!(cid:13)(cid:21)(cid:12) a (cid:15) (cid:30)(cid:18)!(cid:13) (cid:12) a (cid:15) Figure 4.Lightcurves ofinfraredemissionin(a)K,(b) L,(c)Jand(d) Hbands.ZDCFbetween Hαand(e)K,(f) L,(g)Jand(h) Hbands.Thex-axisisinunitsofyrs. 8 H. T. Liu, J. M. Bai and J. M. Wang Jorstad et al. (2001) concluded that both the radio and γ- rayeventsareoriginatingfromthesameregionofarelativis- ticjet.In1990s,itiscommonlythoughtthattheγ-raysare producedinthejet,butclosertothecentralenginethanthe radioemission(seee.g.Dermer & Schlickeiser1994).Thusit (cid:10)(cid:2)(cid:5) isexpectedthatRγ .Rradio.TheconstraintofRγ .Rradio (cid:12)(cid:11)(cid:13)(cid:14)(cid:10)(cid:2)(cid:4) is allowed by the recent flares of 3C 279 observed by Fermi (cid:10) and in a multi-wavelength campaign (Abdoet al. 2010d), (cid:1)(cid:2)(cid:7) (cid:4)(cid:1) where radio light curves from 5 to 230 GHz fail to show (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3) (cid:10)(cid:7) prominent variations during either the November 2008 or (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:4)(cid:4) (cid:10)(cid:6) θ(cid:11) theFebruary2009γ-rayflares(oranytimeinbetween).For (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:5)(cid:5) CaseB,R .0.40–2.62pcforv =0.9–0.995candθ=12◦– (cid:8)(cid:8)(cid:9)(cid:9) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:6)(cid:6) (cid:10)(cid:5) γ d (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:7)(cid:7) 21◦. For Case A, the zero-lag position R =4.67–30.81 pc, (cid:10)(cid:4) γ which is far away from the BLR. For Case C, R . 9.43– γ 62.31 pc. Also, R > 4.67–30.81 pc for the positive lags in γ Case C. Thus for Case C we have 4.67–30.81 <R .9.43– γ 62.31 pc for v = 0.9–0.995c and θ = 12◦–21◦. The depen- d dence of R and R on v and θ is presented in Fig. 5 (cid:1)(cid:2)(cid:5) γ radio d (see three-dimensional plots). R and R increase as v (cid:1)(cid:2)(cid:4) γ radio d (cid:13)(cid:11)(cid:14)(cid:15) increases, but decrease as θ increases. The uncertainties of (cid:1) v and θ result in thelarger intervals of R and R . For (cid:12)(cid:1)(cid:2)(cid:4) d γ radio betterrepresentingintervalsofR ,thesectionsofthethree- (cid:12)(cid:1)(cid:2)(cid:5) (cid:4)(cid:1) γ (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3) (cid:10)(cid:7) dimensional plots at cosθ = 0.95 are also plotted in Fig. 5 (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:4)(cid:4) (cid:10)(cid:6) θ(cid:11) (see the bottom panel). For Case B, R . R = 0.44– (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:5)(cid:5) γ radio 1.28 pc for vd = 0.9–0.995c and cosθ = 0.95. These Rγ (cid:8)(cid:8)(cid:9)(cid:9) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:6)(cid:6) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:7)(cid:7) (cid:10)(cid:5) marginally satisfy R . R . For Case C, we have 5.15– (cid:10)(cid:4) γ BLR 15.08<R .10.40–30.45 pc. γ It is possible that there is a special point D within segment AG (see Fig. 1a). As the ionizing photons travel frompointAtoB,thedisturbancestravelfromAtoD,i.e. Rγ =AD. Thus we haveRγ/vd =RBLR/c, and then (cid:10)(cid:2)(cid:7) (cid:10)(cid:2)(cid:6) R Rγ = BcLRvd. (8) (cid:12)(cid:11)(cid:13)(cid:14)(cid:10)(cid:2)(cid:5) (cid:10)(cid:2)(cid:4) Inthiscase,theγ-rayswillleadthelines.Combingequations (cid:10) (cid:4)(cid:1) (7) and (8), we have (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3) (cid:10)(cid:7) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:4)(cid:4) (cid:10)(cid:6) θ(cid:11) Rγ =−c1hτ+obzico1sθ. (9) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:8)(cid:8)(cid:5)(cid:5)(cid:9)(cid:9) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:6)(cid:6) (cid:10)(cid:5) (cid:1)(cid:1)(cid:2)(cid:2)(cid:3)(cid:3)(cid:7)(cid:7) (cid:10)(cid:4) In this special case (hereafter Case D), R . R is ex- γ BLR pectedfromequation(8).Fromτ− = 2.86years,θ=12◦– ob − 21◦ and equation (9), we have Rγ .Rradio =0.77–0.81 pc. (cid:9)(cid:10)(cid:11)q(cid:12)(cid:1)(cid:2)(cid:3)(cid:13) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:1)(cid:6)(cid:5)(cid:7) TheseestimatedR andR =0.83pcsatisfyR .R . (cid:8)(cid:2)(cid:9)(cid:10)(cid:11) γ BLR γ BLR This tests the correctness of R . R expected from RRRR γ BLR (cid:8)(cid:1) gggg equation (8). This test confirms the reliability of the time lagsestimatedbytheZDCFmethod.ThoseestimatedR (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:13)(cid:6)(cid:5)(cid:7)(cid:5) radio (cid:9)(cid:18) gggg in Case B contain these Rradio estimated in Case D. Thus (cid:15)(cid:14)(cid:16)(cid:17) (cid:14) CaseDisaspecialCaseB,anditispossibleandreasonable. Combining equations (7) and (8), one can also obtain (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:12)(cid:6)(cid:5)(cid:7) (cid:8)(cid:2)(cid:9)(cid:10)(cid:11) c τ c 1 (cid:8) (cid:1)(cid:2)(cid:3)(cid:1) RBLR =−1h+obziv cosθ. (10) RRRRgggg d aFnrodmeqτu−oabti=on−(120.8),6wyeeahrsa,vevdR= 0.9=–00.9.7975–c0,.9θ0=pc1.2T◦–h2e1s◦e (cid:1)(cid:2)(cid:3)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:3)(cid:19)(cid:5)(cid:20)(cid:14)(cid:16)(cid:9)(cid:18) (cid:1)(cid:2)(cid:3)(cid:6) (cid:1)(cid:2)(cid:3)(cid:7) (cid:8)(cid:2)(cid:1)(cid:1) BLR estimatedvaluescontainthetypicalsizeofRBLR =0.83pc. Figure 5.Dependence ofdistanceRonvd andθ.Fromthetop down, the first three panels correspond to Cases A, B and C, This confirms the reliability of the time lags estimated by theZDCF method. respectively. The x, y and z-axes are vd inunits of c, θ in units of degree and logR in units of pc, respectively. The first three panelsrepresentdependenceofRonvd andθ.Thebottompanel represents dependence of R on vd in case of cosθ =0.95, where 4 DISCUSSION AND CONCLUSIONS thegriddingarearepresentstheallowedintervalofRγ inCaseC. ThearrowsrepresenttheupperlimitofRγ inCaseB. The positions of γ-ray–emitting regions are still an open and controversial issue in the researches on blazars. Based Locating positions of γ-ray–emitting regions 9 on the method proposed in section 2, we attempt to locate Bai, Liu & Ma2009).Themethodproposedherecanlocate the emitting positions of γ-rays within the second bumps R in the jet. The inner emitting regions with R .R γ γ BLR in the broad-band SEDs of blazars. In our previous works arelikelythemajorcontributoroftheγ-raysbelow10GeV, (Liu & Bai2006;Liu, Bai & Ma2008;Bai, Liu & Ma2009), forthattheγ-raysabove10GeVaresubjecttothephoton- theinternalabsorption for 10 GeV–1 TeV γ-rayswere used photon absorption due to the dense external soft photons to constrain R , independent of how the γ-rays are pro- at the inner regions (e.g. Liu & Bai 2006; Liu, Bai & Ma γ duced. Here, we try to locate R , independent of the ener- 2008;Bai, Liu & Ma2009).Theouteremittingregionswith γ gies of γ-rays from the SSCand EC processes. Wefind two R R are likely the major contributor of the γ-rays γ BLR ≫ emittingregions,theinneroneatsub-pc–pcscalesfromthe above 10 GeV, for that these γ-rays are not subject to the centralblackholeandtheouteronearoundtensofpcscales. photon-photonabsorptionduetothethinexternalsoftpho- TheouteronesatisfiesR R (CaseC).Theinnerone tons at the outer regions. For these possible γ-ray emitters γ BLR ≫ in Case D satisfies R . R . The inner one in Case B at large scales of kpc–Mpc (Bai & Lee 2001; Zhang et al. γ BLR mostly satisfies R . R . At the same time, the inner 2009, 2010), ourworks are not applicable. γ BLR oneinCaseBpartlysatisfiesRγ >RBLR,i.e.RBLR <Rγ . The most prominent features on VLBI images of 2.62 pc. jets in radio-loud AGNs are the radio core and bright It was suggested R . R (Ghisellini & Madau knots in the jet (Jorstad et al. 2007). Kovalev et al. γ BLR 1996). Georganopoulos, Kirk & Mastichiadis (2001) argued (2009) investigated the relation between AGN γ-ray R .R forpowerfulblazars.Tavecchio & Mazin(2009) emission and pc-scale radio jets. They identified the γ BLR assumed R < R for the VHE γ-rays in 3C 279. pc-scale radio core as a likely location for both the γ-ray γ BLR Liu, Bai & Ma (2008) and Bai, Liu & Ma (2009) suggested and radio flares. A few hundreds of Schwarzschild radii, thatR iswithintheBLRfor3C279.Ghisellini et al.(2010) sub-pc-scale, is the preferred jet position where most γ modelled theSEDsofbrightFermi blazars,andtheyfound of the dissipation occurs (Ghisellini & Tavecchio 2009; thatthepositionofthejetdissipationregionR issmaller Ghisellini, Tavecchio & Ghirlanda 2009; Ghisellini et al. diss thanR for53out of57FSRQs.However,R >R 2010). Sikora et al. (2009) suggested that the blazar BLR diss BLR for BL Lacs. They used R = 1017L1/2 cm to estimate emission zone is located at pc-scale distances from the BLR d,45 R forBLLacsandFSRQs,whereL isaccretiondisc nucleus.Ghisellini & Madau (1996)suggested thatR isat BLR d,45 γ luminosity in units of 1045 erg s−1. It is appropriate to use sub-pc scales. Blandford & Levinson (1995) also suggested R = 1017L1/2 cm to estimate R for FSRQs, but a sub-pcγ-ray–emitting region from the central black hole. BLR d,45 BLR not for BL Lacs because this relation is derived from the These previous findings support R at sub-pc–pc scales. γ type1 AGNs.Thus it should bereliable that R <R These R of sub-pc–pc scales are consistent with those diss BLR γ for blazars. If the jet dissipation region is equivalent to R obtained in Cases B and D. These sub-pc–pc scale γ the γ-ray–emitting region, R < R is equivalent to R obtained in Cases B and D are also consistent with diss BLR radio R < R . For 3C 273, R < R (Ghisellini et al. the previous findings of the blazar emission zone and the γ BLR diss BLR 2010). These previous findings are consistent with our re- dissipation zone. These agreements confirm the reliability sults of R . R obtained in Cases B and D. It was of our results. γ BLR also argued Rγ >RBLR (Lindfors, Valtaoja & Tu¨rler 2005; Itisrecentlyadvancedthatthebulkoftheγ-raysisgen- Sokolov & Marscher 2005). This is marginally consistent erated in regions of the jet at distances of tens of pc from with RBLR < Rγ . 2.62 pc obtained in Case B. These the central black hole (e.g. Sikora, Moderski & Madejski agreements confirm the reliability of the method and as- 2008; Marscher et al. 2010). For Case C, we obtain the sumptions. outer emitting regions of 4.67–30.81 < R . 9.43–62.31 γ B¨ottcher (2008) suggested for 3C 279 that R pc and R = 9.43–62.31 pc. These outer emitting re- γ radio ≫ R for VHE γ-rays. It is recently advanced that the gions are comparable to the γ-ray–emitting regions at dis- BLR bulk of the γ-rays is produced in regions of the jet at tances of tens of pc. Tavecchio et al. (2010) found evidence distances of tens of pc from the central black hole (e.g. of variability on timescales of few hours from the 1.5 years Sikora, Moderski & Madejski 2008; Marscher et al. 2010). Fermi/LATlightcurvesofFSRQs3C454.3 andPKS1510- Bai & Lee(2001) predictedtheexistenceof largescale syn- 089. They concluded that significant variability on such chrotron X-ray jets in radio-loud AGNs, especially, the X- short timescales disfavor the scenario in which the bulk ray jets are bright on 10 kpc scales in most red blazars of the γ-rays is produced at distances of tens of pc (e.g. and red blazar-like radio galaxies. According to their pre- Sikora, Moderski & Madejski 2008; Marscher et al. 2010). dictions,thelargescale synchrotronX-rayjetscan produce Thepreviousresearchesshowthattherearetwopossibleγ- VHE γ-rays by the SSC process. Zhanget al. (2009, 2010) ray–emittingregions,oneinsideoraroundtheBLRandthe predicted the hot spots in lobes and the knots in jets to other outside the BLR. This paper gives the same results. bepossibleGeV–TeVemitters.Fermi/LATmayresolvethe However, the method cannot discriminate between positive large scale γ-ray emitters than the nuclear emitters. These lags and negative lags on observational grounds alone (at previous findings support R R as we obtain in least not with the current data), and the application dis- γ BLR ≫ Case C. Also, R R in Case C is not inconsistent cussed in the paper does not distinguish between the two γ BLR ≫ with R >R of Lindfors, Valtaoja & Tu¨rler (2005) and proposedscenarios.Weexpectthissituationtochangewith γ BLR Sokolov & Marscher(2005).Theseconfirmthereliability of future data, perhaps longer line light curves, such as 10–15 our results. years. The longer line light curves could give stronger con- Ourpreviousworksareapplicabletotheγ-raysemitted straints on the coupling of the radio light curves with the from theregions in powerful blazars, whereR is not much line ones. γ larger than R (Liu & Bai 2006; Liu, Bai & Ma 2008; For a given line, the relevant time lags generally de- BLR 10 H. T. Liu, J. M. Bai and J. M. Wang crease as radio frequency increases from 5 to 37 GHz. The (cid:2)(cid:3)(cid:9) (cid:2)(cid:3)(cid:10) trend islikely from theradiativecooling of relativistic elec- (cid:2)(cid:3)(cid:5) trons. Bai & Lee (2003) deduced the synchrotron time lag (cid:2)(cid:3)(cid:2) (cid:1)(cid:2)(cid:3)(cid:5) formula (see equation 9 therein). This formula can be ex- (cid:1)(cid:2)(cid:3)(cid:10) (cid:1)(cid:2)(cid:3)(cid:9) pressed as in theobserver’s frame (cid:1)(cid:2)(cid:3)(cid:8) (cid:20)(cid:21) (cid:1)(cid:7)(cid:3)(cid:2) τloabg(yrs)=1492.6√√1δ+(1z+B−D3)/2 (cid:16)νH−1/2−νL−1/2(cid:17), (11) (cid:15)(cid:16)t(cid:11)(cid:17)(cid:18)(cid:19)(cid:12)(cid:13)(cid:14)(cid:1)(cid:1)(cid:1)(cid:1)(cid:7)(cid:7)(cid:7)(cid:7)(cid:3)(cid:3)(cid:3)(cid:3)(cid:8)(cid:9)(cid:10)(cid:5) (cid:11) (cid:1)(cid:5)(cid:3)(cid:2) where D is the ”Compton dominance” (see e.g. (cid:1)(cid:5)(cid:3)(cid:5) (cid:1)(cid:5)(cid:3)(cid:10) Ghisellini et al. 1998), B is the magnetic field strength (cid:1)(cid:5)(cid:3)(cid:9) in units of gauss, δ is the Doppler factor, and ν and (cid:1)(cid:5)(cid:3)(cid:8) H (cid:1)(cid:2)(cid:3)(cid:4)(cid:2) (cid:1)(cid:2)(cid:3)(cid:5)(cid:6) (cid:1)(cid:2)(cid:3)(cid:5)(cid:2) (cid:1)(cid:2)(cid:3)(cid:7)(cid:6) (cid:1)(cid:2)(cid:3)(cid:7)(cid:2) (cid:1)(cid:2)(cid:3)(cid:2)(cid:6) νL in units of GHz are high and low frequencies in the n (cid:1)(cid:7)(cid:23)(cid:5)(cid:1)n (cid:1)(cid:7)(cid:23)(cid:5)(cid:11)(cid:17)(cid:25)(cid:22)(cid:26)(cid:1)(cid:7)(cid:23)(cid:5)(cid:21) observer’s frame, respectively. For 3C 273, Ghisellini et al. (cid:22) (cid:24) (1998) obtained B = 8.9 G and δ = 6.5. Because the radio light curves used to calculate the ZDCFs span Figure 6.Relation of time lags τloabg =tνH −tνL and frequency differencesν−1/2−ν−1/2 between37,22,15,8and5GHz.Solid more than 20 years and the line light curves span about H L lineistheexpectation fromtheradiativecooling. 7.5 years, it is better to derive D by using the ratio of synchrotron to γ-ray average luminosity. D is of the order of magnitudes of 1 (Tu¨rler et al. 1999). We can obtain (cid:6)(cid:3)(cid:10) τob(yrs)=12(ν−1/2 ν−1/2)ifD=1isadopted.Thetotal lag H − L (cid:6)(cid:3)(cid:6) cooling of both synchrotron and γ-ray emission can lead to τob(yrs) = 6(ν−1/2 ν−1/2). We calculate the ZDCFs and (cid:1)(cid:6)(cid:3)(cid:10) lag H − L timelagsbetweenthelightcurvesof5,8,15,22and37GHz. (cid:1)(cid:7)(cid:3)(cid:6) The high frequency variations lead the low frequency ones. (cid:19)(cid:20) Tdihffeeremnecaessurνe−d1/t2ime νla−g1s/2τloaabgreanpdrestehneterdeleinvanFtigf.re6q.ueTnhcye (cid:15)(cid:16)(cid:17)(cid:18)(cid:11)(cid:12)(cid:13)(cid:14)(cid:1)(cid:1)(cid:2)(cid:7)(cid:3)(cid:3)(cid:6)(cid:10) H − L Dt observational data are well consistent with the prediction (cid:1)(cid:2)(cid:3)(cid:10) of τob = 6(ν−1/2 ν−1/2) (see Fig. 6). This agreement lag H − L (cid:1)(cid:9)(cid:3)(cid:6) confirms the origin of radiative cooling for the time lags between the radio light curves used here. Pyatuninaet al. (cid:1)(cid:9)(cid:3)(cid:10) (cid:1)(cid:2)(cid:3)(cid:4) (cid:1)(cid:2)(cid:3)(cid:5) (cid:1)(cid:2)(cid:3)(cid:6) (cid:1)(cid:7)(cid:3)(cid:8) (cid:1)(cid:7)(cid:3)(cid:2) (cid:1)(cid:6)(cid:3)(cid:4) (cid:1)(cid:6)(cid:3)(cid:5) (cid:6)(cid:3)(cid:6) (cid:6)(cid:3)(cid:5) (2006, 2007) also found frequency-dependent time delays t (cid:24)(cid:25)(cid:15)(cid:16)(cid:17)(cid:18)(cid:19)(cid:20) (cid:21)(cid:22)(cid:23) for strong outbursts in several other blazars. In Fig. 7, we compare the lags τloabg with the differences of ∆τcent Figure 7. ∆τcent vs τloabg. Circles present Hα, squares Hβ and between τcent listed in Table 1. The line of ∆τcent = τloabg triangles Hγ. Open symbols present the negative lags and fulled is consistent with the measured data points (see Fig. 7). symbolsthepositivelagsinTable1.Solidlineis∆τcent=τloabg. This agreement confirms that the trend, i.e. the lags for a given line generally decrease as radio frequency increases, most likely results from the radiative cooling of relativistic uumusedbyPaltani & Tu¨rler(2005).Thisapproachseems electrons. more direct than based on the lags of the broad lines rela- In addition, there is another possibility that lower fre- tiveto theradio emission. We calculate the ZDCFbetween quencies probe larger radii in the jet, as synchrotron self- thelightcurvesoftheUVcontinuumandthe37GHzemis- absorption is important for increasingly high radius with sion. There is only a little bump closer to the zero-lag for decreasingradiofrequency.Thesynchrotronself-absorption the ZDCF and the little bump has r = 0.32 0.06. In max coefficient α is α ν−(n+4)/2N , where N is the elec- the ZDCFs between the Balmer lines and this ra±dio emis- ν ν e e ∝ tron density and n is the electron distribution index. For a sion, the bumpsused to calculate τ haver = 0.6–0.7 cent max homogeneous blob with a radius of r, the synchrotron self- that are much higher than r = 0.32 0.06. This indi- max absorption optical depth τ is τ = rα rν−(n+4)/2N cates that the correlation of the UV con±tinuum with this ν ν ν e ∝ ∝ rν−(n+4)/2/r3 = ν−(n+4)/2/r2. Thus the radio frequency ν radio emission is much weaker than the Balmer lines with can probe the radius r that scales as r ν−(n+4)/4. Hence, this radio emission. For 22, 15, 8 and 5 GHz, there are the ∝ lowerfrequenciesprobelargerradiiinthejetduetothesyn- samecases asin37GHz.TheUVcontinuumisregarded as chrotron self-absorption. The higherfrequencies will escape the ionizing continuum that drives the broad lines through earlierfromtheblobandlatertheloweronesastheblobex- the photoionization process. Thus it is expected that the pands. Thus the lower frequencies lag the higher ones, and correlationoftheUVcontinuumwiththeradiosynchrotron the relevant time lags τ are related to frequencies. The emission should be more significant than the broad lines lag difference in lags listed in Table 1 could originate from the with the radio emission. However, this expectation is con- synchrotron self-absorption, and it scales with frequencies trary to the measurements in the paper. This disagreement as τlag ∝rL−rH∝νL−(1+n/4)−νH−(1+n/4). Thedependence indicatesthattheUVcontinuumislikelynottherealioniz- ofτ onfrequenciesisdifferentfromthatofequation(11). ingcontinuum.Paltani & Tu¨rler(2005)arguedthattheUV lag continuumismuchclosertotheionizingcontinuumthanthe It seems possible to infer R based on thetime lags optical continuum used by Kaspi et al. (2000). That is, the radio oftheradiosynchrotronemissionrelativetotheUVcontin- UVcontinuumisstillnottherealionizingcontinuum.Thus

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.